Natural Benzo/Acetophenones as Leads for New Synthetic Acetophenone Hybrids Containing a 1,2,3-Triazole Ring as Potential Antifouling Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structure Elucidation
2.2. Mussel Larvae Anti-Settlement Activity
2.3. Biofilm-Forming Marine Microorganism Growth Inhibitory Activity
2.4. Artemia Salina Ecotoxicity Bioassay
2.5. In Silico Evaluation of Bioaccumulation Potential
3. Materials and Methods
3.1. General Methods
3.2. Synthesis and Structure Elucidation
3.2.1. Synthesis of Propargyloxy Acetophenone 2a and 2b
3.2.2. Synthesis of Triazolyl Acetophenones 3a–9b
3.3. Mussel (Mytilus galloprovincialis) Larvae Anti-Settlement Activity
3.4. Biofilm-Forming Marine Bacteria Growth Inhibitory Activity
3.5. Antifungal Susceptibility Testing
3.6. Biofilm-Forming Marine Diatoms Growth Inhibitory Activity
3.7. Artemia Salina Ecotoxicity Bioassay
3.8. In Silico Evaluation of LogKow
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schultz, M.P.; Bendick, J.A.; Holm, E.R.; Hertel, W.M. Economic impact of biofouling on a naval surface ship. Biofouling 2011, 27, 87–98. [Google Scholar] [CrossRef]
- Callow, E.M.; Callow, J.E. Marine biofouling: A sticky problem. Biologist 2002, 49, 10–14. [Google Scholar]
- Gu, Y.; Yu, L.; Mou, J.; Wu, D.; Xu, M.; Zhou, P.; Ren, Y. Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings. Marine Drugs 2020, 18, 371. [Google Scholar] [CrossRef]
- Augner, D.; Krut, O.; Slavov, N.; Gerbino, D.C.; Sahl, H.G.; Benting, J.; Nising, C.F.; Hilebrand, S.; Konke, M.; Schmalz, H.-G. On the Antibiotic and Antifungal Activity of Pestalone, Pestalachloride A, and Structurally Related Compounds. J. Nat. Prod. 2013, 76, 1519–1522. [Google Scholar] [CrossRef]
- Ji, Y.B.; Chen, W.J.; Shan, T.Z.; Sun, B.Y.; Yan, P.C.; Jiang, W. Antibacterial Diphenyl Ether, Benzophenone and Xanthone Derivatives from Aspergillus flavipes. Chem. Biodivers. 2020, 17, e1900640. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.J.; Liao, H.X.; Mei, R.Q.; Huang, G.L.; Yang, L.J.; Zhou, X.M.; Shao, T.-M.; Chen, J.-Y.; Wang, C.Y. Two new benzophenones and one new natural amide alkaloid isolated from a mangrove-derived Fungus Penicillium citrinum. Nat. Prod. Res. 2019, 33, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Mukherjee, R.; Basak, D.; Haldar, J. One-Step Curable, Covalently Immobilized Coating for Clinically Relevant Surfaces That Can Kill Bacteria, Fungi, and Influenza Virus. ACS Appl. Mater. Interfaces 2020, 12, 27853–27865. [Google Scholar] [CrossRef]
- Jung, S.; Sidharthan, M.; Lee, J.; Lee, H.; Jeon, J.; Park, T. Antifouling efficacy of a controlled depletion paint formulation with acetophenone. Sci. Mar. 2017, 81, 449–456. [Google Scholar] [CrossRef]
- Moodie, L.W.; Cervin, G.; Trepos, R.; Labriere, C.; Hellio, C.; Pavia, H.; Svenson, J. Design and Biological Evaluation of Antifouling Dihydrostilbene Oxime Hybrids. Mar. Biotechnol. 2018, 20, 257–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamura, H.; Ohashi, T.; Kikuchi, T.; Endo, N.; Fukuda, Y.; Kadota, I. Late-stage divergent synthesis and antifouling activity of geraniol–butenolide hybrid molecules. Org. Biomol. Chem. 2017, 15, 5549–5555. [Google Scholar] [CrossRef] [Green Version]
- Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem. 2019, 27, 3511–3531. [Google Scholar] [CrossRef]
- Fichtali, I.; Laaboudi, W.; Hadrami, E.E.; Aroussi, F.E.; Ben-Tama, A.; Benlemlih, M.; Stiriba, S. Synthesis, characterization and antimicrobial activity of novel benzophenone derived 1,2,3-triazoles. J. Mater. Environ. Sci. 2016, 7, 1633–1641. [Google Scholar]
- Shaikh, M.H.; Subhedar, D.D.; Khedkar, V.M.; Jha, P.C.; Khan FA, K.; Sangshetti, J.N.; Shingate, B.B. 1,2,3-Triazole tethered acetophenones: Synthesis, bioevaluation and molecular docking study. Chin. Chem. Lett. 2016, 27, 1058–1063. [Google Scholar] [CrossRef]
