Biocosmetics Made with Saccharina latissima Fractions from Sustainable Treatment: Physicochemical and Thermorheological Features
Abstract
:1. Introduction
2. Results and Discussion
2.1. Raw Material
2.2. Extraction Technology: Ultrasound-Assisted Extraction
2.3. Features of Liquid Fractions
2.4. Formulation and Production of Polymeric Microparticles
2.5. Thermorheological and Color Measurements
3. Materials and Methods
3.1. Raw Material
3.2. Extraction Technology
3.3. Characterization of Raw Material
3.3.1. Minerals Content
3.3.2. Oligosaccharide Fraction Determination
3.4. Characterization of Liquid Fraction
3.4.1. Antioxidant Features
3.4.2. Structural Profiles
High Performance Size Exclusion Chromatography
Fourier-Transform Infrared Spectroscopy
3.5. Formulation and Production of Polymeric Microparticles
3.5.1. Characterization of Microparticles
Yield of Production
Scanning Electron Microscopy
Size Profile of Microparticles
3.6. Formulation of the Creams and the Corresponding Mechanical Measurements
3.6.1. Flow Curves
3.6.2. Water Syneresis
3.6.3. Color Testing
3.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanjeewa, K.K.A.; Lee, J.-S.; Kim, W.-S.; Jeon, Y.-J. The Potential of Brown-Algae Polysaccharides for the Development of Anticancer Agents: An Update on Anticancer Effects Reported for Fucoidan and Laminaran. Carbohydr. Polym. 2017, 177, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, Y.; Zhang, Y.; Yang, Y.; Wang, P.; Imre, B.; Wong, A.C.Y.; Hsieh, Y.S.Y.; Wang, D. Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Mar. Drugs 2021, 19, 620. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Abu-Ghannam, N. Bioactive Potential and Possible Health Effects of Edible Brown Seaweeds. Trends Food Sci. Technol. 2011, 22, 315–326. [Google Scholar] [CrossRef]
- Murphy, M.J.; Dow, A.A. Clinical Studies of the Safety and Efficacy of Macroalgae Extracts In. J. Clin. Aesthetic Dermatol. 2021, 14, 37–41. [Google Scholar]
- Usov, A.I.; Bilan, M.I. Fucoidans—Sulfated Polysaccharides of Brown Algae. Russ. Chem. Rev. 2009, 78, 785–799. [Google Scholar] [CrossRef]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and Bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef]
- Jeon, Y.-J. (Ed.) Fucoidans; Marine Drugs; MDPI: Basel, Switzerland, 2021; ISBN 978-3-0365-2411-5. [Google Scholar]
- Hwang, P.A.; Phan, N.N.; Lu, W.J.; Hieu, B.T.N.; Lin, Y.C. Low-Molecular-Weight Fucoidan and High-Stability Fucoxanthin from Brown Seaweed Exert Prebiotics and Anti-Inflammatory Activities in Caco-2 Cells. Food Nutr. Res. 2016, 60, 32033. [Google Scholar] [CrossRef]
- Yin, S.; Niu, L.; Shibata, M.; Liu, Y.; Hagiwara, T. Optimization of Fucoxanthin Extraction Obtained from Natural By-Products from Undaria pinnatifida Stem Using Supercritical CO2 Extraction Method. Front. Nutr. 2022, 9, 981176. [Google Scholar] [CrossRef]
- Reig-Vano, B.; Tylkowski, B.; Montané, X.; Giamberini, M. Alginate-Based Hydrogels for Cancer Therapy and Research. Int. J. Biol. Macromol. 2021, 170, 424–436. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, J.; Ao, Q. Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Mar. Drugs 2021, 19, 264. [Google Scholar] [CrossRef]
- Catarino, M.D.; Pires, S.M.G.; Silva, S.; Costa, F.; Braga, S.S.; Pinto, D.C.G.A.; Silva, A.M.S.; Cardoso, S.M. Overview of Phlorotannins’ Constituents in Fucales. Mar. Drugs 2022, 20, 754. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of Novel Extraction Technologies for Bioactives from Marine Algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef] [PubMed]
