Characteristics of Two Crustins from Alvinocaris longirostris in Hydrothermal Vents
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Al-crus 3 and Al-crus 7 Sequences
2.2. Phylogenetic Analysis of Al-crus 3 and Al-crus 7
2.3. Antibacterial Activities of Al-crus 3 and Al-crus 7
2.4. SEM Imaging
3. Discussion
4. Materials and Methods
4.1. Strains, Vectors, Reagents, and Enzymes
4.2. Gene Cloning of Al-crus 3 and Al-crus 7
4.3. Sequence Alignment
4.4. Plasmids, Expression, and Purification of Al-crus 3 and Al-crus 7
4.5. Peptide Synthesis
4.6. Antibacterial Activity Assays
4.7. SEM Imaging
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schnapp, D.; Kemp, G.D.; Smith, V.J. Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur. J. Biochem. 1996, 240, 532–539. [Google Scholar]
- Du, Z.Q.; Wang, Y.; Ma, H.Y.; Shen, X.L.; Wang, K.; Du, J.; Yu, X.D.; Fang, W.H.; Li, X.C. A new crustin homologue (SpCrus6) involved in the antimicrobial and antiviral innate immunity in mud crab, Scylla paramamosain. Fish Shellfish Immun. 2019, 84, 733–743. [Google Scholar]
- Jiang, H.S.; Jia, W.M.; Zhao, X.F.; Wang, J.X. Four crustins involved in antibacterial responses in Marsupenaeus japonicus. Fish Shellfish Immun. 2015, 43, 387–395. [Google Scholar] [CrossRef]
- Hoffmann, J.; Schneider, C.; Heinbockel, L.; Brandenburg, K.; Reimer, R.; Gabriel, G. A new class of synthetic anti-lipopolysaccharide peptides inhibits influenza A virus replication by blocking cellular attachment. Antivir. Res. 2014, 104, 23–33. [Google Scholar]
- Smith, V.J.; Fernandes, J.M.O.; Kemp, G.D.; Hauton, C. Crustins: Enigmatic WAP domain-containing antibacterial proteins from crustaceans. Dev. Comp. Immunol. 2008, 32, 758–772. [Google Scholar]
- Hauton, C.; Brockton, V.; Smith, V.J. Cloning of a crustin-like, single whey-acidic-domain, antibacterial peptide from the haemocytes of the European lobster, Homarus gammarus, and its response to infection with bacteria. Mol. Immunol. 2006, 43, 1490–1496. [Google Scholar] [CrossRef] [PubMed]
- Sallenave, J.-M. The role of secretory leukocyte proteinase inhibitor and elafin (elastase-specific inhibitor/skin-derived antileukoprotease) as alarm antiproteinases in inflammatory lung disease. Respir. Res. 2000, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Brockton, V.; Hammond, J.A.; Smith, V.J. Gene characterisation, isoforms and recombinant expression of carcinin, an antibacterial protein from the shore crab, Carcinus maenas. Mol. Immunol. 2007, 44, 943–949. [Google Scholar] [PubMed] [Green Version]
- Jiravanichpaisal, P.; Lee, S.Y.; Kim, Y.-A.; Andrén, T.; Söderhäll, I. Antibacterial peptides in hemocytes and hematopoietic tissue from freshwater crayfish Pacifastacus leniusculus: Characterization and expression pattern. Dev. Comp. Immunol. 2007, 31, 441–455. [Google Scholar] [PubMed]
- Rosa, R.D.; Bandeira, P.T.; Barracco, M.A. Molecular cloning of crustins from the hemocytes of Brazilian penaeid shrimps. Fems. Microbiol. Lett. 2007, 274, 287–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amparyup, P.; Kondo, H.; Hirono, I.; Aoki, T.; Tassanakajon, A. Molecular cloning, genomic organization and recombinant expression of a crustin-like antimicrobial peptide from black tiger shrimp Penaeus monodon. Mol. Immunol. 2008, 45, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Shockey, J.; O’leary, N.A.; De La Vega, E.; Browdy, C.L.; Baatz, J.E.; Gross, P.S. The role of crustins in Litopenaeus vannamei in response to infection with shrimp pathogens: An in vivo approach. Dev. Comp. Immunol. 2009, 33, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Hipolito, S.G.; Shitara, A.; Kondo, H.; Hirono, I. Role of Marsupenaeus japonicus crustin-like peptide against Vibrio penaeicida and white spot syndrome virus infection. Dev. Comp. Immunol. 2014, 46, 461–469. [Google Scholar] [PubMed]
