Chemical Constituents of the Deep-Sea-Derived Penicillium solitum
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Identification, Fermentation, and Extract
3.3. Isolation and Purification
3.4. ECD Calculation
3.5. Cell Proliferation Assay
3.6. Anti-Allergic Bioassay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Pitt, J.I.; Spotts, R.A.; Holmes, R.J.; Cruickshank, R.H. Penicillium solitum revived, and its role as a pathogen of pomaceous fruits. Phytopathology 1991, 81, 1108–1112. [Google Scholar] [CrossRef]
- Jurick, W.M., 2nd; Vico, I.; Gaskins, V.L.; Whitaker, B.D.; Garrett, W.M.; Janisiewicz, W.J.; Conway, W.S. Penicillium solitum produces a polygalacturonase isozyme in decayed Anjou pear fruit capable of macerating host tissue in vitro. Mycologia 2012, 104, 604–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lund, F.; Filtenborg, O.; Frisvad, J.C. Associated mycoflora of cheese. Food Microbiol. 1995, 12, 173–180. [Google Scholar] [CrossRef]
- Sørensen, L.M.; Jacobsen, T.; Nielsen, P.V.; Frisvad, J.C.; Koch, A.G. Mycobiota in the processing areas of two different meat products. Int. J. Food Microbiol. 2008, 124, 58–64. [Google Scholar] [CrossRef]
- Stierle, D.B.; Stierle, A.A.; Girtsman, T.; McIntyre, K.; Nichols, J. Caspase-1 and -3 inhibiting drimane sesquiterpenoids from the extremophilic fungus Penicillium solitum. J. Nat. Prod. 2012, 75, 262–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, V.N.; Campos, L.S.; Melo, I.S.; Pellizari, V.H.; Rosa, C.A.; Rosa, L.H. Penicillium solitum: A mesophilic, psychrotolerant fungus present in marine sediments from Antarctica. Polar Biol. 2013, 36, 1823–1831. [Google Scholar] [CrossRef]
- Boruta, T.; Przerywacz, P.; Ryngajllo, M.; Bizukojc, M. Bioprocess-related, morphological and bioinformatic perspectives on the biosynthesis of secondary metabolites produced by Penicillium solitum. Process Biochem. 2018, 68, 12–21. [Google Scholar] [CrossRef]
- Larsen, T.O.; Lange, L.; Schnorr, K.; Stender, S.; Frisvad, J.C. Solistatinol, a novel phenolic compactin analogue from Penicillium solitum. Tetrahedron Lett. 2007, 48, 1261–1264. [Google Scholar] [CrossRef]
- Sørensen, D.; Larsen, T.O.; Christophersen, C.; Nielsen, P.H.; Anthoni, U. Solistatin, an aromatic compactin analogue from Penicillium solitum. Phytochemistry 1999, 51, 1027–1029. [Google Scholar] [CrossRef]
- Rodriguez, J.P.G.; Bernardi, D.I.; Gubiani, J.R.; de Oliveira, J.M.; Morais-Urano, R.P.; Bertonha, A.F.; Bandeira, K.F.; Bulla, J.I.Q.; Sette, L.D.; Ferreira, A.G.; et al. Water-soluble glutamic acid derivatives produced in culture by Penicillium solitum IS1-A from King George Island, Maritime Antarctica. J. Nat. Prod. 2020, 83, 55–65. [Google Scholar] [CrossRef]
