An In Vivo Study to Evaluate the Efficacy of Blue Shark (Prionace glauca) Cartilage Collagen as a Cosmetic
Abstract
:1. Introduction
2. Results and Discussions
2.1. Physicochemical Properties of the Shark Cartilage
2.1.1. Proximate Composition and Collagen
2.1.2. Color Analysis
2.1.3. Viscosity Test
2.2. Dermatological Test
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of Shark Cartilage Extract
3.3. Proximate Analysis
3.3.1. Moisture Determination
3.3.2. Ash Determination
3.3.3. Hydroxyproline Content
3.4. Preparation of the Topical Formulation
3.5. Parameters for Evaluating the Formulation Characteristics
3.5.1. Color Test
3.5.2. Viscosity Test
3.6. Dermatological Test
3.7. Ethical Approval and Informed Consent
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veríssimo, A.; Sampaio, Í.; McDowell, J.R.; Alexandrino, P.; Mucientes, G.; Queiroz, N.; da Silva, C.; Jones, C.S.; Noble, L.R. World without borders—Genetic population structure of a highly migratory marine predator, the blue shark (Prionace glauca). Ecol. Evol. 2017, 7, 4768–4781. [Google Scholar] [CrossRef] [Green Version]
- Merly, L.; Smith, S.L. Collagen type II, alpha 1 protein: A bioactive component of shark cartilage. Int. Immunopharmacol. 2013, 15, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Burnsed, O.A.; Schwartz, Z.; Marchand, K.O.; Hyzy, S.L.; Olivares-Navarrete, R.; Boyan, B.D. Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation. Acta Biomater. 2016, 43, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Biton-Porsmoguer, S.; Bǎnaru, D.; Boudouresque, C.F.; Dekeyser, I.; Bouchoucha, M.; Marco-Miralles, F.; Lebreton, B.; Guillou, G.; Harmelin-Vivien, M. Mercury in blue shark (Prionace glauca) and shortfin mako (Isurus oxyrinchus) from north-eastern Atlantic: Implication for fishery management. Mar. Pollut. Bull. 2018, 127, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Han, S.J.; Kim, Y.; Jun, J.W.; Giri, S.S.; Chi, C.; Yun, S.; Kim, H.J.; Kim, S.G.; Kang, J.W. Heavy metal accumulation in and food safety of shark meat from Jeju Island, Republic of Korea. PLoS ONE 2019, 14, e0212410. [Google Scholar] [CrossRef] [PubMed]
- Still, J. Use of animal products in traditional Chinese medicine: Environmental impact and health hazards. Complement. Ther. Med. 2003, 11, 118–122. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kassaveti, A. Fish industry waste: Treatments, environmental impacts, current and potential uses. Int. J. Food Sci. Technol. 2008, 43, 726–745. [Google Scholar] [CrossRef]
- Sun, B. The mechanics of fibrillar collagen extracellular matrix. Cell Rep. Phys. Sci. 2021, 2, 100515. [Google Scholar] [CrossRef] [PubMed]
- Avila Rodríguez, M.I.; Rodríguez Barroso, L.G.; Sánchez, M.L. Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 2018, 17, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Kirkness, M.W.; Lehmann, K.; Forde, N.R. Mechanics and structural stability of the collagen triple helix. Curr. Opin. Chem. Biol. 2019, 53, 98–105. [Google Scholar] [CrossRef]
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renuka, V.; Remya, S.; Jha, A.; Joseph, T. Nature and Composition of Fish Processing Industrial Waste and Handling Protocols; Veraval Research Centre of ICAR-Central Institute of Fisheries Technology: Veraval, Gujarat, India, 2019. [Google Scholar]