- Andersson Trojer, M.; Movahedi, A.; Blanck, H.; Nydén, M. Imidazole and Triazole Coordination Chemistry for Antifouling Coatings. J. Chem. 2013, 2013, 946739. [Google Scholar] [CrossRef]
- Andjouh, S.; Blache, Y. Screening of bromotyramine analogues as antifouling compounds against marine bacteria. Biofouling 2016, 32, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.; Gonçalves, C.; Martins, B.T.; Palmeira, A.; Vasconcelos, V.; Pinto, M.; Almeida, J.R.; Correia-da-Silva, M.; Cidade, H. Flavonoid Glycosides with a Triazole Moiety for Marine Antifouling Applications: Synthesis and Biological Activity Evaluation. Mar. Drugs 2021, 19, 5. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. Engl. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Agalave, G.S.; Maujan, S.R.; Pore, V.S. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem.-Asian J. 2011, 6, 2696–2718. [Google Scholar] [CrossRef]
- Nogata, Y.; Kitano, Y. Isocyano compounds as non-toxic antifoulants. Prog. Mol. Subcell. Biol. 2006, 42, 87–104. [Google Scholar]
- Yadav, P.; Lal, K.; Kumar, L.; Kumar, A.; Kumar, A.; Paul, A.K.; Kumar, R. Synthesis, crystal structure and antimicrobial potential of some fluorinated chalcone-1,2,3-triazole conjugates. Eur. J. Med. Chem. 2018, 155, 263–274. [Google Scholar] [CrossRef]
- Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem. 2016, 113, 34–49. [Google Scholar] [CrossRef]
- Lal, K.; Yadav, P.; Kumar, A.; Kumar, A.; Paul, A.K. Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1,2,3-triazole hybrids. Bioorg. Chem. 2018, 77, 236–244. [Google Scholar] [CrossRef]
- Zhao, L.; Mao, L.; Hong, G.; Yang, X.; Liu, T. Design, synthesis and anticancer activity of matrine–1H-1,2,3-triazole–chalcone conjugates. Bioorg. Med. Chem. Lett. 2015, 25, 2540–2544. [Google Scholar] [CrossRef]
- Zhou, B.; Yu, X.; Zhuang, C.; Villalta, P.; Lin, Y.; Lu, J.; Xing, C. Unambiguous Identification of β-Tubulin as the Direct Cellular Target Responsible for the Cytotoxicity of Chalcone by Photoaffinity Labeling. ChemMedChem 2016, 11, 1436–1445. [Google Scholar] [CrossRef]
- Schultz, M.P. Frictional Resistance of Antifouling Coating Systems. J. Fluids Eng. 2005, 126, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.K.; Wu, H.Z.; Wang, Y.; Wang, Y.C.; Xu, Y. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs. Mar. Drugs 2017, 15, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zardus, J.D.; Nedved, B.T.; Huang, Y.; Tran, C.; Hadfield, M.G. Microbial Biofilms Facilitate Adhesion in Biofouling Invertebrates. Biol. Bull. 2008, 214, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramenium, G.A.; Swetha, T.K.; Iyer, P.M.; Balamurugan, K.; Pandian, S.K. 5-hydroxymethyl-2-furaldehyde from marine bacterium Bacillus subtilis inhibits biofilm and virulence of Candida albicans. Microbiol. Res. 2018, 207, 19–32. [Google Scholar] [CrossRef]
- Manfiolli, A.O.; Dos Reis, T.F.; de Assis, L.J.; de Castro, P.A.; Silva, L.P.; Hori, J.I.; Walker, L.A.; Munro, C.A.; Rajendran, R.; Ramage, G.; et al. Mitogen activated protein kinases (MAPK) and protein phosphatases are involved in Aspergillus fumigatus adhesion and biofilm formation. Cell Surf. 2018, 1, 43–56. [Google Scholar] [CrossRef]
- Sen, S.; Borah, S.N.; Bora, A.; Deka, S. Rhamnolipid exhibits anti-biofilm activity against the dermatophytic fungi Trichophyton rubrum and Trichophyton mentagrophytes. Biotechnol. Rep. 2020, 27, e00516. [Google Scholar] [CrossRef] [PubMed]
- Katranitsas, A.; Castritsi-Catharios, J.; Persoone, G. The effects of a copper-based antifouling paint on mortality and enzymatic activity of a non-target marine organism. Mar. Pollut. Bull. 2003, 46, 1491–1494. [Google Scholar] [CrossRef]