- Guo, W.; Kong, X.; Zhu, T.; Gu, Q.; Li, D. Penipyrols A-B and peniamidones A-D from the mangrove derived Penicillium solitum GWQ-143. Arch. Pharmacal Res. 2015, 38, 1449–1454. [Google Scholar] [CrossRef]
- He, Z.H.; Xie, C.L.; Hao, Y.J.; Xu, L.; Wang, C.F.; Hu, M.Y.; Li, S.J.; Zhong, T.H.; Yang, X.W. Solitumergosterol A, a unique 6/6/6/6/5 steroid from the deep-sea-derived Penicillium solitum MCCC 3A00215. Org. Biomol. Chem. 2021. [Google Scholar] [CrossRef]
- Endo, A.; Kuroda, M.; Tsujita, Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J. Antibiot. 1976, 29, 1346–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaala, L.A.; Youssef, D.T. Identification and bioactivity of compounds from the fungus Penicillium sp. CYE-87 isolated from a marine tunicate. Mar. Drugs 2015, 13, 1698–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evidente, A.; Iacobellis, N.S.; Sisto, A. Isolation of indole-3-acetic acid methyl ester, a metabolite of indole-3-acetic acid from Pseudomonas amygdali. Experientia 1993, 49, 182–183. [Google Scholar] [CrossRef]
- Sun, W.; Chen, X.; Tong, Q.; Zhu, H.; He, Y.; Lei, L.; Xue, Y.; Yao, G.; Luo, Z.; Wang, J.; et al. Novel small molecule 11beta-HSD1 inhibitor from the endophytic fungus Penicillium commune. Sci. Rep. 2016, 6, 26418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashiwada, Y.; Nonaka, G.; Nishioka, I. Studies on Rhubarb (Rhei Rhizoma). V. isolation and characterization of chromone and chromanone derivatives. Chem. Pharm. Bull. 1984, 32, 3493–3500. [Google Scholar] [CrossRef] [Green Version]
- Talontsi, F.M.; Facey, P.; Tatong, M.D.; Islam, M.T.; Frauendorf, H.; Draeger, S.; Tiedemann, A.; Laatsch, H. Zoosporicidal metabolites from an endophytic fungus Cryptosporiopsis sp. of Zanthoxylum leprieurii. Phytochemistry 2012, 83, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Harayama, T. A concise and versatile synthesis of Viridicatin alkaloids from cyanoacetanilides. Org. Lett. 2009, 11, 1603–1606. [Google Scholar] [CrossRef]
- Fremlin, L.J.; Piggott, A.M.; Lacey, E.; Capon, R.J. Cottoquinazoline A and cotteslosins A and B, metabolites from an Australian marine-derived strain of Aspergillus Wersicolor. J. Nat. Prod. 2009, 72, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Hodge, R.P.; Harris, C.M.; Harris, T.M. Verrucofortine, a major metabolite of Penicillium verrucosum var. Cyclopium, the fungus that produces the Mycotoxin Verrucosidin. J. Nat. Prod. 1988, 51, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Mizushina, Y.; Nakanishi, R.; Kuriyama, I.; Kamiya, K.; Satake, T.; Shimazaki, N.; Koiwai, O.; Uchiyama, Y.; Yonezawa, Y.; Takemura, M.; et al. β-sitosterol-3-O-β-D-glucopyranoside: A eukaryotic DNA polymerase lambda inhibitor. J. Steroid Biochem. Mol. Biol. 2006, 99, 100–107. [Google Scholar] [CrossRef]
