New Antifungal Metabolites from the Mariana Trench Sediment-Associated Actinomycete Streptomyces sp. SY1965
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Isolation and Taxonomic Identification of Strain SY1965
3.3. Mass Culture of Strain SY1965
3.4. Extraction and Isolation of Compounds 1–12
3.5. ECD Calculation
3.6. 13C NMR Calculations
3.7. Culture of Human Glioma Cells
3.8. Sulforhodamine B (SRB) Assay
3.9. Antimicrobial Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skropeta, D.; Wei, L. Recent advances in deep-sea natural products. Nat. Prod. Rep. 2014, 31, 999–1025. [Google Scholar] [CrossRef]
- Pilkington, L.I. A Chemometric analysis of deep-sea natural products. Molecules 2019, 24, 3942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Mudassir, S.; Zhang, Z.; Feng, Y.; Chang, Y.; Che, Q.; Gu, Q.; Zhu, T.; Zhang, G.; Li, D. Secondary metabolites from deep-sea derived microorganisms. Curr. Med. Chem. 2019. [Google Scholar] [CrossRef] [PubMed]
- Feling, R.H.; Buchanan, G.O.; Mincer, T.J.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Int. Ed. 2003, 42, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Badros, A.; Singh, Z.; Dhakal, B.; Kwok, Y.; MacLaren, A.; Richardson, P.; Trikha, M.; Hari, P. Marizomib for central nervous system-multiple myeloma. Br. J. Haematol. 2017, 177, 221–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di, K.; Lloyd, G.K.; Abraham, V.; MacLaren, A.; Burrows, F.J.; Desjardins, A.; Trikha, M.; Bota, D.A. Marizomib activity as a single agent in malignant gliomas: Ability to cross the blood-brain barrier. Neuro-Oncology 2016, 18, 840–848. [Google Scholar] [CrossRef]
- Prieto-Davó, A.; Villarreal-Gómez, L.J.; Forschner-Dancause, S.; Bull, A.T.; Stach, J.E.; Smith, D.C.; Rowley, D.C.; Jensen, P.R. Targeted search for actinomycetes from nearshore and deep-sea marine sediments. FEMS Microbiol. Ecol. 2013, 84, 510–518. [Google Scholar] [CrossRef]
- Russo, P.; Del Bufalo, A.; Fini, M. Deep sea as a source of novel-anticancer drugs: Update on discovery and preclinical/clinical evaluation in a systems medicine perspective. EXCLI J. 2015, 14, 228–236. [Google Scholar]
- Jensen, P.R.; Moore, B.S.; Fenical, W. The marine actinomycete genus Salinispora: A model organism for secondary metabolite discovery. Nat. Prod. Rep. 2015, 32, 738–751. [Google Scholar] [CrossRef] [Green Version]
- Peoples, L.M.; Grammatopoulou, E.; Pombrol, M.; Xu, X.; Osuntokun, O.; Blanton, J.; Allen, E.E.; Nunnally, C.C.; Drazen, J.C.; Mayor, D.J.; et al. Microbial community diversity within sediments from two geographically separated hadal trenches. Front. Microbiol. 2019, 10, 347. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Y.; Lin, H.; Wang, X.; Li, M.; Liu, Y.; Yu, M.; Zhao, M.; Pedentchouk, N.; Lea-Smith, D.J.; et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 2019, 7, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiraoka, S.; Hirai, M.; Matsui, Y.; Makabe, A.; Minegishi, H.; Tsuda, M.; Rastelli, E.; Danovaro, R.; Corinaldesi, C.; Kitahashi, T.; et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 2020, 14, 740–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Chai, W.Y.; Wang, W.L.; Song, T.F.; Lian, X.Y.; Zhang, Z.Z. Cytotoxic bagremycins from mangrove-derived Streptomyces sp. Q22. J. Nat. Prod. 2017, 80, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.X.; Chai, W.Y.; Song, T.F.; Ma, M.Z.; Lian, X.Y.; Zhang, Z.Z. Anti-glioma natural products downregulating tumor glycolytic enzymes from marine actinomycete Streptomyces sp. ZZ406. Sci. Rep. 2018, 8, 72. [Google Scholar] [CrossRef] [Green Version]
