Identification of Bioactive Peptides from a Laminaria digitata Protein Hydrolysate Using In Silico and In Vitro Methods to Identify Angiotensin-1-Converting Enzyme (ACE-1) Inhibitory Peptides
Abstract
:1. Introduction
2. Results
2.1. Identification of Peptides Using Mass Spectrophometery and In Silico Analysis of Sequenced Peptides
2.1.1. Peptide Ranker
2.1.2. BIOPEP
2.1.3. Simulated Digestion Using Peptide Cutter
2.1.4. Toxicity Assessment Using In Silico Analysis
2.1.5. Peptide Synthesis and ACE-1 Inhibition
3. Discussion
4. Materials and Methods
4.1. Mass Spectrophotometry (MS) Characterisation of 3kDa Permeates
4.2. In Silico Analysis of MS Sequenced Peptides
4.3. ACE-1 Inhibitory Activity Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ondetti, M.F.; Cushman, D.W. Enzymes of the renin-angiotensin system and their inhibitors. Annu. Rev. Biochem. 1982, 51, 283–308. [Google Scholar] [CrossRef]
- He, Z.; Liu, G.; Qiao, Z.; Cao, Y.; Song, M. Novel Angiotensin-I Converting Enzyme Inhibitory Peptides Isolated from Rice Wine Lees: Purification, Characterization, and Structure-Activity Relationship. Front. Nutr. 2021, 8, 746113. [Google Scholar] [CrossRef]
- Lafarga, T.; O’Connor, P.; Hayes, M. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides 2014, 59, 53–62. [Google Scholar] [CrossRef]
- Goossens, G.H. The Renin-Angiotensin System in the Pathophysiology of Type 2 Diabetes. Obes. Facts 2012, 5, 611–624. [Google Scholar] [CrossRef]
- Wang, Y.; Tikellis, C.; Thomas, M.C.; Golledge, J. Angiotensin converting enzyme 2 and atherosclerosis. Atherosclerosis 2013, 226, 3–8. [Google Scholar] [CrossRef]
- Hayes, M. Food Proteins and Bioactive Peptides: New and Novel Sources, Characterisation Strategies and Applications. Foods 2018, 7, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, M. Bioactive Peptides in Preventative Healthcare: An Overview of Bioactivities and Suggested Methods to Assess Potential Applications. Curr. Pharm. Des. 2021, 27, 1332–1341. [Google Scholar] [CrossRef] [PubMed]
- Purcell, D.; Packer, M.A.; Hayes, M. Angiotensin-I-Converting Enzyme Inhibitory Activity of Protein Hydrolysates Generated from the Macroalga Laminaria digitata (Hudson) JV Lamouroux 1813. Foods 2022, 11, 1792. [Google Scholar] [CrossRef] [PubMed]
- Soffer, R.L. Angiotensin-Converting Enzyme and the Regulation of Vasoactive Peptides. Annu. Rev. Biochem. 1976, 45, 73–94. [Google Scholar] [CrossRef] [PubMed]
- Julius, S.; Nesbitt, S.D.; Egan, B.M.; Weber, M.A.; Michelson, E.L.; Kaciroti, N.; Black, H.R.; Grimm, R.H.; Messerli, F.H.; Oparil, S.; et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N. Engl. J. Med. 2006, 354, 1685–1697. [Google Scholar] [CrossRef]
- Bhuyan, B.J.; Mugesh, G. Synthesis, characterization and antioxidant activity of angiotensin converting enzyme inhibitors. Org. Biomol. Chem. 2011, 9, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Osterziel, K.J.; Dietz, R.; Harder, K.; Kübler, W. Comparison of captopril with enalapril in the treatment of heart failure: Influence on hemodynamics and measures of renal function. Cardiovasc. Drugs Ther. 1992, 6, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Alan, S.L.A.; Yu, M.B.; Chir, B. Renovascular Hypertension and Ischemic Nephropathy. In Brenner & Rector’s the Kidney; Chertow, G., Luyckx, V., Marsden, P., Skorecki, K., Maarten, M., Yu, A., Eds.; Elsevier, Inc.: Philadelphia, PA, USA, 2020; pp. 1580–1621. [Google Scholar]
