Identification and Characterization of a Novel Lectin from the Clam Glycymeris yessoensis and Its Functional Characterization under Microbial Stimulation and Environmental Stress
Abstract
:1. Introduction
2. Results and Discussion
2.1. Purification of the G. yessoensis Lectin
2.2. Hemagglutinating Activity and the Carbohydrate Specificity
2.3. Physical and Chemical Characterization of GYL
2.4. Structural Studies by Circular Dichroism
2.5. Amino Acid Sequencing of GYL
2.6. Tissue Distribution of GYL
2.7. Binding of GYL to PAMPs and Microorganisms
2.8. Temporal Levels of GYL after Microbial Challenge and Anthropogenic Pollution
3. Materials and Methods
3.1. Materials
3.2. Collection of Hemolymph
3.3. Isolation and Purification of Lectin from G. yessoensis (GYL)
3.4. Molecular Mass Determination
3.5. Size Exclusion Chromatography of GYL
3.6. Preparation of 2% Suspension of Native or Enzyme-Treated Erythrocytes
3.7. Hemagglutinating Activity (HA) and Inhibition Assay
3.8. Effect of Temperature, pH and Divalent Cations on GYL Activity
3.9. Protein Content and N-Terminal Sequence
3.10. Circular Dichroism
3.11. Amino Acid Sequencing of Lectin
3.11.1. Liquid Chromatography and Mass Spectrometry
3.11.2. Data Analysis
3.12. Tissue Distribution of GYL
3.13. PAMP-Binding Assay
3.14. Microbial-Binding Assay
3.15. Temporal Levels of GYL after Microbial Challenge and Anthropogenic Pollution
3.16. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liang, W.; Wu, R.; Yang, T.; Shen, H.; Hu, Z. Effect of pathogenic bacteria on a novel C-type lectin, hemocyte and superoxide dismutase/ alkaline phosphatase activity in Onchidium reevesii. Fish Shellfish Immunol. 2020, 102, 185–194. [Google Scholar] [CrossRef]
- Unno, H.; Hatakeyama, T. Mannose-Specific Oyster Lectin CGL1. Methods Mol. Biol. 2020, 2132, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liao, K.; Shi, P.; Xu, J.; Ran, Z.; Zhou, C.; Zhang, L.; Cao, J.; Yan, X. Involvement of a novel Ca2+-independent C-type lectin from Sinonovacula constricta in food recognition and innate immunity. Fish Shellfish Immunol. 2020, 104, 374–382. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Shen, C.; Liang, H.; Fang, X.; Lu, J. Antimicrobial properties and immune-related gene expression of a C-type lectin isolated from Pinctada fucata martensii. Fish Shellfish Immunol. 2020, 105, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Gayashani Sandamalika, W.M.; Lee, J. Quadruple domain-containing galectin from marine invertebrate disk abalone (Haliotis discus discus): Molecular perspectives in early development, immune expression, and potent antiviral responses. Fish Shellfish Immunol. 2020, 106, 920–929. [Google Scholar] [CrossRef]
- Xin, Z.; Yu, D.; Yang, B.; Chen, L.; Hayouka, Z.; Chen, X.; Gong, Y.; Dai, H.; Wang, L.; Zhao, Y.; et al. Molecular characterization, expression and immune functions of two C-type lectin from Venerupis philippinarum. Fish Shellfish Immunol. 2020, 107, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Kamata, K.; Mizutani, K.; Takahashi, K.; Marchetti, R.; Silipo, A.; Addy, C.; Park, S.Y.; Fujii, Y.; Fujita, H.; Konuma, T.; et al. The structure of SeviL, a GM1b/asialo-GM1 binding R-type lectin from the mussel Mytilisepta virgata. Sci. Rep. 2020, 10, 22102. [Google Scholar] [CrossRef]
- Chatterjee, B.P.; Adhya, M. Lectins with Varying Specificity and Biological Activity from Marine Bivalves. In Marine Proteins and Peptides: Biological Activities and Applications, 1st ed.; Se-Kwon, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 41–68. [Google Scholar] [CrossRef]
