A Single Amino Acid Replacement Boosts the Analgesic Activity of α-Conotoxin AuIB through the Inhibition of the GABABR-Coupled N-Type Calcium Channel
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization of AuIB and Its Variants
NO. | Name | Amino Acid Sequence | Inhibition Efficacy (1 µM)% | IC50 (nM) (95% Confidence Interval) |
---|---|---|---|---|
1 | AuIB(ribbon) | GCCSYPPCFATNPDC* | 9.28 ± 2.65 | |
2 | AuIB(globular) | GCCSYPPCFATNPDC* | 27.40 ± 2.05 | 1.93 (0.42–8.86) |
3 | Benzoyl-AuIB(ribbon) | Benzoyl-GCCSYPPCFATNPDC* | 9.00 ± 1.64 | |
4 | Benzoyl-AuIB(globular) | Benzoyl -GCCSYPPCFATNPDC* | 18.93 ± 2.88 | |
5 | AuIB[S4Dab]-I | GCCDab-YPPCFATNPDC* | 8.11 ± 1.99 | |
6 | AuIB[S4Dab]-II | GCCDab-YPPCFATNPDC* | 25.84 ± 2.73 | |
7 | AuIB[P7R](globular) | GCCSYPRCFATNPDC* | 17.12 ± 0.70 | |
8 | AuIB[P7R](ribbon) | GCCSYPRCFATNPDC* | 51.58 ± 1.86 | 0.74 (0.26–2.09) |
9 | Benzoyl-AuIB[P7R](globular) | Benzoyl-GCCSYPRCFATNPDC* | 18.70 ± 5.25 | |
10 | Benzoyl-AuIB[P7R](ribbon) | Benzoyl -GCCSYPRCFATNPDC* | 23.62 ± 3.26 | |
11 | AuIB[F9Y]-I | GCCSYPPCYATNPDC* | 8.38 ± 1.99 | |
12 | AuIB[F9Y]-II | GCCSYPPCYATNPDC* | 8.28 ± 1.96 | |
13 | AuIB[F9R] | GCCSYPPCRATNPDC* | 12.58 ± 1.99 | |
14 | AuIB[A10R]-I | GCCSYPPCFRTNPDC* | 8.46 ± 1.12 | |
15 | AuIB[A10R]-II | GCCSYPPCFRTNPDC* | 21.50 ± 4.71 | |
16 | AuIB[T11D] | GCCSYPPCFADNPDC* | 27.96 ± 3.01 | |
17 | AuIB[N12H]-I | GCCSYPPCFATHPDC* | 15.29 ± 1.67 | |
18 | AuIB[N12H]-II | GCCSYPPCFATHPDC* | 14.11 ± 2.17 | |
19 | AuIB[+15I] | GCCSYPPCFATNPDIC* | 30.38 ± 3.26 | 52.28 (11.16–245.0) |
20 | AuIB[+15L] | GCCSYPPCFATNPDLC* | 27.85 ± 1.37 | 25.45 (7.35–88.06) |
21 | AuIB[A10R,+15L]-I | GCCSYPPCFRTNPDLC* | 24.17 ± 2.38 | |
22 | AuIB[A10R,+15L]-II | GCCSYPPCFRTNPDLC* | 18.49 ± 1.01 | |
23 | AuIB[Y5D,+15L] | GCCSDPPCFATNPDLC* | 17.62 ± 1.98 | |
24 | AuIB[Y5D,F9R,+15L] | GCCSDPPCRATNPDLC* | 14.42 ± 1.27 | |
25 | AuIB[P7R,+15L]-I | GCCSYPRCFATNPDLC* | 14.54 ± 1.10 | |
26 | AuIB[P7R,+15L]-II | GCCSYPRCFATNPDLC* | 19.44 ± 2.39 |
α-Contoxin | Subfamily | Amino Acid Sequence | IC50(nM) | Reference |
---|---|---|---|---|
Vc1.1 | 4/7 | GCCSDPRCNYDHPEIC* | 2.38 | [27] |
Vc1.1[N9R] | 4/7 | GCCSDPRCRYDHPEIC* | 4.87 | [12] |
Benzoyl-Vc1.1[N9R] | 4/7 | Benzoyl-GCCSDPRCRYDHPEIC* | 0.19 | [12] |
Vc1.2 | 4/7 | GCCSNPACMVNNPQIC* | 47.5 | [14] |
PeIA | 4/7 | GCCSHPACSVNHPELC* | 1.1 | [14] |
Lt1.3-I | 4/7 | GCCSHPACSGNNPYFC* | 33.9 | [21] |
RgIA | 4/3 | GCCSDPRCRYRCR* | 7.3 | [17] |
AuIB(globular) | 4/6 | GCCSYPPCFATNPDC* | 1.5(1.93) | [27] (This work) |
AuIB[P7R](ribbon) | 4/6 | GCCSYPRCFATNPDC* | 0.74 | This work |
2.2. Circular Dichroism of α-Conotoxin AuIB Variants
2.3. Inhibitory Effects on GABABR-Coupled Cav2.2 Currents Induced by AuIB and Its Variants
2.4. Inhibitory Activity of AuIB[P7R](ribbon) against Isoforms of Neuronal nAChRs
Subtype | AuIB[P7R](ribbon) (%) | AuIB[P7R](globular) (%) |
---|---|---|