- Sun, B.; Wang, Z.; Zhu, F. The crustin-like peptide plays opposite role in shrimp immune response to Vibrio alginolyticus and white spot syndrome virus (WSSV) infection. Fish Shellfish Immun. 2017, 66, 487–496. [Google Scholar]
- Tassanakajon, A.; Somboonwiwat, K.; Amparyup, P. Sequence diversity and evolution of antimicrobial peptides in invertebrates. Dev. Comp. Immunol. 2015, 48, 324–341. [Google Scholar]
- Zhang, J.; Li, F.; Wang, Z.; Xiang, J. Cloning and recombinant expression of a crustin-like gene from Chinese shrimp, Fenneropenaeus chinensis. J. Biotechnol. 2007, 127, 605–614. [Google Scholar] [CrossRef]
- Mu, C.K.; Zheng, P.L.; Zhao, J.M.; Wang, L.L.; Qiu, L.M.; Zhang, H.; Gai, Y.C.; Song, L.S. A novel type III crustin (CrusEs2) identified from Chinese mitten crab Eriocheir sinensis. Fish Shellfish Immun. 2011, 31, 142–147. [Google Scholar] [CrossRef]
- Jia, Y.P.; Sun, Y.D.; Wang, Z.H.; Wang, Q.; Wang, X.W.; Zhao, X.F.; Wang, J.X. A single whey acidic protein domain (SWD)-containing peptide from fleshy prawn with antimicrobial and proteinase inhibitory activities. Aquaculture 2008, 284, 246–259. [Google Scholar]
- Supungul, P.; Klinbunga, S.; Pichyangkura, R.; Hirono, I.; Aoki, T.; Tassanakajon, A. Antimicrobial peptides discovered in the black tiger shrimp Penaeus monodon using the EST approach. Dis. Aquat. Organ. 2004, 61, 123–135. [Google Scholar]
- Rojtinnakorn, J.; Hirono, I.; Itami, T.; Takahashi, Y.; Aoki, T. Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. Fish Shellfish Immun. 2002, 13, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Imjongjirak, C.; Amparyup, P.; Tassanakajon, A.; Sittipraneed, S. Molecular cloning and characterization of crustin from mud crab Scylla paramamosain. Mol. Biol. Rep. 2009, 36, 841–850. [Google Scholar]
- Sperstad, S.V.; Haug, T.; Paulsen, V.; Rode, T.M.; Strandskog, G.; Solem, S.T.; Styrvold, O.B.; Stensvag, K. Characterization of crustins from the hemocytes of the spider crab, Hyas araneus, and the red king crab, Paralithodes camtschaticus. Dev. Comp. Immunol. 2009, 33, 583–591. [Google Scholar] [CrossRef]
- Little, C.T.S.; Vrijenhoek, R.C. Are hydrothermal vent animals living fossils? Trends Ecol. Evol. 2003, 18, 582–588. [Google Scholar] [CrossRef]
- Van Dover, C.L.; German, C.R.; Speer, K.G.; Parson, L.M.; Vrijenhoek, R.C. Marine biology-Evolution and biogeography of deep-sea vent and seep invertebrates. Science 2002, 295, 1253–1257. [Google Scholar] [PubMed] [Green Version]
- Hazel, J.R.; Williams, E.E. The Role of Alterations in Membrane Lipid-Composition in Enabling Physiological Adaptation of Organisms to Their Physical-Environment. Prog. Lipid. Res. 1990, 29, 167–227. [Google Scholar]
- Wang, Y.; Zhang, J.; Sun, Y.; Sun, L. A Crustin from Hydrothermal Vent Shrimp: Antimicrobial Activity and Mechanism. Mar. Drugs 2021, 19, 176. [Google Scholar]
- Bloa, S.L.; Boidin-Wichlacz, C.; Cueff-Gauchard, V.; Rosa, R.D.; Tasiemski, A. Antimicrobial Peptides and Ectosymbiotic Relationships: Involvement of a Novel Type IIa Crustin in the Life Cycle of a Deep-Sea Vent Shrimp. Front. Immunol. 2020, 11, 1511. [Google Scholar] [PubMed]
- Marine Derived Drugs Market Size By Type (Phenol, Steroid, Ether, Peptide), By Source (Algae, Microorganisms, Invertebrates), By Application (Anti-microbial, Anti-viral, Anti-inflammatory, Anti-tumor, Anti-cardiovascular, Other), By Region (North America, Europe, Asia-Pacific, Rest of the World), Market Analysis Report, Forecast 2021–2026. Pharm. Am. Market Res. Engine 2021, 113.