- Gerdol, M.; Gomez-Chiarri, M.; Castillo, M.G.; Figueras, A.; Fiorito, G.; Moreira, R.; Novoa, B.; Pallavicini, A.; Ponte, G.; Roumbedakis, K.; et al. Immunity in Molluscs: Recognition and Effector Mechanisms, with a Focus on Bivalvia. In Advances in Comparative Immunology, 1st ed.; Cooper, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 225–341. [Google Scholar] [CrossRef]
- Iwanaga, S.; Lee, B.L. Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Biol. 2005, 38, 128–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Song, X.; Wang, L.; Song, L. Pathogen-Derived Carbohydrate Recognition in Molluscs Immune Defense. Int. J. Mol. Sci. 2018, 19, 721. [Google Scholar] [CrossRef] [Green Version]
- Al-Subiai, S.N.; Jha, A.N.; Moody, A.J. Contamination of Bivalve Haemolymph Samples by Adductor Muscle Components: Implications for Biomarker Studies. Ecotoxicology 2009, 18, 334–342. [Google Scholar] [CrossRef]
- Bai, Y.; Niu, D.; Bai, Y.; Li, Y.; Lan, T.; Peng, M.; Dong, Z.; Li, J. Identification of a novel galectin in Sinonovacula constricta and its role in recognition of Gram-negative bacteria. Fish Shellfish Immunol. 2018, 80, 1–9. [Google Scholar] [CrossRef]
- Takahashi, K.G.; Kuroda, T.; Muroga, K. Purification and antibacterial characterization of a novel isoform of the Manila clam lectin (MCL-4) from the plasma of the Manila clam, Ruditapes philippinarum. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 150, 45–52. [Google Scholar] [CrossRef]
- Jayanthi, S.; Ishwarya, R.; Anjugam, M.; Iswarya, A.; Karthikeyan, S.; Vaseeharan, B. Purification, characterization and functional analysis of the immune molecule lectin from the haemolymph of blue swimmer crab Portunus pelagicus and their antibiofilm properties. Fish Shellfish Immunol. 2017, 62, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Preetham, E.; Rubeena, A.S.; Vaseeharan, B.; Chaurasia, M.K.; Arockiaraj, J.; Olsen, R.E. Anti-biofilm properties and immunological response of an immune molecule lectin isolated from shrimp Metapenaeus monoceros. Fish Shellfish Immunol. 2019, 94, 896–906. [Google Scholar] [CrossRef]
- Preetham, E.; Lakshmi, S.; Wongpanya, R.; Vaseeharan, B.; Arockiaraj, J.; Olsen, R.E. Antibiofilm and immunological properties of lectin purified from shrimp Penaeus semisulcatus. Fish Shellfish Immunol. 2020, 106, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, B.; Ghosh, K.; Yadav, N.; Kanade, S.R. A novel L-fucose-binding lectin from Fenneropenaeus indicus induced cytotoxicity in breast cancer cells. J. Biochem. 2017, 161, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Kamei, R.; Devi, O.S.; Singh, S.J.; Sing, S.S. Roles and Biomedical Applications of Haemolymph Lectin. Curr. Pharm. Biotechnol. 2020, 21, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.D.K. Functional morphology, ecology, and evolutionary conservatism in the Glycymerididae (Bivalvia). Palaeontology 1975, 18, 217–254. [Google Scholar]
- FAO. Available online: http://www.fao.org (accessed on 1 November 2019).
- Gimenez, L.H.; Doldan, M.; Zaidman, P.C.; Morsan, E.M. Age and growth of Glycymeris longior (Sowerby, 1832) clam at the southern edge of its distribution (Argentine Sea). Helgol. Mar. Res. 2020, 74, 2. [Google Scholar] [CrossRef]
- Walliser, E.O.; Schöne, B.R.; Tütken, T.; Zirkel, J.; Grimm, K.I.; Pross, J. The bivalve Glycymeris planicostalis as a high-resolution paleoclimate archive. Clim Past. 2015, 11, 653–668. [Google Scholar] [CrossRef] [Green Version]
- Elayabharathi, T.; Mary, J.V.J.; Bai, S.M.M. Characterization of a novel O-acetyl sialic acid specific lectin from the hemolymph of the marine crab, Atergatis integerrimus (Lamarck, 1818). Fish Shellfish Immunol. 2020, 106, 1131–1138. [Google Scholar] [CrossRef]