- Getachew, A.T.; Holdt, S.L.; Meyer, A.S.; Jacobsen, C. Effect of Extraction Temperature on Pressurized Liquid Extraction of Bioactive Compounds from Fucus vesiculosus. Mar. Drugs 2022, 20, 263. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, C.; Tamura, S.; Suzuki, M.; Etomi, K.; Nii, N.; Hayashi, J.; Kanemaru, K. Continuous Microwave-Assisted Step-by-Step Extraction of Bioactive Water-Soluble Materials and Fucoidan from Brown Seaweed Undaria pinnatifida Waste. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Amarante, S.J.; Catarino, M.D.; Marçal, C.; Silva, A.M.S.; Ferreira, R.; Cardoso, S.M. Microwave-Assisted Extraction of Phlorotannins from Fucus vesiculosus. Mar. Drugs 2020, 18, 559. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vaquero, M.; Ummat, V.; Tiwari, B.; Rajauria, G. Exploring Ultrasound, Microwave and Ultrasound–Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae. Mar. Drugs 2020, 18, 172. [Google Scholar] [CrossRef]
- Saravana, P.S.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chun, B.S. Evaluation of the Chemical Composition of Brown Seaweed (Saccharina japonica) Hydrolysate by Pressurized Hot Water Extraction. Algal Res. 2016, 13, 246–254. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Rajauria, G.; Tiwari, B.; Sweeney, T.; O’Doherty, J. Extraction and Yield Optimisation of Fucose, Glucans and Associated Antioxidant Activities from Laminaria digitata by Applying Response Surface Methodology to High Intensity Ultrasound-Assisted Extraction. Mar. Drugs 2018, 16, 257. [Google Scholar] [CrossRef]
- Shirsath, S.R.; Sonawane, S.H.; Gogate, P.R. Intensification of Extraction of Natural Products Using Ultrasonic Irradiations—A Review of Current Status. Chem. Eng. Process. Process Intensif. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Lourenço-Lopes, C.; Carreira-Casais, A.; Carperna, M.; Barral-Martinez, M.; Chamorro, F.; Jiménez-López, C.; Cassani, L.; Simal-Gandara, J.; Prieto, M.A. Emerging Technologies to Extract Fucoxanthin from Undaria pinnatifida: Microwave vs. Ultrasound Assisted Extractions. Mar. Drugs 2023, 21, 282. [Google Scholar] [CrossRef]
- Zhang, X.; Thomsen, M. Techno-Economic and Environmental Assessment of Novel Biorefinery Designs for Sequential Extraction of High-Value Biomolecules from Brown Macroalgae Laminaria digitata, Fucus vesiculosus, and Saccharina latissima. Algal Res. 2021, 60, 102499. [Google Scholar] [CrossRef]
- Couteau, C.; Coiffard, L. Seaweed Application in Cosmetics; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780128027936. [Google Scholar]
- Aslam, A.; Bahadar, A.; Liaquat, R.; Saleem, M.; Waqas, A.; Zwawi, M. Algae as an Attractive Source for Cosmetics to Counter Environmental Stress. Sci. Total Environ. 2021, 772, 144905. [Google Scholar] [CrossRef] [PubMed]
- Al-Momani, R.M.; Arabeyyat, Z.H.; Malkawi, E.E.; Al-Zibdah, M.K. Formulation and Evaluation of Herbal Antioxidant Face Cream Using Extract of the Marine Seaweed sargassum spp. (Phaeophyceae). J. Res. Pharm. 2022, 26, 828–833. [Google Scholar] [CrossRef]
- Barbosa, A.I.; Coutinho, A.J.; Costa Lima, S.A.; Reis, S. Marine Polysaccharides in Pharmaceutical Applications: Fucoidan and Chitosan as Key Players in the Drug Delivery Match Field. Mar. Drugs 2019, 17, 654. [Google Scholar] [CrossRef] [PubMed]
- Joye, I.J.; McClements, D.J. Biopolymer-Based Nanoparticles and Microparticles: Fabrication, Characterization, and Application. Curr. Opin. Colloid. Interface Sci. 2014, 19, 417–427. [Google Scholar] [CrossRef]