- Wang, G.S.; Watson, M.W.; Buckheit, R.W. Anti-human immunodeficiency virus type 1 activities of antimicrobial peptides derived from human and bovine cathelicidins. Antimicrob. Agents Chemother. 2008, 52, 3438–3440. [Google Scholar] [PubMed] [Green Version]
- Bulet, P.; Stocklin, R.; Menin, L. Anti-microbial peptides: From invertebrates to vertebrates. Immunol. Rev. 2004, 198, 169–184. [Google Scholar]
- Donpudsa, S.; Visetnan, V.; Supungul, P.; Tang, S.; Tassanakajon, A.; Rimphanitchayakit, V. Type I and type II crustins from Penaeus monodon, genetic variation and antimicrobial activity of the most abundant crustinPm4. Dev. Comp. Immunol. 2014, 47, 95–103. [Google Scholar] [CrossRef]
- Krusong, K.; Poolpipat, P.; Supungul, P.; Tassanakajon, A. A comparative study of antimicrobial properties of crustinPm1 and crustinPm7 from the black tiger shrimp Penaeus monodon. Dev. Comp. Immunol. 2012, 36, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.C.; Sun, J.; Yan, G.Y.; Huang, J.M.; Chen, C.; He, L.S. Insights into the strategy of micro-environmental adaptation: Transcriptomic analysis of two alvinocaridid shrimps at a hydrothermal vent. PLoS ONE 2020, 15, e0227587. [Google Scholar] [CrossRef] [PubMed]
- Roncevic, T.; Cikes-Culic, V.; Maravic, A.; Capanni, F.; Gerdol, M.; Pacor, S.; Tossi, A.; Giulianini, P.G.; Pallavicini, A.; Manfrin, C. Identification and functional characterization of the astacidin family of proline-rich host defence peptides (PcAst) from the red swamp crayfish (Procambarus clarkii, Girard 1852). Dev. Comp. Immunol. 2020, 105, 103574. [Google Scholar] [CrossRef] [PubMed]
Microorganism | Store No. | MIC50(μM) | |||
---|---|---|---|---|---|
Al-crus 3 | Al-crusWAP 3 | Al-crus 7 | Al-crusWAP 7 | ||
Gram-positive bacteria | |||||
Micrococcus luteus | NRR00100 | 25 | 25 | 10 | 10 |
Klebsiella Pneumoniae (ESBLs) * | 0244 | >50 | >50 | >50 | >50 |
Bacillus subtilis | NRR00591 | 25 | 25 | 8 | 25 |
Staphylococcus aureus | NRR01280 | 10 | 25 | 50 | >50 |
Methicillin-resistant Staphylococcus aureus * | H57 | >50 | >50 | >50 | >50 |
Methicillin-sensitive Staphylococcus aureus * | G280 | 10 | 25 | 25 | 25 |
Escherichia coli (ESBLs) * | G106 | 25 | >50 | >50 | >50 |
Gram-negative bacteria | |||||
Escherichia coli (ESBLs) * | K8 | >50 | >50 | >50 | >50 |
Imipenem-sensitive Pseudomonas aeruginosa * | E248 | >50 | >50 | >50 | >50 |
Imipenem-resistant Acinetobacter baumannii * | E292 | >50 | >50 | 12 | >50 |
Imipenem-sensitive Acinetobacter baumannii * | H422 | >50 | >50 | >50 | >50 |
Klebsiella Pneumoniae (ESBLs) * | F161 | >50 | >50 | >50 | >50 |
Salmonella sp. | NRR00490 | >50 | >50 | >50 | >50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.-L.; Wang, S.-L.; Zhu, F.-C.; Xue, F.; He, L.-S. Characteristics of Two Crustins from Alvinocaris longirostris in Hydrothermal Vents. Mar. Drugs 2021, 19, 600. https://doi.org/10.3390/md19110600
Guo L-L, Wang S-L, Zhu F-C, Xue F, He L-S. Characteristics of Two Crustins from Alvinocaris longirostris in Hydrothermal Vents. Marine Drugs. 2021; 19(11):600. https://doi.org/10.3390/md19110600
Chicago/Turabian StyleGuo, Lu-Lu, Shao-Lu Wang, Fang-Chao Zhu, Feng Xue, and Li-Sheng He. 2021. "Characteristics of Two Crustins from Alvinocaris longirostris in Hydrothermal Vents" Marine Drugs 19, no. 11: 600. https://doi.org/10.3390/md19110600
APA StyleGuo, L. -L., Wang, S. -L., Zhu, F. -C., Xue, F., & He, L. -S. (2021). Characteristics of Two Crustins from Alvinocaris longirostris in Hydrothermal Vents. Marine Drugs, 19(11), 600. https://doi.org/10.3390/md19110600