- Tan, Y.; Xing, J.; Zhan, W. Agglutination activities of haemolymph and tissue extracts in scallop Chlamys farreri and purification of mannan-binding lectin from haemolymph. Aquaculture 2013, 400–401, 148–152. [Google Scholar] [CrossRef]
- Fujii, Y.; Fujiwara, T.; Koide, Y.; Hasan, I.; Sugawara, S.; Rajia, S.; Kawsar, S.M.; Yamamoto, D.; Araki, D.; Kanaly, R.A.; et al. Internalization of a novel, huge lectin from Ibacus novemdentatus (slipper lobster) induces apoptosis of mammalian cancer cells. Glycoconj. J. 2017, 34, 85–94. [Google Scholar] [CrossRef]
- Li, D.; Nie, H.; Jahan, K.; Yan, X. Expression analyses of C-type lectins (CTLs) in Manila clam under cold stress provide insights for its potential function in cold resistance of Ruditapes philippinarum. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2020, 230, 108708. [Google Scholar] [CrossRef]
- Mizgina, T.O.; Chikalovets, I.V.; Molchanova, V.I.; Kokoulin, M.S.; Filshtein, A.P.; Sidorin, E.V.; Chernikov, O.V. Lectin of the Bivalve Glycymeris yessoensis as a Pattern Recognition Receptor. Russ. J. Bioorg. Chem. 2020, 46, 1187–1197. [Google Scholar] [CrossRef]
- Perez-Vilar, J.; Hill, R.L. The Structure and Assembly of Secreted Mucins. J. Biol. Chem. 1999, 274, 31751–31754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiro, R.; Bhoyroo, V. Structure of the O-glycosidically linked carbohydrate units of fetuin. J. Biol. Chem. 1974, 249, 5704–5717. [Google Scholar] [CrossRef]
- deWarrd, P.; Koorevaar, A.; Kamerling, J.P.; Vliegenthart, J.F.G. Structure determination by 1H NMR spectroscopy of (sulfated) sialylated N-linked carbohydrate chains released from porcine thyroglobulin by peptide-N4-(N-acetylbeta- glucosaminyl) aspargine amidase-F. J. Biol. Chem. 1991, 266, 4237–4243. [Google Scholar] [CrossRef]
- Yang, Y.; Barendregt, A.; Kamerling, J.P.; Heck, A.J.R. Analyzing Protein Micro-Heterogeneity in Chicken Ovalbumin by High-Resolution Native Mass Spectrometry Exposes Qualitatively and Semi-Quantitatively 59 Proteoforms. Anal. Chem. 2013, 85, 12037–12045. [Google Scholar] [CrossRef]
- Fournet, B.; Montreuil, J.; Strecker, G.; Dorland, L.; Haverkamp, J.; Vliegenthart, J.F.G.; Binette, J.P.; Schmid, K. Determination of the primary structure of the 16-asialo-carbohydrate units derived from human plasma a1-glycoprotein by 360 H-NRM spectrometry and permethylation analysis. Biochemetry 1998, 17, 5206–5214. [Google Scholar] [CrossRef]
- Egge, H.; Peter-Katalinic, J.; Paz-Parente, J.; Strecker, G.; Montreuil, J.; Fournet, B. Carbohydrate structures of hen ovomuciod: A mass spectrometry analysis. FEBS Lett. 1983, 156, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Luo, T.; Li, F.; Li, S.; Xu, X. Purification and characterisation of a calcium-independent lectin (PjLec) from the haemolymph of the shrimp Penaeus japonicas. Fish Shellfish Immunol. 2007, 22, 88–97. [Google Scholar] [CrossRef]
- Devi, V.; Basil Rose, M.R.; Mercy, P.D. Sialic acid specific lectins from Episesarma tetragonum (Decapoda, Grapsidae): Isolation, purification and characterization. Int. J. Aquat. Biol. 2013, 1, 150–157. [Google Scholar] [CrossRef]
- Adhya, M.; Singha, B. Gal/GalNAc specific multiple lectins in marine bivalve Anadara granosa. Fish Shellfish Immunol. 2016, 50, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Bulgakov, A.A.; Park, K.I.; Choi, K.S.; Lim, H.K.; Cho, M. Purification and characterisation of a lectin isolated from the Manila clam Ruditapes philippinarum in Korea. Fish Shellfish Immunol. 2004, 16, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, R.F.; Viana, J.T.; Torres, R.C.F.; da Silva, L.T.; Andrade, A.L.; de Vasconcelos, M.A.; Pinheiro, U.; Teixeira, E.H.; Nagano, C.S.; Sampaio, A.H. A new mucin-binding lectin from the marine sponge Aplysina fulva (AFL) exhibits antibiofilm effects. Arch. Biochem. Biophys. 2019, 662, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Belogortseva, N.I.; Molchanova, V.I.; Kurika, A.V.; Skobun, A.S.; Glazkova, V.E. Isolation and Characterization of New GalNAc/Gal-Specific Lectin from the Sea Mussel Crenomytilus Grayanus. Comp. Biochem. Physiol. 1998, 119, 45–50. [Google Scholar] [CrossRef]