- Lebeer, S.; Oerlemans, E.; Claes, I.; Wuyts, S.; Henkens, T.; Spacova, I.; van den Broek, M.; Tuyaerts, I.; Wittouck, S.; De Boeck, I.; et al. Topical Cream with Live Lactobacilli Modulates the Skin Microbiome and Reduce Acne Symptoms. bioRxiv 2018, 463307. [Google Scholar] [CrossRef]
- Costa, J.R.; Neto, T.; Pedrosa, S.S.; Sousa, S.C.; Azevedo-Silva, J.; Tavares-Valente, D.; Mendes, A.; Pintado, M.E.; Fernandes, J.C.; Oliveira, A.L.S.; et al. Biogenic Silica Microparticles as a New and Sustainable Cosmetic Ingredient: Assessment of Performance and Quality Parameters. Colloids Surf. B Biointerfaces 2023, 226, 113305. [Google Scholar] [CrossRef]
- Schiavon, D.; Martini, D.N.; Brocco, G.; Santos, J.S.; Anzolin, A.P.; Rossato-Grando, L.G.; Omidian, H.; Bertol, C.D. Multifunctional Cosmetic Containing Blueberry and Tinosorb M®-Loaded Microparticles Improves Sunscreen Performance. Adv. Pharm. Bull. 2019, 9, 241–248. [Google Scholar] [CrossRef]
- Gilbert, L.; Picard, C.; Savary, G.; Grisel, M. Rheological and Textural Characterization of Cosmetic Emulsions Containing Natural and Synthetic Polymers: Relationships between Both Data. Colloids Surf. A Physicochem. Eng. Asp. 2013, 421, 150–163. [Google Scholar] [CrossRef]
- Houlden, R.J. Viscosity vs. Rheology: Why It Is Important to Formulators. Personal. Care 2017. [Google Scholar]
- Houlden, R.J. The Influence of Rheology on Sunscreen Performance and SPF—Are Highly Thixtotropic Products Not Providing Enough Protection? Househ. Personal. Care Today 2018, 13. [Google Scholar]
- Lafeuille, B.; Tamigneaux, É.; Berger, K.; Provencher, V.; Beaulieu, L. Variation of the Nutritional Composition and Bioactive Potential in Edible Macroalga Saccharina latissima Cultivated from Atlantic Canada Subjected to Different Growth and Processing Conditions. Foods 2023, 12, 1736. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, H.A.; Galbe, M.; Garrote, G.; Ramirez-Gutierrez, D.M.; Ximenes, E.; Sun, S.N.; Lachos-Perez, D.; Rodríguez-Jasso, R.M.; Sun, R.C.; Yang, B.; et al. Severity Factor Kinetic Model as a Strategic Parameter of Hydrothermal Processing (Steam Explosion and Liquid Hot Water) for Biomass Fractionation under Biorefinery Concept. Bioresour. Technol. 2021, 342, 125961. [Google Scholar] [CrossRef]
- Bogolitsyn, K.; Parshina, A.; Ivanchenko, N.; Polomarchuk, D. Seasonal Variations in the Chemical Composition of Arctic Brown Macroalgae. Algal Res. 2023, 72, 103112. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Mikkelsen, M.D.; Nguyen Tran, V.H.; Dieu Trang, V.T.; Rhein-Knudsen, N.; Holck, J.; Rasin, A.B.; Thuy Cao, H.T.; Thanh Van, T.T.; Meyer, A.S. Enzyme-Assisted Fucoidan Extraction from Brown Macroalgae Fucus distichus subsp. evanescens and Saccharina latissima. Mar. Drugs 2020, 18, 296. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.J.; Aida, W.M.W. Extraction of Sulfated Polysaccharides (Fucoidan) from Brown Seaweed. In Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 27–46. ISBN 9780128098165. [Google Scholar]
- Saravana, P.S.; Chun, B.S. Seaweed Polysaccharide Isolation Using Subcritical Water Hydrolysis; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128098172. [Google Scholar]
- Ummat, V.; Tiwari, B.K.; Jaiswal, A.K.; Condon, K.; Garcia-Vaquero, M.; O’Doherty, J.; O’Donnell, C.; Rajauria, G. Optimisation of Ultrasound Frequency, Extraction Time and Solvent for the Recovery of Polyphenols, Phlorotannins and Associated Antioxidant Activity from Brown Seaweeds. Mar. Drugs 2020, 18, 250. [Google Scholar] [CrossRef] [PubMed]