α2β4 | 39.43 ± 6.31 | 34.95 ± 9.69 |
α3β2 | 29.25 ± 12.65 | 5.59 ± 4.48 |
α3β4 | 39.27 ± 6.45 | 6.62 ± 5.75 |
α4β2 | 35.92 ± 12.50 | 8.87 ± 7.19 |
α4β4 | 30.44 ± 8.03 | 5.48 ± 6.28 |
α7 | 17.00 ± 0.35 | 27.83 ± 10.00 |
α9α10 | 5.09 ± 7.85 | 21.32 ± 12.17 |
2.5. AuIB[P7R](ribbon) Significantly Reduces the Writhing Number in the Acetic Acid Writhing Model
2.6. AuIB[P7R](ribbon) Also Displays Potent Analgesic Activity in the Rat Partial Sciatic Nerve Injury Model
3. Discussion
4. Materials and Methods
4.1. Chemicals and Biological Reagents
4.2. Animals
4.3. Peptide Synthesis
4.4. Disulfide Bond Connectivity Analysis
4.5. Circular Dichroism (CD) Spectra
4.6. HEK293T Cell Electrophysiology
4.7. Two-Electrode Voltage-Clamp Recording on Oocytes Expressing nAChRs
4.8. Acetic Acid Writhing Test
4.9. Partial Sciatic Nerve Injury (PNL) Model Tests
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lebbe, E.K.; Peigneur, S.; Wijesekara, I.; Tytgat, J. Conotoxins targeting nicotinic acetylcholine receptors: An overview. Mar. Drugs 2014, 12, 2970–3004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, A.H.; Muttenthaler, M.; Dutertre, S.; Himaya, S.W.A.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Conotoxins: Chemistry and Biology. Chem. Rev. 2019, 119, 11510–11549. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.D.; Norton, R.S. Conotoxin gene superfamilies. Mar. Drugs 2014, 12, 6058–6101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, N.; Lewis, R.J. Neuronal nicotinic acetylcholine receptor modulators from Cone snails. Mar. Drugs 2018, 16, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, S.A.; Christie, M.J. Conotoxin interactions with α9α10-nAChRs: Is the α9α10-nicotinic acetylcholine receptor an important therapeutic target for pain management? Toxins 2015, 7, 3916–3932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Tae, H.S.; Chu, Y.; Jiang, T.; Adams, D.J.; Yu, R. Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor. Pharmacol. Ther. 2021, 222, 107792. [Google Scholar] [CrossRef]
- Cuny, H.; Yu, R.; Tae, H.S.; Kompella, S.N.; Adams, D.J. α-Conotoxins active at α3-containing nicotinic acetylcholine receptors and their molecular determinants for selective inhibition. Br. J. Pharmacol. 2018, 175, 1855–1868. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.J.; Fischer, H.; Nevin, S.T.; Adams, D.J.; Craik, D.J. The synthesis, structural characterization and receptor specificity of the α-conotoxin Vc1.1. J. Biol. Chem. 2006, 281, 23254–23263. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, B.; Haythornthwaite, A.; Berecki, G.; Clark, R.J.; Craik, D.J.; Adams, D.J. Analgesic α-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation. J. Neurosci. 2008, 28, 10943–10951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napier, I.A.; Klimis, H.; Rycroft, B.K.; Jin, A.H.; Alewood, P.F.; Motin, L.; Adams, D.J.; Christie, M.J. Intrathecal α-conotoxins Vc1.1, AuIB and MII acting on distinct nicotinic receptor subtypes reverse signs of neuropathic pain. Neuropharmacology 2012, 62, 2202–2207. [Google Scholar] [CrossRef]