- Song, T.F.; Chen, M.X.; Ge, Z.W.; Chai, W.Y.; Li, X.C.; Zhang, Z.Z.; Lian, X.Y. Bioactive penicipyrrodiether A, an adduct of GKK1032 analogue and phenol A derivative, from a marine-sourced fungus Penicillium sp. ZZ380. J. Org. Chem. 2018, 83, 13395–13401. [Google Scholar] [CrossRef]
- Song, T.F.; Tang, M.M.; Ge, H.J.; Chen, M.X.; Lian, X.Y.; Zhang, Z.Z. Novel bioactive penicipyrroether A and pyrrospirone J from the marine-derived Penicillium sp. ZZ380. Mar. Drugs 2019, 17, 292. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Yi, W.W.; Ge, H.Z.; Zhang, Z.Z.; Wu, B. Bioactive streptoglutarimides A–J from the marine-derived Streptomyces sp. ZZ741. J. Nat. Prod. 2019, 82, 2800–2808. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Y.; Zhao, L.; Zhou, H.; Xu, L.; Ding, Z.J. A novel tetrahydrofuranyl fatty acid from a new microbial isolate, Pestalotia sp. YIM 69032 cultivated in extract of potato. J. Am. Oil Chem. Soc. 2013, 90, 159–162. [Google Scholar] [CrossRef]
- Pei, Z.L.; Chen, L.; Xu, J.L.; Shao, C.L. Secondary metabolites and their biological activities of two actinomycetes Streptomyces coelicoflavus and Nocardiopsis dassonvillei associated with ascidians Styela clava and Botryllus schlosse. Chin. J. Mar. Drugs 2017, 36, 55–60. [Google Scholar]
- Shamim Hossain, M.; Hossain, M.A.; Rahman, M.M.; Mondol, M.A.M.; Bhuiyan, M.S.A.; Gray, A.I.; Flores, M.E.; Rashid, M.A. Amides from Streptomyces hygroscopicus and their antimicrobial activity. Phytochemistry 2004, 65, 2147–2151. [Google Scholar] [CrossRef]
- Matsumura, K.; Onomura, O.; Izumi, Y. Asymmetric Esterification of N-Protected Aminoalcohols with Optically Active Bisoxazoline-Copper Complexes as Asymmetric Catalys. Japan Patent JP2008037865A, 14 July 2006. [Google Scholar]
- Owston, N.A.; Parker, A.J.; Williams, J.M. Highly efficient ruthenium-catalyzed oxime to amide rearrangement. Org. Lett. 2007, 9, 3599–3601. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Ma, Y.; Lu, Y.; Xi, T. Taxonomy and characterization of bioactive metabolites from a new marine microorganism strain MLA-21. Asian J. Chem. 2103, 25, 220–224. [Google Scholar] [CrossRef]
- Zhao, W.Q.; Cui, C.B.; Tian, C.K.; Li, C.W.; Yang, M. Metabolites newly produced by three bioactive actinomycetic mutants resistant to antibiotics and preliminary test for their antitumor activity. Period. Ocean Univ. China 2010, 40, 53–56. [Google Scholar]
- Inahashi, Y.; Iwatsuki, M.; Ishiyama, A.; Namatame, M.; Nishihara-Tsukashima, A.; Matsumoto, A.; Hirose, T.; Sunazuka, T.; Yamada, H.; Otoguro, K.; et al. Spoxazomicins A-C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0460(T). J. Antibiot. 2011, 64, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Ponce-Vargas, M.; Stefane, B.; Zaborova, E.; Fages, F.; D’Aleo, A.; Jacquemin, D.; Le Guennic, B. Searching for new borondifluoride β-diketonate complexes with enhanced absorption/emission properties using ab initio tools. Dye. Pigment. 2018, 155, 59–67. [Google Scholar] [CrossRef]
- Lodewyk, M.W.; Siebert, M.R.; Tantillo, D.J. Computational prediction of 1H and 13C chemical shifts: A useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem. Rev. 2012, 112, 1839–1862. [Google Scholar]
- Yang, X.; Yang, J.; Xu, G. Skeleton reassignment of type C polycyclic polyprenylated acylphloroglucinols. J. Nat. Prod. 2016, 80, 108–113. [Google Scholar] [CrossRef]
- Gu, B.B.; Wu, W.; Jiao, F.R.; Jiao, W.H.; Li, L.; Sun, F.; Wang, S.P.; Yang, F.; Lin, H.W. Asperflotone, an 8(14→15)-abeo-ergostane from the sponge-derived fungus Aspergillus flocculosus 16D-1. J. Org. Chem. 2019, 84, 300–306. [Google Scholar] [CrossRef]