- Rhein-Knudsen, N.; Reyes-Weiss, D.; Horn, S.J. Extraction of High Purity Fucoidans from Brown Seaweeds Using Cellulases and Alginate Lyases. Int. J. Biol. Macromol. 2023, 229, 199–209. [Google Scholar] [CrossRef]
- Vasconcelos, M.M.M.; Marson, G.V.; Rioux, L.E.; Tamigneaux, E.; Turgeon, S.L.; Beaulieu, L. In Vitro Bioaccessibility of Proteins and Bioactive Compounds of Wild and Cultivated Seaweeds from the Gulf of Saint Lawrence. Mar. Drugs 2023, 21, 102. [Google Scholar] [CrossRef]
- Ferreira-Anta, T.; Flórez-Fernández, N.; Torres, M.D.; Mazón, J.; Dominguez, H. Microwave-Assisted Hydrothermal Processing of Rugulopteryx okamurae. Mar. Drugs 2023, 21, 319. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Álvarez-Viñas, M.; Guerreiro, F.; Torres, M.D.; Grenha, A.; Domínguez, H. Hydrothermal Processing of Laminaria Ochroleuca for the Production of Crude Extracts Used to Formulate Polymeric Nanoparticles. Mar. Drugs 2020, 18, 336. [Google Scholar] [CrossRef]
- Rani, V.; Shakila, R.J.; Jawahar, P.; Srinivasan, A. Influence of Species, Geographic Location, Seasonal Variation and Extraction Method on the Fucoidan Yield of the Brown Seaweeds of Gulf of Mannar, India. Indian. J. Pharm. Sci. 2017, 79, 65–71. [Google Scholar] [CrossRef]
- Moreira, A.S.P.; Gaspar, D.; Ferreira, S.S.; Correia, A.; Vilanova, M.; Perrineau, M.M.; Kerrison, P.D.; Gachon, C.M.M.; Domingues, M.R.; Coimbra, M.A.; et al. Water-Soluble Saccharina latissima Polysaccharides and Relation of Their Structural Characteristics with In Vitro Immunostimulatory and Hypocholesterolemic Activities. Mar. Drugs 2023, 21, 183. [Google Scholar] [CrossRef] [PubMed]
- Rioux, L.E.; Turgeon, S.L.; Beaulieu, M. Structural Characterization of Laminaran and Galactofucan Extracted from the Brown Seaweed Saccharina longicruris. Phytochemistry 2010, 71, 1586–1595. [Google Scholar] [CrossRef] [PubMed]
- Usoltseva, R.V.; Shevchenko, N.M.; Silchenko, A.S.; Anastyuk, S.D.; Zvyagintsev, N.V.; Ermakova, S.P. Determination of the Structure and In Vitro Anticancer Activity of Fucan from Saccharina dentigera and Its Derivatives. Int. J. Biol. Macromol. 2022, 206, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Neupane, S.; Bittkau, K.S.; Alban, S. Size Distribution and Chain Conformation of Six Different Fucoidans Using Size-Exclusion Chromatography with Multiple Detection. J. Chromatogr. A 2020, 1612, 460658. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.P.S.; Sanjeewa, K.A.; Samarakoon, K.W.; Lee, W.W.; Kim, H.-S.; Kim, E.-A.; Gunasekara, U.K.D.S.S.; Abeytunga, D.T.U.; Nanayakkara, C.; de Silva, E.D. FTIR Characterization and Antioxidant Activity of Water Soluble Crude Polysaccharides of Sri Lankan Marine Algae. Algae 2017, 32, 75–86. [Google Scholar] [CrossRef]
- Belattmania, Z.; Kaidi, S.; El Atouani, S.; Katif, C.; Bentiss, F.; Jama, C.; Reani, A.; Sabour, B.; Vasconcelos, V. Isolation and FTIR-ATR and 1H NMR Characterization of Alginates from the Main Alginophyte Species of the Atlantic Coast of Morocco. Molecules 2020, 25, 4335. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Q.; He, Y.; Ren, D.; Kow, F.; Li, J.; Liu, S.; Cong, H. The Positive Effects of Fucoidans Extracted from the Brown Seaweed Saccharina japonica on Protection against CCl4-Induced Liver Injury. J. Appl. Phycol. 2017, 29, 2077–2087. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Torres, M.D.; González-Muñoz, M.J.; Domínguez, H. Recovery of Bioactive and Gelling Extracts from Edible Brown Seaweed Laminaria ochroleuca by Non-Isothermal Autohydrolysis. Food Chem. 2019, 277, 353–361. [Google Scholar] [CrossRef]