- Huynh, T.G.; Cuny, H.; Slesinger, P.A.; Adams, D.J. Novel mechanism of voltage-gated N-type (CaV2.2) calcium channel inhibition revealed through α-conotoxin Vc1.1 activation of the GABA(B) receptor. Mol. Pharmacol. 2015, 87, 240–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, F.; Xu, N.; Liu, Z.; Ding, R.; Yu, S.; Dong, M.; Wang, S.; Shen, J.; Tae, H.S.; Adams, D.J.; et al. Targeting of N-Type calcium channels via GABAB-receptor activation by α-conotoxin Vc1.1 variants displaying improved analgesic activity. J. Med. Chem. 2018, 61, 10198–10205. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, J.M.; Plazas, P.V.; Watkins, M.; Gomez-Casati, M.E.; Olivera, B.M.; Elgoyhen, A.B. A novel alpha-conotoxin, PeIA, cloned from Conus pergrandis, discriminates between rat alpha9alpha10 and alpha7 nicotinic cholinergic receptors. J. Biol. Chem. 2005, 280, 30107–30112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, N.L.; Callaghan, B.; Clark, R.J.; Nevin, S.T.; Adams, D.J.; Craik, D.J. Structure and activity of alpha-conotoxin PeIA at nicotinic acetylcholine receptor subtypes and GABA(B) receptor-coupled N-type calcium channels. J. Biol. Chem. 2011, 286, 10233–10237. [Google Scholar] [CrossRef] [Green Version]
- Hone, A.J.; Talley, T.T.; Bobango, J.; Huidobro Melo, C.; Hararah, F.; Gajewiak, J.; Christensen, S.; Harvey, P.J.; Craik, D.J.; McIntosh, J.M. Molecular determinants of α-conotoxin potency for inhibition of human and rat α6β4 nicotinic acetylcholine receptors. J. Biol. Chem. 2018, 293, 17838–17852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.; Tae, H.S.; Xu, X.; Jiang, T.; Adams, D.J.; Yu, R. Dimerization of α-conotoxins as a strategy to enhance the inhibition of the human α7 and α9α10 nicotinic acetylcholine receptors. J. Med. Chem. 2020, 63, 2974–2985. [Google Scholar] [CrossRef] [PubMed]
- Halai, R.; Callaghan, B.; Daly, N.L.; Clark, R.J.; Adams, D.J.; Craik, D.J. Effects of cyclization on stability, structure, and activity of α-conotoxin RgIA at the α9α10 nicotinic acetylcholine receptor and GABAB receptor. J. Med. Chem. 2011, 54, 6984–6992. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare Mannelli, L.; Cinci, L.; Micheli, L.; Zanardelli, M.; Pacini, A.; McIntosh, J.M.; Ghelardini, C. α-Conotoxin RgIA protects against the development of nerve injury-induced chronic pain and prevents both neuronal and glial derangement. Pain 2014, 155, 1986–1995. [Google Scholar] [CrossRef] [Green Version]
- Chhabra, S.; Belgi, A.; Bartels, P.; van Lierop, B.J.; Robinson, S.D.; Kompella, S.N.; Hung, A.; Callaghan, B.P.; Adams, D.J.; Robinson, A.J.; et al. Dicarba analogues of α-conotoxin RgIA. Structure, stability, and activity at potential pain targets. J. Med. Chem. 2014, 57, 9933–9944. [Google Scholar] [CrossRef] [PubMed]