- Koga, J.; Yamauchi, T.; Shimura, M.; Ogawa, N.; Oshima, K.; Umemura, K.; Kikuchi, M.; Ogasawara, N. Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J. Biol. Chem. 1998, 273, 31985–31991. [Google Scholar] [CrossRef] [Green Version]
- Soman, A.G.; Gloer, J.B.; Wicklow, D.T. Antifungal and antibacterial metabolites from a sclerotium-colonizing isolate of Mortierella vinacea. J. Nat. Prod. 1999, 62, 386–388. [Google Scholar] [CrossRef]
- Du, F.Y.; Li, X.M.; Zhang, P.; Li, C.S.; Wang, B.G. Cyclodepsipeptides and other O-containing heterocyclic metabolites from Beauveria felina EN-135, a marine-derived entomopathogenic fungus. Mar. Drugs 2014, 12, 2816–2826. [Google Scholar] [CrossRef] [Green Version]
- Arunpanichlert, J.; Rukachaisirikul, V.; Phongpaichit, S.; Supaphon, O.; Sakayaroj, J. Xylariphilone: A new azaphilone derivative from the seagrass-derived fungus Xylariales sp. PSU-ES163. Nat. Prod. Res. 2016, 30, 46–51. [Google Scholar] [CrossRef]
- Sommart, U.; Rukachaisirikul, V.; Sukpondma, Y.; Phongpaichit, S.; Towatana, N.H.; Graidist, P.; Hajiwangoh, Z.; Sakayaroj, J. A cyclohexenone derivative from Diaporthaceous fungus PSU-H2. Arch. Pharmacal Res. 2009, 32, 1227–1231. [Google Scholar] [CrossRef]
- Kishida, M.; Yamauchi, N.; Sawada, K.; Ohashi, Y.; Eguchi, T.; Kakinuma, K. Diacetone-glucose architecture as a chirality template. Part 9.1 enantioselective synthesis of (R)-mevalonolactone and (R)-[2H9]mevalonolactone on carbohydrate template. J. Chem. Soc. Perkin Trans. 1997, 1, 891–896. [Google Scholar] [CrossRef]
- Shimomura, H.; Sashida, Y.; Mimaki, Y.; Adachi, T.; Yoshinari, K. A new mevalonolactone glucoside derivative from the bark of Prunus buergeriana. Chem. Pharm. Bull. 1989, 37, 829–830. [Google Scholar] [CrossRef] [Green Version]
- Endo, A.; Kuroda, M.; Tanzawa, K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 1976, 72, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Shu, Z.; Liu, Q.; Xing, C.; Zhang, Y.; Zhou, Y.; Zhang, J.; Liu, H.; Cao, M.; Yang, X.; Liu, G. Viridicatol isolated from deep-sea Penicillium griseofulvum alleviates anaphylaxis and repairs the intestinal barrier in mice by suppressing mast cell activation. Mar. Drugs 2020, 18, 517. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.L.; Liu, Q.; He, Z.H.; Gai, Y.B.; Zou, Z.B.; Shao, Z.Z.; Liu, G.M.; Chen, H.F.; Yang, X.W. Discovery of andrastones from the deep-sea-derived Penicillium allii-sativi MCCC 3A00580 by OSMAC strategy. Bioorg. Chem. 2021, 108, 104671. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.F.; Huang, X.F.; Xiao, H.X.; Hao, Y.J.; Xu, L.; Yan, Q.X.; Zou, Z.B.; Xie, C.L.; Xu, Y.Q.; Yang, X.W. Chemical constituents of the marine fungus Penicillium sp. MCCC 3A00228. Chem. Biodivers. 2021, 18, e2100697. [Google Scholar]