- Cheng, C.F.; Hung, S.W.; Chang, Y.C.; Chen, M.H.; Chang, C.H.; Tsou, L.T.; Tu, C.Y.; Lin, Y.H.; Liu, P.C.; Lin, S.L.; et al. Purification and Characterization of Hemagglutinating Proteins from Poker-Chip Venus (Meretrix lusoria) and Corbicula Clam (Corbicula fluminea). Sci. World J. 2012, 2012, 906737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovalchuk, S.N.; Chikalovets, I.V.; Chernikov, O.V.; Molchanova, V.I.; Li, W.; Rasskazov, V.A.; Lukyanov, P.A. cDNA cloning and structural characterization of a lectin from the mussel Crenomytilus grayanus with a unique amino acid sequence and antibacterial activity. Fish Shellfish Immunol. 2013, 35, 1320–1324. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Maldonado, E.; Cano-Sanchez, P.; Hernandez-Santoyo, A. Molecular and functional characterization of a glycosylated galactose-binding lectin from Mytilus californianus. Fish Shellfish Immunol. 2017, 66, 564–574. [Google Scholar] [CrossRef]
- Chikalovets, I.V.; Kovalchuk, S.N.; Litovchenko, A.P.; Molchanova, V.I.; Pivkin, M.V.; Chernikov, O.V. A new Gal/GalNAc-specific lectin from the mussel Mytilus trossulus: Structure, tissue specificity, antimicrobial and antifungal activity. Fish Shellfish Immunol. 2016, 50, 27–33. [Google Scholar] [CrossRef]
- Fujii, Y.; Dohmae, N.; Takio, K.; Kawsar, S.M.A.; Matsumoto, R.; Hasan, I.; Koide, Y.; Kanaly, R.A.; Yasumitsu, H.; Ogawa, Y.; et al. A Lectin from the Mussel Mytilus galloprovincialis Has a Highly Novel Primary Structure and Induces Glycan-mediated Cytotoxicity of Globotriaosylceramide-Expressing Lymphoma Cells. J. Biol. Chem. 2012, 287, 44772–44783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, I.; Gerdol, M.; Fujii, Y.; Rajia, S.; Koide, Y.; Yamamoto, D.; Kawsar, S.M.A.; Ozeki, Y. cDNA and Gene Structure of MytiLec-1, A Bacteriostatic R-Type Lectin from the Mediterranean Mussel (Mytilus galloprovincialis). Mar. Drugs 2016, 14, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianazza, E.; Eberini, I.; Palazzolo, L.; Miller, I. Hemolymph proteins: An overview across marine arthropods and molluscs. J. Proteom. 2021, 245, 104294. [Google Scholar] [CrossRef]
- Kim, Y.M.; Park, K.I.; Choi, K.S.; Alvarez, R.A.; Cummings, R.D.; Cho, M. Lectin from the Manila clam Ruditapes philippinarum is induced upon infection with the protozoan parasite Perkinsus olseni. J. Biol. Chem. 2006, 281, 26854–26864. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Salgado, J.L.; Pereyra, M.A.; Agundis, C.; Calzada-Ruiz, M.; Kantun-Briceno, E.; Zenteno, E. In vivo administration of LPS and β-glucan generates the expression of a serum lectin and its cellular receptor in Cherax quadricarinatus. Fish Shellfish. Immunol. 2019, 94, 10–16. [Google Scholar] [CrossRef]
- Li, S.; Ruan, Z.; Yang, X.; Li, M.; Yang, D. Immune recognition, antimicrobial and opsonic activities mediated by a sialic acid binding lectin from Ruditapes philippinarum. Fish Shellfish. Immunol. 2019, 93, 66–72. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Jiang, S.; Wang, W.; Xin, L.; Wang, H.; Wang, L.; Song, L. A single-CRD C-type lectin from oyster Crassostrea gigas mediates immune recognition and pathogen elimination with a potential role in the activation of complement system. Fish Shellfish Immunol. 2015, 442, 566–575. [Google Scholar] [CrossRef]