- Pacini, A.; Micheli, L.; Maresca, M.; Branca, J.J.V.; McIntosh, J.M.; Ghelardini, C.; Di Cesare Mannelli, L. The α9α10 nicotinic receptor antagonist α-conotoxin RgIA prevents neuropathic pain induced by oxaliplatin treatment. Exp. Neurol. 2016, 282, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liang, L.; Ning, H.; Cai, F.; Liu, Z.; Zhang, L.; Zhou, L.; Dai, Q. Cloning, synthesis and functional characterization of a novel α-conotoxin Lt1.3. Mar. Drugs 2018, 16, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Bartels, P.; Sadeghi, M.; Du, T.; Dai, Q.; Zhu, C.; Yu, S.; Wang, S.; Dong, M.; Sun, T.; et al. A novel α-conopeptide Eu1.6 inhibits N-type (CaV2.2) calcium channels and exhibits potent analgesic activity. Sci. Rep. 2018, 8, 1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.J.; Callaghan, B.; Berecki, G. Analgesic conotoxins: Block and G protein-coupled receptor modulation of N-type (Ca(V) 2.2) calcium channels. Br. J. Pharmacol. 2012, 166, 486–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, S.; Kulak, J.M.; Cartier, G.E.; Jacobsen, R.B.; Yoshikami, D.; Olivera, B.M.; McIntosh, J.M. alpha-conotoxin AuIB selectively blocks alpha3 beta4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release. J. Neurosci. 1998, 18, 8571–8579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Tae, H.S.; Huang, Y.H.; Adams, D.J.; Craik, D.J.; Kaas, Q. Stoichiometry dependent inhibition of rat α3β4 nicotinic acetylcholine receptor by the ribbon isomer of α-conotoxin AuIB. Biochem. Pharmacol. 2018, 155, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Liu, N.; Ding, R.; Wang, S.; Liu, Z.; Li, H.; Zheng, X.; Dai, Q. A novel 4/6-type alpha-conotoxin ViIA selectively inhibits nAchR α3β2 subtype. Acta Biochim. Biophys. Sin. 2015, 47, 1023–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimis, H.; Adams, D.J.; Callaghan, B.; Nevin, S.; Alewood, P.F.; Vaughan, C.W.; Mozar, C.A.; Christie, M.J. A novel mechanism of inhibition of high-voltage activated calcium channels by α-conotoxins contributes to relief of nerve injury-induced neuropathic pain. Pain 2011, 152, 259–266. [Google Scholar] [CrossRef]
- Cuny, H.; Kompella, S.N.; Tae, H.S.; Yu, R.; Adams, D.J. Key structural determinants in the agonist binding loops of human β2 and β4 nicotinic acetylcholine receptor subunits contribute to α3β4 subtype selectivity of α-conotoxins. J. Biol. Chem. 2016, 291, 23779–23792. [Google Scholar] [CrossRef] [Green Version]
- Lovelace, E.S.; Gunasekera, S.; Alvarmo, C.; Clark, R.J.; Nevin, S.T.; Grishin, A.A.; Adams, D.J.; Craik, D.J.; Daly, N.L. Stabilization of α-conotoxin AuIB: Influences of disulfide connectivity and backbone cyclization. Antioxid. Redox Signal 2011, 14, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Grishin, A.A.; Wang, C.I.; Muttenthaler, M.; Alewood, P.F.; Lewis, R.J.; Adams, D.J. Alpha-conotoxin AuIB isomers exhibit distinct inhibitory mechanisms and differential sensitivity to stoichiometry of alpha3beta4 nicotinic acetylcholine receptors. J. Biol. Chem. 2010, 285, 22254–22263. [Google Scholar] [CrossRef]