- Lordan, S.; Ross, R.P.; Stanton, C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar. Drugs 2011, 9, 1056–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijesekara, I.; Kim, S.-K. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Mar. Drugs 2010, 8, 1080–1093. [Google Scholar] [CrossRef] [Green Version]
- Seca, A.M.L.; Pinto, D.C.G.A. Overview on the Antihypertensive and Anti-Obesity Effects of Secondary Metabolites from Seaweeds. Mar. Drugs 2018, 16, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pujiastuti, D.Y.; Ghoyatul Amin, M.N.; Alamsjah, M.A.; Hsu, J.-L. Marine Organisms as Potential Sources of Bioactive Peptides that Inhibit the Activity of Angiotensin I-Converting Enzyme: A Review. Molecules 2019, 24, 2541. [Google Scholar] [CrossRef] [Green Version]
- Nagappan, H.; Pee, P.P.; Kee, S.H.Y.; Ow, J.T.; Yan, S.W.; Chew, L.Y.; Kong, K.W. Malaysian brown seaweeds Sargassum siliquosumnand Sargassum polycystum: Low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE)—Amylase, and-glucosidase inhibition activities. Food Res. Int. 2017, 99 Pt 2, 950–958. [Google Scholar] [CrossRef]
- Hata, Y.; Nakajima, K.; Uchida, J.-I.; Hidaka, H.; Nakano, T. Clinical Effects of Brown Seaweed, Undaria pinnatifida (wakame) on Blood Pressure in Hypertensive Subjects. J. Clin. Biochem. Nutr. 2001, 30, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Vermeirssen, V.; van der Bent, A.; Van Camp, J.; van Amerongen, A.; Verstraete, W. A quantitative in silico analysis calculates the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests. Biochimie 2004, 86, 231–239. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Gong, M.; Wu, S. In silico analysis of the large and small subunits of cereal RuBisCO as precursors of cryptic bioactive peptides. Process Biochem. 2013, 48, 1794–1799. [Google Scholar] [CrossRef]
- Hashemi, Z.S.; Zarei, M.; Fath, M.K.; Ganji, M.; Farahani, M.S.; Afsharnouri, F.; Pourzardosht, N.; Khalesi, B.; Jahangiri, A.; Rahbar, M.R.; et al. In silico Approaches for the Design and Optimization of Interfering Peptides Against Protein–Protein Interactions. Front. Mol. Biosci. 2021, 8, 669431. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Jiang, H.; Lu, Y.; Chen, W.; Huang, G. Identification and in silico analysis of anti-thrombotic peptides from the enzymatic hydrolysates of Tenebrio molitor larvae. Eur. Food Res. Technol. 2019, 245, 2687–2695. [Google Scholar] [CrossRef]
- Zengin, G.; Stefanucci, A.; Rodrigues, M.J.; Mollica, A.; Custodio, L.; Aumeeruddy, M.Z.; Mahomoodally, M.F. Scrophularia lucida L. as a valuable source of bioactive compounds for pharmaceutical applications: In vitro anti-oxidant, anti-inflammatory, enzyme inhibitory properties, in silico studies, and HPLC profiles. J. Pharm. Biomed. Anal. 2019, 162, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.; Stanton, C.; Slattery, H.; O’Sullivan, O.; Hill, C.; Fitzgerald, G.F.; Ross, R.P. Casein fermentate of Lactobacillus animalis DPC6134 contains a range of novel propeptide angiotensin-converting enzyme inhibitors. Appl. Environ. Microbiol. 2007, 73, 4658–4667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cian, R.E.; Nardo, A.E.; Garzón, A.G.; Añon, M.C.; Drago, S.R. Identification and in silico study of a novel dipeptidyl peptidase IV inhibitory peptide derived from green seaweed Ulva spp. hydrolysates. LWT 2022, 154, 112738. [Google Scholar] [CrossRef]
- Díaz-Gómez, J.L.; Neundorf, I.; López-Castillo, L.-M.; Castorena-Torres, F.; Serna-Saldívar, S.O.; García-Lara, S. In Silico Analysis and In Vitro Characterization of the Bioactive Profile of Three Novel Peptides Identified from 19 kDa α-Zein Sequences of Maize. Molecules 2020, 25, 5405. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, M.; Chen, F. Prediction and analysis of anti-microbial peptides from rapeseed protein using in silico approach. J. Food Biochem. 2021, 45, e13598. [Google Scholar] [CrossRef]