- Torres, M.D.; Flórez-Fernández, N.; Domínguez, H. Monitoring of the Ultrasound Assisted Depolymerisation Kinetics of Fucoidans from Sargassum muticum Depending on the Rheology of the Corresponding Gels. J. Food Eng. 2021, 294, 110404. [Google Scholar] [CrossRef]
- Łętocha, A.; Miastkowska, M.; Sikora, E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymer 2022, 14, 3834. [Google Scholar] [CrossRef] [PubMed]
- Carvalho Pereira, K.; Caroline Souto Barcelos, M.; Fontes Alvarenga, G.; Santana Salvador Pereira, M.; Cristine Mota Ferreira, D.; Dutra de Carvalho Júnior, Á.; Santos, J.H.P.M.; Carneiro, G.; Gomes da Costa, J.M. An Investigation into the Stability of an Oregano Essential Oil Emulsion for the Preparation of Microparticles Using Spray Drying. J. Excip. Food Chem. 2022, 13, 99–105. [Google Scholar]
- Baltrusch, K.L.; Torres, M.D.; Domínguez, H.; Flórez-Fernández, N. Spray-Drying Microencapsulation of Tea Extracts Using Green Starch, Alginate or Carrageenan as Carrier Materials. Int. J. Biol. Macromol. 2022, 203, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Karas, J.; Pavloková, S.; Hořavová, H.; Gajdziok, J. Optimization of Spray Drying Process Parameters for the Preparation of Inhalable Mannitol-Based Microparticles Using a Box-Behnken Experimental Design. Pharmaceutics 2023, 15, 496. [Google Scholar] [CrossRef] [PubMed]
- Elfakhri, K.H.; Niu, M.; Ghosh, P.; Ramezanli, T.; Raney, S.G.; Ahmed, S.; Willett, D.R.; Yilmaz, H.; Ashraf, M.; Zidan, A.S. Physicochemical and Structural Evaluation of Microparticles in Tretinoin Topical Gels. Int. J. Pharm. 2022, 620, 121748. [Google Scholar] [CrossRef]
- Ostwald, W. Ueber die Geschwindigkeitsfunktion der Viskosität Disperser Systeme. I. Kolloid-Zeitschrift 1925, 36, 99–117. [Google Scholar] [CrossRef]
- Silva, C.; Torres, M.D.; Chenlo, F.; Moreira, R. Rheology of Aqueous Mixtures of Tragacanth and Guar Gums: Effects of Temperature and Polymer Ratio. Food Hydrocoll. 2017, 69, 293–300. [Google Scholar] [CrossRef]
- Forbes, F.S.; Van Splinter, P.A. Liquid Rocket Propellants. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; pp. 741–777. ISBN 978-0-12-227410-7. [Google Scholar]
- Adekunte, A.O.; Tiwari, B.K.; Cullen, P.J.; Scannell, A.G.M.; O’Donnell, C.P. Effect of Sonication on Colour, Ascorbic Acid and Yeast Inactivation in Tomato Juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Torres, M.D.; Flórez-Fernández, N.; Dominguez, H. Ultrasound-Assisted Water Extraction of Mastocarpus stellatus Carrageenan with Adequate Mechanical and Antiproliferative Properties. Mar. Drugs 2021, 19, 280. [Google Scholar] [CrossRef]
- Torres, M.D.; Flórez-Fernández, N.; Domínguez, H. Chondrus crispus Treated with Ultrasound as a Polysaccharides Source with Improved Antitumoral Potential. Carbohydr. Polym. 2021, 273, 118588. [Google Scholar] [CrossRef]
- Latimer, G.W. Official Methods of Analysis of AOAC International; Oxford University Press: New York, NY, USA, 2023. [Google Scholar]
- Lourenço, S.O.; Barbarino, E.; De-Paula, J.C.; Pereira, L.O.d.S.; Marquez, U.M.L. Amino Acid Composition, Protein Content and Calculation of Nitrogen-to-Protein Conversion Factors for 19 Tropical Seaweeds. Phycol. Res. 2002, 50, 233–241. [Google Scholar] [CrossRef]