- Dutton, J.L.; Bansal, P.S.; Hogg, R.C.; Adams, D.J.; Alewood, P.F.; Craik, D.J. A new level of conotoxin diversity, a non-native disulfide bond connectivity in alpha-conotoxin AuIB reduces structural definition but increases biological activity. J. Biol. Chem. 2002, 277, 48849–48857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, H.; Huang, B.; Tae, H.S.; Liu, Z.; Yu, S.; Li, L.; Zhang, L.; Adams, D.J.; Guo, C.; Dai, Q. α-Conotoxin Bt1.8 from Conus betulinus selectively inhibits α6/α3β2β3 and α3β2 nicotinic acetylcholine receptor subtypes. J. Neurochem. 2021, 159, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Huang, Q.; Yu, S.; Xu, S.; Huang, Y.; Zhao, Z.; Xiao, X.; Dai, Q. The 3/4- and 3/6-subfamily variants of α-conotoxins GI and MI exhibit potent inhibitory activity against muscular nicotinic acetylcholine receptors. Mar, Drugs 2021, 19, 705. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, X.; Yu, S.; Liu, J.; Chen, R.; Zhang, Y.; Jiang, L.; Dai, Q. A novel ω-conotoxin Bu8 inhibiting N-type voltage-gated calcium channels displays potent analgesic activity. Acta Pharm. Sin. B 2021, 11, 2685–2693. [Google Scholar] [CrossRef] [PubMed]
- Seltzer, Z.; Dubner, R.; Shir, Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990, 43, 205–218. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Zhang, M.; Yu, S.; Huang, Q.; Chen, R.; Xu, S.; Huang, Y.; Yu, Y.; Liao, M.; Dai, Q. A Single Amino Acid Replacement Boosts the Analgesic Activity of α-Conotoxin AuIB through the Inhibition of the GABABR-Coupled N-Type Calcium Channel. Mar. Drugs 2022, 20, 750. https://doi.org/10.3390/md20120750
Wei Y, Zhang M, Yu S, Huang Q, Chen R, Xu S, Huang Y, Yu Y, Liao M, Dai Q. A Single Amino Acid Replacement Boosts the Analgesic Activity of α-Conotoxin AuIB through the Inhibition of the GABABR-Coupled N-Type Calcium Channel. Marine Drugs. 2022; 20(12):750. https://doi.org/10.3390/md20120750
Chicago/Turabian StyleWei, Yuanmei, Min Zhang, Shuo Yu, Qiuyuan Huang, Rongfang Chen, Shujing Xu, Yue Huang, Yunzhou Yu, Ming Liao, and Qiuyun Dai. 2022. "A Single Amino Acid Replacement Boosts the Analgesic Activity of α-Conotoxin AuIB through the Inhibition of the GABABR-Coupled N-Type Calcium Channel" Marine Drugs 20, no. 12: 750. https://doi.org/10.3390/md20120750
APA StyleWei, Y., Zhang, M., Yu, S., Huang, Q., Chen, R., Xu, S., Huang, Y., Yu, Y., Liao, M., & Dai, Q. (2022). A Single Amino Acid Replacement Boosts the Analgesic Activity of α-Conotoxin AuIB through the Inhibition of the GABABR-Coupled N-Type Calcium Channel. Marine Drugs, 20(12), 750. https://doi.org/10.3390/md20120750