- Cambi, A.; Koopman, M.; Figdor, C.G. How C-type lectins detect pathogens. Cell Microbiol. 2005, 7, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Nie, H.; Dong, S.; Huo, Z.; Yan, X. Molecular cloning and expression analysis of C-type lectin (RpCTL) in Manila clam Ruditapes philippinarum after lipopolysaccharide challenge. Fish Shellfish Immunol. 2019, 86, 981–993. [Google Scholar] [CrossRef]
- Maldonado-Aguayo, W.; Teneb, J.; Gallardo-Escarate, C. A galectin with quadruple-domain from red abalone Haliotis rufescens involved in the immune innate response against to Vibrio anguillarum. Fish Shellfish Immunol. 2014, 40, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.B.; Shen, H.P.; Zhou, H.S.; Dong, Y.H.; Lin, Z.H. A tandem-repeat galectin from blood clam Tegillarca granosa and its induced mRNA expression response against bacterial challenge. Genes Genom. 2013, 35, 733–740. [Google Scholar] [CrossRef]
- Dyrynda, E.A.; Dyrynda, P.E.J.; Law, R.J.; Kelly, C.A.; Pipe, R.K.; Ratcliffe, N.A. Changes in Immune Parameters of Natural Mussel Mytilus edulis Populations Following a Major Oil Spill (‘Sea Empress’, Wales, UK), Mar. Ecol. Prog. Ser. 2000, 206, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Chikalovets, I.V.; Chernikov, O.V.; Shekhova, E.A.; Molchanova, V.I.; Lukyanov, P.A. Changes in the Level of Lectins in the Mantle of the Mussel Mytilus trossulus (Bivalvia: Mytilidae) in Response to Anthropogenic Contaminants. Russ. J. Mar. Biol. 2010, 36, 70–74. [Google Scholar] [CrossRef]
- Kolyuchkina, G.A.; Ismailov, A.D. Parameters of Extrapallial Fluid of Bivalves as Nonspecific Biomarkers of Short-Term Environmental Pollution. Oceanology 2007, 47, 213–220. [Google Scholar] [CrossRef]
- Rosner, A.; Armengaud, J.; Ballarin, L.; Barnay-Verdier, S.; Cima, F.; Coelho, A.V.; Domart-Coulon, I.; Drobne, D.; Geneviere, A.M.; Kokalj, A.J.; et al. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. Sci. Total Environ. 2021, 771, 144565. [Google Scholar] [CrossRef]
- Isaeva, V.V. Using of Molluscan Hemocytes and Echinoderm Coelomites for Biotesting. Biol. Morya 1995, 21, 378–385. [Google Scholar]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Bulgakov, A.A.; Eliseikina, M.G.; Kovalchuk, S.N.; Petrova, I.Y.; Likhatskaya, G.N.; Shamshurina, E.V.; Rasskazov, V.A. Mannan-Binding Lectin of the Sea Urchin Strongylocentrotus nudus. Mar. Biotechnol. 2013, 15, 73–86. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin Phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Sreerama, N.; Woody, R.W. Estimation protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON and CDSSTR methods with an expanded reference set. Anal. Biochem. 2000, 287, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, S.I.; Jensen, O.N.; Rogowska-Wrzesinska, A. FlashPack: Fast and Simple Preparation of Ultrahigh-performance Capillary Columns for LC-MS. Mol. Cell. Proteom. MCP 2019, 18, 383–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, B.; Zhang, K.; Hendrie, C.; Liang, C.; Li, M.; Doherty-Kirby, A.; Lajoie, G. PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2337–2342. [Google Scholar] [CrossRef] [PubMed]
- Du, X.J.; Zhao, X.F.; Wang, J.X. Molecular cloning and characterization of a lipopolysaccharide and beta-1,3-glucan binding protein from fleshy prawn (Fenneropenaeus chinensis). Mol. Immunol. 2007, 44, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Ouchterlony, O.; Nilsson, L.A. Immunodiffusion and immunoelectrophoresis. In Handbook of Experimental Immunology; Weir, D.M., Ed.; Blackwell Scientific Publications: Oxford, UK, 1978; Volume 19. [Google Scholar]