- Koutsaftis, A.; Aoyama, I. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Sci. Total Environ. 2007, 387, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.R.; Almeida, J.R.; Carvalhal, F.; Câmara, A.; Pereira, S.; Antunes, J.; Vasconcelos, V.; Pinto, M.; Silva, E.R.; Sousa, E.; et al. Overcoming environmental problems of biocides: Synthetic bile acid derivatives as a sustainable alternative. Ecotoxicol. Environ. Saf. 2020, 187, 109812. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.T.; Teo, S.L.; Leong, W.; Chai, C.L. Searching for “Environmentally-Benign” Antifouling Biocides. Int. J. Mol. Sci. 2014, 15, 9255–9284. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.R.; Correia-da-Silva, M.; Sousa, E.; Antunes, J.; Pinto, M.; Vasconcelos, V.; Cunha, I. Antifouling potential of Nature-inspired sulfated compounds. Sci. Rep. 2017, 7, 42424. [Google Scholar] [CrossRef] [Green Version]
- Almeida, J.R.; Moreira, J.; Pereira, D.; Pereira, S.; Antunes, J.; Palmeira, A.; Vasconcelos, V.; Pinto, M.; Correia-da-Silva, M.; Cidade, H. Potential of synthetic chalcone derivatives to prevent marine biofouling. Sci. Total Environ. 2018, 643, 98–106. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Reference Method for Dilution Antimicrobial Susceptibility Tests, in Supplement M27-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- CLSI. Reference Method for Dilution Antimicrobial Susceptibility Tests, in Supplement M38-A2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- EPA. Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11; United States Environmental Protection Agency: Washington, DC, USA, 2012. [Google Scholar]
Compound | R1 | R2 | R3 | Yield (%) |
---|---|---|---|---|
3a | H | OCH3 | 65 | |
3b | OH | H | 84 | |
4a | H | OCH3 | 53 | |
4b | OH | H | 83 | |
5a | H | OCH3 | 65 | |
5b | OH | H | 41 | |
6a | H | OCH3 | 47 | |
6b | OH | H | 61 | |
7a | H | OCH3 | 56 | |
7b | OH | H | 40 | |
8a | H | OCH3 | 30 | |
8b | OH | H | 40 | |
9a | H | OCH3 | 54 | |
9b | OH | H | 35 |
Compounds | EC50 (µM) | EC50 (µg·mL−1) | LC50 (µM) | LC50/EC50 |
---|---|---|---|---|
6a | 28.87 (95% CI: 18.93–44.39) | 11.20 | >200 | >6.93 |
7a | 40.14 (95% CI: 23.95–69.63) | 13.46 | >200 | >4.98 |
9a | 20.68 (95% CI: 9.70–40.75) | 9.94 | >200 | >9.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, A.R.; Pereira, D.; Gonçalves, C.; Cardoso, J.; Pinto, E.; Vasconcelos, V.; Pinto, M.; Sousa, E.; Almeida, J.R.; Cidade, H.; et al. Natural Benzo/Acetophenones as Leads for New Synthetic Acetophenone Hybrids Containing a 1,2,3-Triazole Ring as Potential Antifouling Agents. Mar. Drugs 2021, 19, 682. https://doi.org/10.3390/md19120682
Neves AR, Pereira D, Gonçalves C, Cardoso J, Pinto E, Vasconcelos V, Pinto M, Sousa E, Almeida JR, Cidade H, et al. Natural Benzo/Acetophenones as Leads for New Synthetic Acetophenone Hybrids Containing a 1,2,3-Triazole Ring as Potential Antifouling Agents. Marine Drugs. 2021; 19(12):682. https://doi.org/10.3390/md19120682
Chicago/Turabian StyleNeves, Ana Rita, Daniela Pereira, Catarina Gonçalves, Joana Cardoso, Eugénia Pinto, Vitor Vasconcelos, Madalena Pinto, Emília Sousa, Joana R. Almeida, Honorina Cidade, and et al. 2021. "Natural Benzo/Acetophenones as Leads for New Synthetic Acetophenone Hybrids Containing a 1,2,3-Triazole Ring as Potential Antifouling Agents" Marine Drugs 19, no. 12: 682. https://doi.org/10.3390/md19120682
APA StyleNeves, A. R., Pereira, D., Gonçalves, C., Cardoso, J., Pinto, E., Vasconcelos, V., Pinto, M., Sousa, E., Almeida, J. R., Cidade, H., & Correia-da-Silva, M. (2021). Natural Benzo/Acetophenones as Leads for New Synthetic Acetophenone Hybrids Containing a 1,2,3-Triazole Ring as Potential Antifouling Agents. Marine Drugs, 19(12), 682. https://doi.org/10.3390/md19120682