- Consortium, T.U. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2020, 49, D480–D489. [Google Scholar] [CrossRef] [PubMed]
- Mooney, C.; Haslam, N.J.; Pollastri, G.; Shields, D.C. Towards the Improved Discovery and Design of Functional Peptides: Common Features of Diverse Classes Permit Generalized Prediction of Bioactivity. PLoS ONE 2012, 7, e45012. [Google Scholar] [CrossRef] [Green Version]
- Mora, L.; González-Rogel, D.; Heres, A.; Toldrá, F. Iberian dry-cured ham as a potential source of α-glucosidase-inhibitory peptides. J. Funct. Foods 2020, 67, 103840. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, M.; Shi, J.; Wang, J.; Jiang, Y.; Cui, C.; Kakuda, Y.; Xue, S.J. Purification and identification of anti-oxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 2008, 108, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Rajapakse, N.; Mendis, E.; Byun, H.-G.; Kim, S.-K. Purification and in vitro anti-oxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem. 2005, 16, 562–569. [Google Scholar] [CrossRef]
- Ziganshin, R.H.; Svieryaev, V.I.; Vas’kovskiĭ, B.V.; Mikhaleva, I.I.; Ivanov, V.T.; Kokoz, Y.M.; Alekseev, A.E.; Korystova, A.F.; Sukhova, G.S.; Emel’ianova, T.G.; et al. Biologically active peptides isolated from the brain of hibernating ground squirrels. Bioorg. Khim. 1994, 20, 899–918. [Google Scholar]
- Wu, J.; Aluko, R.E.; Nakai, S. Structural requirements of Angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship study of di- and tripeptides. J. Agric. Food Chem. 2006, 54, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Lan, V.T.; Ito, K.; Ohno, M.; Motoyama, T.; Ito, S.; Kawarasaki, Y. Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor. Food Chem. 2015, 175, 66–73. [Google Scholar] [CrossRef]
- Qian, Z.J.; Je, J.Y.; Kim, S.K. Anti-hypertensive effect of angiotensin i converting enzyme-inhibitory peptide from hydrolysates of Bigeye tuna dark muscle, Thunnus obesus. J Agric. Food Chem. 2007, 55, 8398–8403. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.G.; Kim, S.K. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan pollack skin. J. Biochem. Mol. Biol. 2002, 35, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Nogata, Y.; Nagamine, T.; Yanaka, M.; Ohta, H. Angiotensin I Converting Enzyme Inhibitory Peptides Produced by Autolysis Reactions from Wheat Bran. J. Agric. Food Chem. 2009, 57, 6618–6622. [Google Scholar] [CrossRef]
- Forghani, B.; Zarei, M.; Ebrahimpour, A.; Philip, R.; Bakar, J.; Abdul Hamid, A.; Saari, N. Purification and characterization of angiotensin converting enzyme-inhibitory peptides derived from Stichopus horrens: Stability study against the ACE and inhibition kinetics. J. Funct. Foods 2016, 20, 276–290. [Google Scholar] [CrossRef]
- Dhanda, S.; Singh, J.; Singh, H. Hydrolysis of various bioactive peptides by goat brain dipeptidylpeptidase-III homologue. Cell Biochem. Funct. 2008, 26, 339–345. [Google Scholar] [CrossRef]
- Cruz-Chamorro, I.; Santos-Sánchez, G.; Bollati, C.; Bartolomei, M.; Li, J.; Arnoldi, A.; Lammi, C. Hempseed (Cannabis sativa) Peptides WVSPLAGRT and IGFLIIWV Exert Anti-inflammatory Activity in the LPS-Stimulated Human Hepatic Cell Line. J. Agric. Food Chem. 2022, 70, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Ringseis, R.; Matthes, B.; Lehmann, V.; Becker, K.; Schöps, R.; Ulbrich-Hofmann, R.; Eder, K. Peptides and hydrolysates from casein and soy protein modulate the release of vasoactive substances from human aortic endothelial cells. Biochim. Biophys. Acta 2005, 1721, 89–97. [Google Scholar] [CrossRef]