- Nakane, P.K.; Kawaoi, A. Peroxidase-labeled antibody. A new method of conjugation. J. Histochem. Cytochem. 1974, 22, 1084–1091. [Google Scholar] [CrossRef]
- Yang, J.; Wang, L.; Zhang, H.; Qiu, L.; Wang, H.; Song, L. C-Type Lectin in Chlamys farreri (CfLec-1) Mediating Immune Recognition and Opsonization. PLoS ONE 2011, 6, e17089. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Yu, Y.; Huang, H.; Feng, K.; Pan, M.; Yuan, S.; Huang, S.; Wu, T.; Guo, L.; Dong, M.; et al. A Short-Form C-Type Lectin from Amphioxus Acts as a Direct Microbial Killing Protein via Interaction with Peptidoglycan and Glucan. J. Immunol. 2007, 179, 8425–8434. [Google Scholar] [CrossRef] [Green Version]
Sample | Volume (mL) | Titer HA | Total Activity a | Protein Concentration (mg/mL) | Protein Amount (mg) | Specific Activity b | Purification Ratio (fold) c | Recovery of Activity (%) d |
---|---|---|---|---|---|---|---|---|
Crude hemolymph | 50 | 512 | 25,600 | 11.75 | 587.50 | 43.57 | 1 | 100 |
Purified lectin | 2 | 2048 | 4096 | 0.63 | 1.26 | 3250.79 | 74.61 | 16 |
Type of Erythrocytes | Titer of Agglutination (the Reciprocal of the of Highest Dilution of Lectin That Gave Visible Hemagglutination) | |
---|---|---|
Untrypsinized | Trypsinized | |
Human O | 128 | 256 |
Human A | 16 | 16 |
Human B | 16 | 16 |
Human AB | 32 | 128 |
Rabbit | 128 | 512 |
Mouse | 8 | 32 |
Inhibitor | Concentration at Half-Maximal Inhibition of Binding |
---|---|
L-Fucose | 0.17 mM (0.028 mg/mL) |
PSM | 0.033 mg/mL |
Asialo-PSM | 0.008 mg/mL |
Fetuin | 0.008 mg/mL |
Asialofetuin | 0.004 mg/mL |
Thyroglobulin | 0.004 mg/mL |
Ovalbumin | 0.025 mg/mL |
Sample | α-Helix | β-Sheet | β-Turn | Random Coil | ||||
---|---|---|---|---|---|---|---|---|
I | II | III | I | II | III | |||
GYL | 0.1 | 4.6 | 4.7 | 28.3 | 13.7 | 42.0 | 20.7 | 32.6 |
Peptide | m/z | z | Mass |
---|---|---|---|
TTASQLENASKNHYWLNGTDSAVEGQFR | 1042.8264 | 3 | 3125.4326 |
CFSYVDWMSAEEPNDRFDADCLHLR | 1045.1152 | 3 | 3132.3164 |
WNDLSCSK | 505.2257 | 2 | 1008.4335 |
LPFFFLCEKPTETCSDK | 1060.0051 | 2 | 2117.98 |
MTQAAAEEYCTTQDGHLAQPTSEGLNTFLK | 1110.177 | 3 | 3327.5022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizgina, T.O.; Chikalovets, I.V.; Molchanova, V.I.; Ziganshin, R.H.; Chernikov, O.V. Identification and Characterization of a Novel Lectin from the Clam Glycymeris yessoensis and Its Functional Characterization under Microbial Stimulation and Environmental Stress. Mar. Drugs 2021, 19, 474. https://doi.org/10.3390/md19090474
Mizgina TO, Chikalovets IV, Molchanova VI, Ziganshin RH, Chernikov OV. Identification and Characterization of a Novel Lectin from the Clam Glycymeris yessoensis and Its Functional Characterization under Microbial Stimulation and Environmental Stress. Marine Drugs. 2021; 19(9):474. https://doi.org/10.3390/md19090474
Chicago/Turabian StyleMizgina, Tatyana O., Irina V. Chikalovets, Valentina I. Molchanova, Rustam H. Ziganshin, and Oleg V. Chernikov. 2021. "Identification and Characterization of a Novel Lectin from the Clam Glycymeris yessoensis and Its Functional Characterization under Microbial Stimulation and Environmental Stress" Marine Drugs 19, no. 9: 474. https://doi.org/10.3390/md19090474
APA StyleMizgina, T. O., Chikalovets, I. V., Molchanova, V. I., Ziganshin, R. H., & Chernikov, O. V. (2021). Identification and Characterization of a Novel Lectin from the Clam Glycymeris yessoensis and Its Functional Characterization under Microbial Stimulation and Environmental Stress. Marine Drugs, 19(9), 474. https://doi.org/10.3390/md19090474