- León-López, A.; Morales-Peñaloza, A.; Martínez-Juárez, V.M.; Vargas-Torres, A.; Zeugolis, D.I.; Aguirre-Álvarez, G. Hydrolyzed collagen—Sources and applications. Molecules 2019, 24, 4031. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shibata, M.; Ma, Q.; Liu, F.; Lu, Q.; Shan, Q.; Hagiwara, T.; Bao, J. Characterization of fish collagen from blue shark skin and its application for chitosan-collagen composite coating to preserve red porgy (Pagrus major) meat. J. Food Biochem. 2020, 44, e13265. [Google Scholar] [CrossRef] [PubMed]
- Seixas, M.J.; Martins, E.; Reis, R.L.; Silva, T.H. Extraction and characterization of collagen from elasmobranch byproducts for potential biomaterial use. Mar. Drugs 2020, 18, 617. [Google Scholar] [CrossRef]
- Elango, J.; Lee, J.W.; Wang, S.; Henrotin, Y.; De Val, J.E.M.S.; Regenstein, J.M.; Lim, S.Y.; Bao, B.; Wu, W. Evaluation of differentiated bone cells proliferation by blue shark skin collagen via biochemical for bone tissue engineering. Mar. Drugs 2018, 16, 350. [Google Scholar] [CrossRef] [Green Version]
- Musick, J.A.; Bonfil, R. Management Techniques for Elasmobranch Fisheries; Food & Agriculture Org.: Rome, Italy, 2005. [Google Scholar]
- Sanchez, A.; Blanco, M.; Correa, B.; Perez-Martin, R.I.; Sotelo, C.G. Effect of fish collagen hydrolysates on type I collagen mRNA levels of human dermal fibroblast culture. Mar. Drugs 2018, 16, 144. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Verma, A.K.; Patel, R. Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review. Sustain. Chem. Pharm. 2020, 18, 100315. [Google Scholar] [CrossRef]
- Felician, F.F.; Xia, C.; Qi, W.; Xu, H. Collagen from marine biological sources and medical applications. Chem. Biodivers. 2018, 15, e1700557. [Google Scholar] [CrossRef] [PubMed]
- Sionkowska, A.; Adamiak, K.; Musiał, K.; Gadomska, M. Collagen based materials in cosmetic applications: A review. Materials 2020, 13, 4217. [Google Scholar] [CrossRef]
- Jeevithan, E.; Bao, B.; Bu, Y.; Zhou, Y.; Zhao, Q.; Wu, W. Type II collagen and gelatin from silvertip shark (Carcharhinus albimarginatus) cartilage: Isolation, purification, physicochemical and antioxidant properties. Mar. Drugs 2014, 12, 3852–3873. [Google Scholar] [CrossRef] [PubMed]
- Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Kishimura, H.; Shahidi, F. Isolation and characterisation of collagen from the skin of brownbanded bamboo shark (Chiloscyllium punctatum). Food Chem. 2010, 119, 1519–1526. [Google Scholar] [CrossRef]
- Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Shahidi, F. Isolation and characterization of collagen from the cartilages of brownbanded bamboo shark (Chiloscyllium punctatum) and blacktip shark (Carcharhinus limbatus). LWT-Food Sci. Technol. 2010, 43, 792–800. [Google Scholar] [CrossRef]
- Cho, S.; Kwak, K.; Park, D.; Gu, Y.; Ji, C.; Jang, D.; Lee, Y.; Kim, S. Processing optimization and functional properties of gelatin from shark (Isurus oxyrinchus) cartilage. Food Hydrocoll. 2004, 18, 573–579. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Blanco, M.; Fraguas, J.; Pastrana, L.; Pérez-Martín, R. Optimisation of the extraction and purification of chondroitin sulphate from head by-products of Prionace glauca by environmental friendly processes. Food Chem. 2016, 198, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Nagai, T.; Tanaka, M. Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chem. 2005, 89, 363–372. [Google Scholar] [CrossRef]