No. | 1 a | 2 b | 3 a | |||
---|---|---|---|---|---|---|
δC | δH | δC | δH | δC | δH | |
1 | 37.8 CH | 1.77 m | 11.5 s | |||
2 | 32.1 CH | 2.37 m | 174.8 C | 141.3 C | ||
3 | 133.6 CH | 5.69 (dd, 9.4, 6.1) | 203.2 C | 108.4 C | ||
3a | 139.9 C | 130.8 C | ||||
4 | 129.9 CH | 5.91 (d, 9.4) | 131.4 CH | 8.04 (d, 7.8) | 118.7 CH | 7.49 (d, 7.9) |
4a | 135.1 C | |||||
5 | 124.5 CH | 5.47 (brs) | 122.8 CH | 7.19 (t, 7.8) | 119.5 CH | 6.95 (t, 7.9) |
6 | 21.6 CH2 | 2.09 m, 2.33 m | 134.5 CH | 7.60 (t, 7.8) | 121.7 CH | 7.01 (t, 7.9) |
7 | 30.6 CH2 | 1.68 m, 1.96 m | 120.1 CH | 8.54 (d, 7.8) | 111.6 CH | 7.28 (d, 7.9) |
7a | 122.6 C | 136.4 C | ||||
8 | 65.2 CH | 4.22 m | 46.2 C | 40.1 C | ||
8a | 40.0 CH | 2.19 (brd, 11.8) | ||||
9 | 25.0 CH2 | 1.33 m, 1.83 m | 142.4 CH | 6.08 (dd, 17.4, 10.6) | 147.8 CH | 6.18 (dd, 17.4, 10.6) |
10 | 35.5 CH2 | 1.41 m; 1.54 m | 114.6 CH2 | 5.25 (d, 17.4); | 111.7 CH2 | 5.06 (dd, 17.4, 1.5); |
5.29 (d, 10.6) | 5.09 (dd, 10.6, 1.5) | |||||
11 | 71.1 CH | 3.80 m | 24.5 CH3 | 1.32 s | 28.5 CH3 | 1.54 s |
12 | 44.8 CH2 | 1.64 m | 24.5 CH3 | 1.32 s | 28.5 CH3 | 1.54 s |
13 | 68.1 CH | 4.19 m | 39.3 CH2 | 3.22 (t, 6.6) | 26.3 CH2 | 2.99 (dd, 8.2, 7.6) |
14 | 43.1 CH2 | 2.46 m, 2.57 m | 34.6 CH2 | 3.37 m | 41.6 CH2 | 3.36 (dd, 9.9, 7.6) |
15 | 173.9 C | 8.16 (t, 4.9) | ||||
16 | 14.3 CH3 | 0.89 (d, 6.8) | 172.1 C | 175.1 C | ||
17 | 31.8 CH2 | 2.23 m | 32.6 CH2 | 2.27 (ddd, 11.0, 8.5, 8.0) | ||
2.29 (ddd, 11.0, 6.4, 4.4) | ||||||
18 | 27.0 CH2 | 1.77−1.95 m | 31.2 CH2 | 1.88 (ddt, 14.3, 8.5, 6.4) | ||
2.06 (ddt, 14.3, 8.0, 4.4) | ||||||
19 | 53.7 CH | 3.19 m | 71.0 CH | 4.16 (dd, 8.0, 4.4) | ||
20 | 169.6 C | 176.0 C | ||||
OMe | 52.1 CH3 | 3.70 s | 52.5 CH3 | 3.73 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.-H.; Wu, J.; Xu, L.; Hu, M.-Y.; Xie, M.-M.; Hao, Y.-J.; Li, S.-J.; Shao, Z.-Z.; Yang, X.-W. Chemical Constituents of the Deep-Sea-Derived Penicillium solitum. Mar. Drugs 2021, 19, 580. https://doi.org/10.3390/md19100580
He Z-H, Wu J, Xu L, Hu M-Y, Xie M-M, Hao Y-J, Li S-J, Shao Z-Z, Yang X-W. Chemical Constituents of the Deep-Sea-Derived Penicillium solitum. Marine Drugs. 2021; 19(10):580. https://doi.org/10.3390/md19100580
Chicago/Turabian StyleHe, Zhi-Hui, Jia Wu, Lin Xu, Man-Yi Hu, Ming-Ming Xie, You-Jia Hao, Shu-Jin Li, Zong-Ze Shao, and Xian-Wen Yang. 2021. "Chemical Constituents of the Deep-Sea-Derived Penicillium solitum" Marine Drugs 19, no. 10: 580. https://doi.org/10.3390/md19100580
APA StyleHe, Z. -H., Wu, J., Xu, L., Hu, M. -Y., Xie, M. -M., Hao, Y. -J., Li, S. -J., Shao, Z. -Z., & Yang, X. -W. (2021). Chemical Constituents of the Deep-Sea-Derived Penicillium solitum. Marine Drugs, 19(10), 580. https://doi.org/10.3390/md19100580