- Cheung, H.-S.; Wang, F.-L.; Ondetti, M.A.; Sabo, E.F.; Cushman, D.W. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 1980, 255, 401–407. [Google Scholar] [PubMed]
- Huang, T.F.; Holt, J.C.; Lukasiewicz, H.; Niewiarowski, S. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J. Biol. Chem. 1987, 262, 16157–16163. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [Green Version]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.E.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Open Source Drug Discovery, C.; Raghava, G.P.S. In Silico Ap-proach for Predicting Toxicity of Peptides and Proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef] [Green Version]
- Henda, Y.B.; Labidi, A.; Arnaudin, I.; Bridiau, N.; Delatouche, R.; Maugard, T.; Piot, J.-M.; Sannier, F.; Thiéry, V.; Bordenave-Juchereau, S. Measuring Angiotensin-I Converting Enzyme Inhibitory Activity by Micro Plate Assays: Comparison Using Marine Cryptides and Tentative Threshold Determinations with Captopril and Losartan. J. Agr. Food Chem. 2013, 61, 10685–10690. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.R.; Wu, Y.; Xia, W. Comparison of analytical methods to assay inhibitors of angiotensin I-converting enzyme. Food Chem. 2013, 141, 3329–3334. [Google Scholar] [CrossRef]
- Lafarga, T.; Rai, D.K.; O’Connor, P.; Hayes, M. Generation of Bioactive Hydrolysates and Peptides from Bovine Hemoglobin with In Vitro Renin, Angiotensin-I-Converting Enzyme and Dipeptidyl Peptidase-IV Inhibitory Activities. J. Food Biochem. 2016, 40, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-C.; Wang, J.; Zheng, B.-D.; Pang, J.; Chen, L.-J.; Lin, H.-T.; Guo, X. Simultaneous Determination of 8 Small Anti-hypertensive Peptides with Tyrosine at the C-Terminal in Laminaria japonica Hydrolysates by RP-HPLC Method. J. Food Process. Preserv. 2016, 40, 492–501. [Google Scholar] [CrossRef]
- Annane, D.; Ouanes-Besbes, L.; de Backer, D.; Du, B.; Gordon, A.C.; Hernández, G.; Olsen, K.M.; Osborn, T.M.; Peake, S.; Russell, J.A.; et al. A global perspective on vasoactive agents in shock. Intensive Care Med. 2018, 44, 833–846. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.; Mora, L.; Lucakova, S. Identification of Bioactive Peptides from Nannochloropsis oculata Using a Combination of Enzymatic Treatment, in Silico Analysis and Chemical Synthesis. Biomolecules 2022, 12, 1806. [Google Scholar] [CrossRef] [PubMed]
- Måge, I.; Böcker, U.; Wubshet, S.; Lindberg, D.; Afseth, N. Fourier-transform infrared (FTIR) fingerprinting for quality assessment of protein hydrolysates. LWT 2021, 152, 112339. [Google Scholar] [CrossRef]
Cleaved Peptide Sequence | Peptide Ranker Value (Accessed on 10 December 2022), (#) |
---|---|
IGNNPAKGGLF | 0.82 |
YIGNNPAKGGLF | 0.81 |
DAALDFGPAL | 0.78 |
AFYDYIGNNPAKGGLF | 0.78 |
SDGKIFDPL | 0.74 |
YDYIGNNPAKGGLF | 0.73 |
QGRVPGDIGFDPL | 0.67 |
SMSGHPGAPM | 0.65 |
SEFIGFPIK | 0.64 |
GDFGNKDGKLTF | 0.64 |
Parent Protein Name and UniProt Accession Number | Peptide Single Amino Acid Sequence | f(X–X) of Parent Protein | Peptide Ranker Value 1 | Novelty (Found in BIOPEP 2 Database) | Observed Bioactivity | Simulated Digestion Using PeptideCutter 3/Peptide Digestion Fragments | Associated Predicted Bioactivities | References |
---|---|---|---|---|---|---|---|---|