- Elango, J.; Bu, Y.; Bin, B.; Geevaretnam, J.; Robinson, J.S.; Wu, W. Effect of chemical and biological cross-linkers on mechanical and functional properties of shark catfish skin collagen films. Food Biosci. 2017, 17, 42–51. [Google Scholar] [CrossRef]
- Li, Y.; Qiao, C.; Shi, L.; Jiang, Q.; Li, T. Viscosity of collagen solutions: Influence of concentration, temperature, adsorption, and role of intermolecular interactions. J. Macromol. Sci. Part B 2014, 53, 893–901. [Google Scholar] [CrossRef]
- Evans, M.; Lewis, E.D.; Zakaria, N.; Pelipyagina, T.; Guthrie, N. A randomized, triple-blind, placebo-controlled, parallel study to evaluate the efficacy of a freshwater marine collagen on skin wrinkles and elasticity. J. Cosmet. Dermatol. 2021, 20, 825–834. [Google Scholar] [CrossRef]
- Toriyama, M.; Ishii, K.J. Primary cilia in the skin: Functions in immunity and therapeutic potential. Front. Cell Dev. Biol. 2021, 9, 621318. [Google Scholar] [CrossRef]
- De Miranda, R.B.; Weimer, P.; Rossi, R.C. Effects of hydrolyzed collagen supplementation on skin aging: A systematic review and meta-analysis. Int. J. Dermatol. 2021, 60, 1449–1461. [Google Scholar] [CrossRef]
- Proksch, E.; Berardesca, E.; Misery, L.; Engblom, J.; Bouwstra, J. Dry skin management: Practical approach in light of latest research on skin structure and function. J. Dermatol. Treat. 2020, 31, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, U.K.; Karakus, M.M. Essential oils as skin permeation boosters and their predicted effect mechanisms. J. Dermatol. Ski. Sci. 2020, 2, 24–30. [Google Scholar]
- Bogdan, C.; Iurian, S.; Tomuta, I.; Moldovan, M. Improvement of skin condition in striae distensae: Development, characterization and clinical efficacy of a cosmetic product containing Punica granatum seed oil and Croton lechleri resin extract. Drug Des. Dev. Ther. 2017, 11, 521. [Google Scholar] [CrossRef] [Green Version]
- Tsumura, N.; Ojima, N.; Sato, K.; Shiraishi, M.; Shimizu, H.; Nabeshima, H.; Akazaki, S.; Hori, K.; Miyake, Y. Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin. ACM Trans. Graph. 2003, 22, 770–779. [Google Scholar] [CrossRef]
- Alves, A.L.; Marques, A.L.; Martins, E.; Silva, T.H.; Reis, R.L. Cosmetic potential of marine fish skin collagen. Cosmetics 2017, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Xhauflaire-Uhoda, E.; Fontaine, K.; Piérard, G. Kinetics of moisturizing and firming effects of cosmetic formulations. Int. J. Cosmet. Sci. 2008, 30, 131–138. [Google Scholar] [CrossRef]
- Peng, Y.; Glattauer, V.; Werkmeister, J.A.; Ramshaw, J.A. Evaluation for collagen products for cosmetic application. Int. J. Cosmet. Sci. 2004, 26, 313. [Google Scholar] [CrossRef]
- Li, P.-H.; Lu, W.-C.; Chan, Y.-J.; Ko, W.-C.; Jung, C.-C.; Le Huynh, D.T.; Ji, Y.-X. Extraction and characterization of collagen from sea cucumber (Holothuria cinerascens) and its potential application in moisturizing cosmetics. Aquaculture 2020, 515, 734590. [Google Scholar]
Sample | Proximate Composition (%) | Hydroxyproline Content (mg/g) | Yield (%) | ||
---|---|---|---|---|---|
Moisture | Ash | Protein | |||
HSC | 74.18 ± 0.26 a | 5.13 ± 0.19 b | 18.01 ± 0.15 b | 14.36 ± 0.23 b | - |