- Haghdani, S.; Gautun, O.R.; Koch, H.; Åstrand, P.O. Optical rotation calculations for a set of pyrrole compounds. J. Phys. Chem. A 2016, 120, 7351–7360. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Zhao, W.Y.; Shi, S.C.; Han, F.Y.; Zhang, Y.Y.; Liu, Q.B.; Yao, G.D.; Lin, B.; Huang, X.X.; Song, S.J. Guaiane-type sesquiterpenoids from the toots of daphne genkwa and evaluation of their neuroprotective effects. J. Nat. Prod. 2019, 82, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Matselyukh, B.; Mohammadipanah, F.; Laatsch, H.; Rohr, J.; Efremenkova, O.; Khilya, V. N-methylphenylalanyl-dehydrobutyrine diketopiperazine, an A-factor mimic that restores antibiotic biosynthesis and morphogenesis in Streptomyces globisporus 1912-B2 and Streptomyces griseus 1439. J. Antibiot. 2015, 68, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.X.; Ye, X.W.; Yu, S.R.; Lian, X.Y.; Zhang, Z.Z. New capoamycin-type antibiotics and polyene acids from marine Streptomyces fradiae PTZ0025. Mar. Drugs 2012, 10, 2388–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.W.; Anjum, K.; Song, T.F.; Wang, W.L.; Yu, S.R.; Huang, H.C.; Lian, X.Y.; Zhang, Z.Z. A new curvularin glycoside and its cytotoxic and antibacterial analogues from marine actinomycete Pseudonocardia sp. HS7. Nat. Prod. Res. 2016, 30, 1156–1161. [Google Scholar] [CrossRef]
- Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 2015, 80, 12526–12534. [Google Scholar] [CrossRef]
No. | 1 a | 2 + 3 b | 4 b | |||
---|---|---|---|---|---|---|
C, Type | H (J in Hz) | C, Type | H (J in Hz) | C, Type | H (J in Hz) | |
1 | 121.4, C | – | 135.6, C | – | 145.6, C | – |
2 | 157.4, C | – | 131.2, CH | 7.04, dd (8.2, 2.6) | 127.1, CH | 7.22, s |
3 | 112.3, CH | 7.18, d (7.5) | 129.7, CH | 7.20–7.24, m | 143.4, C | – |
4 | 132.8, CH | 7.49, dd (7.5, 1.8) | 128.7, CH | 7.20–7.24, m | 128.2, CH | 7.10, d (7.8) |
5 | 120.7, CH | 7.05, t (7.5) | 129.7, CH | 7.20–7.24, m | 129.4, CH | 7.24, t (7.8) |
6 | 131.2, CH | 7.95, dd (7.5, 1.8) | 131.2, CH | 7.04, dd (8.2, 2.6) | 124.9, CH | 7.16, d (7.8) |
7 | 164.0, C | – | 38.3, CH2 | 3.25, dd (14.6, 5.0); 3.16, dd (14.6, 3.3) | 30.0, CH2 | 2.62, q (7.5) |
8 | 52.8, CH | 4.25, m | 65.4, CH | 4.42, dd (5.0, 3.3) | 16.4, CH3 | 1.21, t (7.5) |
9 | 73.9, CH | 4.22, d (4.3) | 167.6, C | – | 76.3, CH | 4.64, t (7.5) |
10 | 33.1, CH2 | 2.93, m; 2.66, dd (10.3, 8.9) | 134.7, C | – | 69.0, CH2 | 3.59, m |
11 | 69.6, CH | 2.80, m | 160.9, CH | – | ||
12 | 40.7, CH2 | 3.35, m; 2.93, m | 101.7, CH2 | 4.96, s; 4.45, s | ||
13 | 62.2, CH2 | 3.59, m; 3.28, m | 33.6, CH3 | 3.12, s | ||
14 | 39.6, CH3 | 2.36, s | ||||
15 | 169.2, C | – | ||||
16 | 22.4, CH3 | 1.66, s | ||||
17 | 56.1, CH3 | 3.93, s | ||||
NH-7 | – | 8.43, d (8.3) | ||||
NH-12 | – | 7.69, t (5.7) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, W.; Qin, L.; Lian, X.-Y.; Zhang, Z. New Antifungal Metabolites from the Mariana Trench Sediment-Associated Actinomycete Streptomyces sp. SY1965. Mar. Drugs 2020, 18, 385. https://doi.org/10.3390/md18080385
Yi W, Qin L, Lian X-Y, Zhang Z. New Antifungal Metabolites from the Mariana Trench Sediment-Associated Actinomycete Streptomyces sp. SY1965. Marine Drugs. 2020; 18(8):385. https://doi.org/10.3390/md18080385
Chicago/Turabian StyleYi, Wenwen, Le Qin, Xiao-Yuan Lian, and Zhizhen Zhang. 2020. "New Antifungal Metabolites from the Mariana Trench Sediment-Associated Actinomycete Streptomyces sp. SY1965" Marine Drugs 18, no. 8: 385. https://doi.org/10.3390/md18080385
APA StyleYi, W., Qin, L., Lian, X. -Y., & Zhang, Z. (2020). New Antifungal Metabolites from the Mariana Trench Sediment-Associated Actinomycete Streptomyces sp. SY1965. Marine Drugs, 18(8), 385. https://doi.org/10.3390/md18080385