Neopyriopia yezoensis NCBI Taxonomy ID 2788 Photosystem II CP47 reaction centre protein UniProtKB_Q1XDG4 (PBSS_NCOYE) | IGNNPAKGGLF | f(315–326) | 0.82 | Novel | ACE-1 inhibition | IGNNPAK; GGL; F | (GGL) Antimicrobial activity; Alpha-glucosidase inhibition | [31] |
Porphyra purpurea NCBI Taxonomy ID P51322 Photosystem II CP47 reaction centre protein UniProtKB_P51322 (PSBB_PORPU) | YIGNNPAKGGLF | f(314–326) | 0.81 | Novel | ACE-1 inhibition | Y; IGNNPAK; GGL; F | Antimicrobial; Alpha-glucosidase inhibition | [31] |
Pseudooceanicola algae OX = 1537215 UniProt KB-A0A4185KT7_9RHOB | DAALDFGPAL | f(53–62) | 0.78 | Novel | ACE-1 inhibition | DAA; L; D; F; GPAL | Antimicrobial | [32] |
Neopyropia yezoensis (Susabi-nori) (Pyropia yezoensis) UniProtKB-Q1XDG4 (PSBB_NEOYE) Photosystem II CP47 reaction centre protein | AFYDYIGNNPAKGGLF | f(310–325) | 0.78 | Novel | ACE-1 inhibition | A; F; Y; DY; IGNNPAK; GGL; F | Antimicrobial; Alpha-glucosidase inhibition; ACE inhibitor | [33,34] |
Ectocarpus species CCAP UniProtKB_A0A6H5TY18 (A0A6H5J418_9PHAE) LHCP protein | SDGKIFDPL | f(57–65) | 0.74 | Novel | ACE-1 inhibition | SDGK; I; F; DP; L | Dipeptidyl peptidase IV inhibitor; ACE inhibitor | [35,36] |
Neopyropia yezoensis Photosystem II CP47 reaction centre protein PSbB UniProtKB_Q1XDG4 | YDYIGNNPAKGGLF | f(312–325) | 0.73 | Novel | ACE-1 inhibition | Y; DY; IGNNPAK; GGL; F | Alpha glucosidase inhibition; ACE inhibitor; Antimicrobial | [31,34] |
Ectocarpus sp. CCAP 1310/34 Uncharacterised protein UniProtKB-A0A6HSJUW7_9PHAE | QGRVPGDIGFDPL | f(151–163) | 0.67 | Novel | ACE-1 inhibition | QGR; VPGDIG; F; D; PL | Antimicrobial (QGR); ACE inhibitor; (PL) ACE inhibitor | [37,38,39] |
Ectocarpus sp. CCAP 131-/34 Transketolase_1_domain containing protein UniProtKB_10A6H5L712_9PHAE | SMSGHPGAPM | f(37–46) | 0.65 | Novel | ACE-1 inhibition | SM; SGHPGAPM | DPP-III inhibitor (SM) | [40] |
Ectocarpus sp. CCAP 131/34 HSP90 protein UniProtKB-A0H6H5L026_9PHAE | SEFIGFPIK | f(208–216) | 0.64 | Novel | ACE-1 inhibition | SE; F; IGF; PIK | Anti-inflammatory (IGF); Antimicrobial (PIK); Stimulating vasoactive substance release (SE) | [41,42] |
Ectocarpus siliculosus (Brown algae) Manganese stabilising protein UniProtKB-D8LG03 | GDFGNKDGKLTF | f(161–172) | 0.64 | Novel | ACE-1 inhibition | GD; F; GNK; DGK; L; TF | ACE inhibitor (GD); Fibrinogen interaction inhibitor (GNK-part of a peptide called Arietin); ACE inhibitor (TF) | [43,44,45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purcell, D.; Packer, M.A.; Hayes, M. Identification of Bioactive Peptides from a Laminaria digitata Protein Hydrolysate Using In Silico and In Vitro Methods to Identify Angiotensin-1-Converting Enzyme (ACE-1) Inhibitory Peptides. Mar. Drugs 2023, 21, 90. https://doi.org/10.3390/md21020090
Purcell D, Packer MA, Hayes M. Identification of Bioactive Peptides from a Laminaria digitata Protein Hydrolysate Using In Silico and In Vitro Methods to Identify Angiotensin-1-Converting Enzyme (ACE-1) Inhibitory Peptides. Marine Drugs. 2023; 21(2):90. https://doi.org/10.3390/md21020090
Chicago/Turabian StylePurcell, Diane, Michael A. Packer, and Maria Hayes. 2023. "Identification of Bioactive Peptides from a Laminaria digitata Protein Hydrolysate Using In Silico and In Vitro Methods to Identify Angiotensin-1-Converting Enzyme (ACE-1) Inhibitory Peptides" Marine Drugs 21, no. 2: 90. https://doi.org/10.3390/md21020090
APA StylePurcell, D., Packer, M. A., & Hayes, M. (2023). Identification of Bioactive Peptides from a Laminaria digitata Protein Hydrolysate Using In Silico and In Vitro Methods to Identify Angiotensin-1-Converting Enzyme (ACE-1) Inhibitory Peptides. Marine Drugs, 21(2), 90. https://doi.org/10.3390/md21020090