LHSC | 15.41 ± 0.43 b | 26.54 ± 0.24 a | 56.84 ± 0.21 a | 27.10 ± 0.18 a | 3.09 ± 0.07 |
Sample | L* | a* | b* | ΔE |
---|---|---|---|---|
HSC | 5.43 ± 0.05 h | −0.16 ± 0.14 b | 21.07 ± 0.04 a | 0.11 ± 0.08 de |
LHSC | 53.87 ± 0.11 d | −2.43 ± 0.08 g | 8.45 ± 0.14 cd | 0.18 ± 0.13 d |
F1 | 79.30 ± 0.19 b | −0.08 ± 0.09 a | 3.88 ± 0.06 ef | 0.24 ± 0.21 c |
F2 | 79.10 ± 0.15 b | −0.12 ± 0.09 ab | 5.80 ± 0.10 e | 0.32 ± 0.22 b |
F3 | 77.83 ± 0.18 b | −0.13 ± 0.16 ab | 6.08 ± 0.09 d | 0.19 ± 0.19 d |
F4 | 67.10 ± 0.12 c | −0.20 ± 0.10 c | 7.07 ± 0.06 d | 0.24 ± 0.11 c |
F5 | 65.70 ± 0.06 c | 0.22 ± 0.06 c | 8.64 ± 0.03 cd | 0.11 ± 0.10 de |
F6 | 38.21 ± 0.05 e | 0.29 ± 0.04 d | 9.31 ± 0.11 c | 0.37 ± 0.17 b |
F7 | 38.04 ± 0.04 e | 0.32 ± 0.14 d | 9.40 ± 0.10 c | 0.24 ± 0.12 c |
F8 | 18.91 ± 0.14 f | −0.38 ± 0.60 e | 11.13 ± 0.16 b | 0.26 ± 0.14 c |
F9 | 15.32 ± 0.11 f | 0.39 ± 0.22 e | 12.04 ± 0.12 b | 0.32 ± 0.11 b |
F10 | 12.61 ± 0.15 fg | −0.46 ± 0.17 f | 13.09 ± 0.17 b | 0.56 ± 0.03 a |
F11 | 10.50 ± 0.06 g | −0.50 ± 0.13 f | 13.40 ± 0.13 b | 0.10 ± 0.08 de |
Placebo | 89.00 ± 0.13 a | −0.37 ± 0.16 e | 1.77 ± 0.06 f | 0.22 ± 0.11 c |
Formulations | Viscosity (cP) |
---|---|
F1 | 4440.0 ± 0.05 b |
F2 | 4374.0 ± 0.13 b |
F3 | 3220.8 ± 0.11 c |
F4 | 2904.0 ± 0.08 d |
F5 | 1192.8 ± 0.14 e |
F6 | 808.8 ± 0.21 f |
F7 | 470.4 ± 0.18 g |
F8 | 379.6 ± 0.14 h |
F9 | 222.6 ± 0.09 i |
F10 | 180.0 ± 0.04 j |
F11 | 152.8 ± 0.12 j |
Placebo | 5925.6 ± 0.11 a |
Formula | Composition % | |||||
---|---|---|---|---|---|---|
Water | LHSC Powder * | Carbopol | TEA | Glycerin | Anti-microbial Agent | |
F1 | 100 | 0.125 | 0.2 | 0.2 | 5 | 0.3 |
F2 | 100 | 0.25 | 0.2 | 0.2 | 5 | 0.3 |
F3 | 100 | 0.3125 | 0.2 | 0.2 | 5 | 0.3 |
F4 | 100 | 0.5 | 0.2 | 0.2 | 5 | 0.3 |
F5 | 100 | 0.625 | 0.2 | 0.2 | 5 | 0.3 |
F6 | 100 | 1 | 0.2 | 0.2 | 5 | 0.3 |
F7 | 100 | 1.25 | 0.2 | 0.2 | 5 | 0.3 |
F8 | 100 | 2 | 0.2 | 0.2 | 5 | 0.3 |
F9 | 100 | 2.5 | 0.2 | 0.2 | 5 | 0.3 |
F10 | 100 | 4 | 0.2 | 0.2 | 5 | 0.3 |
F11 | 100 | 5 | 0.2 | 0.2 | 5 | 0.3 |
Placebo | 100 | 0 | 0.2 | 0.2 | 5 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.-C.; Chiu, C.-S.; Chan, Y.-J.; Guo, T.-P.; Lin, C.-C.; Wang, P.-C.; Lin, P.-Y.; Mulio, A.T.; Li, P.-H. An In Vivo Study to Evaluate the Efficacy of Blue Shark (Prionace glauca) Cartilage Collagen as a Cosmetic. Mar. Drugs 2022, 20, 633. https://doi.org/10.3390/md20100633
Lu W-C, Chiu C-S, Chan Y-J, Guo T-P, Lin C-C, Wang P-C, Lin P-Y, Mulio AT, Li P-H. An In Vivo Study to Evaluate the Efficacy of Blue Shark (Prionace glauca) Cartilage Collagen as a Cosmetic. Marine Drugs. 2022; 20(10):633. https://doi.org/10.3390/md20100633
Chicago/Turabian StyleLu, Wen-Chien, Chien-Shan Chiu, Yung-Jia Chan, Tian-Pin Guo, Ching-Chin Lin, Po-Chun Wang, Po-Yu Lin, Amanda Tresiliana Mulio, and Po-Hsien Li. 2022. "An In Vivo Study to Evaluate the Efficacy of Blue Shark (Prionace glauca) Cartilage Collagen as a Cosmetic" Marine Drugs 20, no. 10: 633. https://doi.org/10.3390/md20100633
APA StyleLu, W. -C., Chiu, C. -S., Chan, Y. -J., Guo, T. -P., Lin, C. -C., Wang, P. -C., Lin, P. -Y., Mulio, A. T., & Li, P. -H. (2022). An In Vivo Study to Evaluate the Efficacy of Blue Shark (Prionace glauca) Cartilage Collagen as a Cosmetic. Marine Drugs, 20(10), 633. https://doi.org/10.3390/md20100633