- Queffelec, J.; Flórez-Fernández, N.; Dominguez, H.; Torres, M.D. Microwave Hydrothermal Processing of Undaria pinnatifida for Bioactive Peptides. Bioresour. Technol. 2021, 342, 125882. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Dodgson, K.S. Determination of Inorganic Sulphate in Studies on the Enzymic and Non-Enzymic Hydrolysis of Carbohydrate and Other Sulphate Esters. Biochem. J. 1961, 78, 312–319. [Google Scholar] [CrossRef]
- Koivikko, R.; Loponen, J.; Honkanen, T.; Jormalainen, V. Contents of Solubre, Cell-Wall-Bound and Exuded Phlorotannins in the Brown Alga Fucus vesiculosus, with Implications on Their Ecological Functions. J. Chem. Ecol. 2005, 31, 195–212. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- López-Hortas, L.; Falqué, E.; Domínguez, H.; Torres, M.D. Microwave Hydrodiffusion and Gravity versus Conventional Distillation for Acacia dealbata Flowers. Recovery of Bioactive Extracts for Cosmetic Purposes. J. Clean. Prod. 2020, 274, 123143. [Google Scholar] [CrossRef]
Fraction | % | Fraction | mg/kg |
---|---|---|---|
Moisture | 10.98 ± 0.14 | Minerals | |
Ash | 13.15 ± 0.02 | Na | 12,898.2 |
Protein | 5.50 ± 0.26 | K | 22,175.1 |
Sulphate | 1.38 ± 0.23 | Mg | 4838.0 |
AIR * | 15.77 ± 0.34 | Ca | 9932.5 |
B | 85.4 | ||
Carbohydrates | Fe | 112.2 | |
Glucose | 47.84 ± 0.48 | Cu | 3.1 |
Xylose | 3.01 ± 0.09 | Cd | 0.02 |
Fucose | 1.67 ± 0.04 | Pb | 0.02 |
Glucuronic acid | 1.20 ± 0.05 | Hg | 0.01 |
As | 5.49 |
MP SL 240 | Mannitol | Alginate |
---|---|---|
Yield (%) | 59.24 ± 1.12 a | 60.42 ± 1.68 a |
Loading capacity (%) | 86.17 ± 1.28 a | 84.52 ± 1.55 a |
Matrices | Cream with MP–SL–Mannitol | Cream with MP–SL–Alginate | ||||
---|---|---|---|---|---|---|
Parameters | k (Pa sn) | n (−) | R2 | k (sn) | n (−) | R2 |
Control, 25 °C without MP | 210.1 ± 0.3 b | 0.12 ± 0.01 a | 0.995 | 210.3 ± 0.1 b | 0.11 ± 0.01 a | 0.995 |
5 °C | 300.7 ± 0.5 a | 0.13 ± 0.01 a | 0.992 | 402.8 ± 1.3 a | 0.11 ± 0.01 a | 0.991 |
25 °C | 151.2 ± 0.4 c | 0.13 ± 0.01 a | 0.990 | 122.3 ± 0.9 c | 0.11 ± 0.01 a | 0.992 |
35 °C | 110.1 ± 0.4 d | 0.12 ± 0.01 a | 0.993 | 53.2 ± 0.5 d | 0.10 ± 0.01 a | 0.990 |
45 °C | 75.5 ± 0.1 e | 0.12 ± 0.01 a | 0.991 | 25.4 ± 0.6 e | 0.10 ± 0.01 a | 0.993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flórez-Fernández, N.; Ferreira-Anta, T.; Queffelec, J.; Ingrez, I.B.; Buján, M.; Muiños, A.; Domínguez, H.; Torres, M.D. Biocosmetics Made with Saccharina latissima Fractions from Sustainable Treatment: Physicochemical and Thermorheological Features. Mar. Drugs 2023, 21, 618. https://doi.org/10.3390/md21120618
Flórez-Fernández N, Ferreira-Anta T, Queffelec J, Ingrez IB, Buján M, Muiños A, Domínguez H, Torres MD. Biocosmetics Made with Saccharina latissima Fractions from Sustainable Treatment: Physicochemical and Thermorheological Features. Marine Drugs. 2023; 21(12):618. https://doi.org/10.3390/md21120618
Chicago/Turabian StyleFlórez-Fernández, Noelia, Tania Ferreira-Anta, Julie Queffelec, Isa B. Ingrez, Manuela Buján, Antonio Muiños, Herminia Domínguez, and María Dolores Torres. 2023. "Biocosmetics Made with Saccharina latissima Fractions from Sustainable Treatment: Physicochemical and Thermorheological Features" Marine Drugs 21, no. 12: 618. https://doi.org/10.3390/md21120618
APA StyleFlórez-Fernández, N., Ferreira-Anta, T., Queffelec, J., Ingrez, I. B., Buján, M., Muiños, A., Domínguez, H., & Torres, M. D. (2023). Biocosmetics Made with Saccharina latissima Fractions from Sustainable Treatment: Physicochemical and Thermorheological Features. Marine Drugs, 21(12), 618. https://doi.org/10.3390/md21120618