Isolation, Structure Elucidation, and First Total Synthesis of Quinomycins K and L, Two New Octadepsipeptides from the Maowei Sea Mangrove-Derived Streptomyces sp. B475
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Actinomycetia Material
3.3. Fermentation, Extraction, and Isolation
3.4. ECD Calculation of Compound 1
3.5. Advanced Marfey’s Analysis of Compounds 1-2
3.6. The Synthesis of 1 and 2
3.6.1. N-Cbz-d-Ser[N-Boc-N-Me-l-Abu -N-Me-l-Val]-OAll (6)
3.6.2. N-Cbz-d-Ser[N-Boc-l-Ala-N-Boc-N-Me-l-Abu-N-Me-l-Val]-OAll (7)
3.6.3. N-Cbz-d-Ser[N-Boc-l-Ala-N-Boc-N-Me-l-Abu-N-Me-l-Val]-OH (8)
3.6.4. N-Cbz-d-Ser[N-Cbz-d-Ser(N-Boc-l-Ala-N-Boc-N-Me-l-Abu-N-Me-l-Val)-l-Ala-N-Boc-N-Me-l-Abu-N-Me-l-Val]-OAll (9)
3.6.5. Cbz-Cyclic Peptide (10)
3.6.6. Cyclic Peptide (1)
3.6.7. N-Cbz-d-Ser(N-Boc-N-Me-O-Bn-l-Ser-N-Me-l-Val)-OAll (11)
3.6.8. N-Cbz-d-Ser[N-Boc-N-l-Ala-N-Boc-N-Me-O-Bn-l-Ser-N-Me-l-Val]-OAll (12)
3.6.9. N-Cbz-d-Ser(N-Boc-l-Ala-N-Boc-N-Me-O-Bn-l-Ser-N-Me-l-Val)-OH (13)
3.6.10. N-Cbz-d-Ser[N-Cbz-d-Ser(N-Boc-l-Ala-N-Boc-N-Me-l-Abu-N-Me-l-Val)- l-Ala-N-Boc-N-Me-l-Abu-N-Me-l-Val]-OAll (14)
3.6.11. Cbz-Cyclic Peptide (15)
3.6.12. Cyclic Peptide (2)
3.7. Biological Activity Test
3.7.1. Antibacterial Assay
3.7.2. Cytotoxicity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, D.B.; Ye, W.W.; Han, Y.; Deng, Z.X.; Hong, K. Natural products from mangrove actinomycetes. Mar. Drugs 2014, 12, 2590–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azman, A.S.; Othman, I.; Velu, S.S.; Chan, K.G.; Lee, L.H. Mangrove rare actinobacteria: Taxonomy, natural compound, and discovery of bioactivity. Front. Microbiol. 2015, 6, 856. [Google Scholar] [CrossRef] [PubMed]
- Law, J.W.; Law, L.N.; Letchumanan, V.; Tan, L.T.; Wong, S.H.; Chan, K.G.; Ab Mutalib, N.S.; Lee, L.H. Anticancer Drug Discovery from Microbial Sources: The Unique Mangrove Streptomycetes. Molecules 2020, 25, 5365. [Google Scholar] [CrossRef] [PubMed]
- Li, K.L.; Chen, S.Q.; Pang, X.Y.; Cai, J.; Zhang, X.Y.; Liu, Y.H.; Zhu, Y.G.; Zhou, X.F. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur. J. Med. Chem. 2022, 230, 114117. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.J.; Jian, Q.Y.; Zhang, P.; Lu, Y.J.; Liu, H.Q. Tidal variation shaped microplastic enrichment patterns in mangrove blue carbon ecosystem of northern Beibu Gulf, China. Front. Mar. Sci. 2022, 9, 927884. [Google Scholar] [CrossRef]
- Li, F.N.; Liu, S.W.; Lu, Q.P.; Zheng, H.Y.; Osterman, I.A.; Lukyanov, D.A.; Sergiev, P.V.; Dontsova, O.A.; Liu, S.S.; Ye, J.J.; et al. Studies on antibacterial activity and diversity of cultivable actinobacteria isolated from mangrove soil in futian and maoweihai of China. Evid. Based Complement. Altern. Med. 2019, 2019, 3476567. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.P.; Ye, J.J.; Huang, Y.M.; Liu, D.; Liu, L.F.; Dong, K.; Razumova, E.A.; Osterman, I.A.; Sergiev, P.V.; Dontsova, O.A.; et al. Exploitation of potentially new antibiotics from mangrove actinobacteria in Maowei Sea by combination of multiple discovery strategies. Antibiotics 2019, 8, 236. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.K.; Tuo, L.; Huang, D.L.; Osterman, I.A.; Tyurin, A.P.; Liu, S.W.; Lukyanov, D.A.; Sergiev, P.V.; Dontsova, O.A.; Korshun, V.A.; et al. Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria from Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China. Front. Microbiol. 2018, 9, 868. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.K.; Hu, X.X.; Xiao, L.L.; Ren, Y.R.; Shakhtina, A.N.; Lukianov, D.A.; Osterman, I.A.; Sergiev, P.V.; Dontsova, O.A.; Wang, H.; et al. Beilunmycin, a new virginiamycins antibiotic from mangrove-derived Streptomyces sp. 2BBP-J2 and the antibacterial activity by inhibiting protein translation. J. Asian Nat. Prod. Res. 2020, 23, 992–1000. [Google Scholar] [CrossRef]
- Jiang, Z.K.; Pan, Z.; Li, F.N.; Li, X.J.; Liu, S.W.; Tuo, L.; Jiang, M.G.; Sun, C.H. Marmoricola endophyticus sp. nov., an endophytic actinobacterium isolated from Thespesia populnea. Int. J. Syst. Evol. Microbiol. 2017, 67, 4379–4384. [Google Scholar] [CrossRef]
- Lu, Q.P.; Huang, Y.M.; Liu, S.W.; Wu, G.; Yang, Q.; Liu, L.F.; Zhang, H.T.; Qi, Y.; Wang, T.; Jiang, Z.K.; et al. Metabolomics Tools Assisting Classic Screening Methods in Discovering New Antibiotics from Mangrove Actinomycetia in Leizhou Peninsula. Mar. Drugs 2021, 19, 688. [Google Scholar] [CrossRef]
- Zolova, O.E.; Mady, A.S.A.; Garneau-Tsodikova, S. Recent developments in bisintercalator natural products. Biopolymers 2010, 93, 777–790. [Google Scholar] [CrossRef]
- Dawson, S.; Malkinson, J.P.; Paumier, D.; Searcey, M. Bisintercalator natural products with potential therapeutic applications: Isolation, structure determination, synthetic and biological studies. Nat. Prod. Rep. 2007, 24, 109–126. [Google Scholar] [CrossRef]
- Hattori, K.; Koike, K.; Okuda, K.; Hirayama, T.; Ebihara, M.; Takenaka, M.; Nagasawa, H. Solution-phase synthesis and biological evaluation of triostin A and its analogues. Org. Biomol. Chem. 2016, 14, 2090–2111. [Google Scholar] [CrossRef]
- Koike, K.; Nagano, M.; Ebihara, M.; Hirayama, T.; Tsuji, M.; Suga, H.; Nagasawa, H. Design, Synthesis, and Conformation-Activity Study of Unnatural Bridged Bicyclic Depsipeptides as Highly Potent Hypoxia Inducible Factor-1 Inhibitors and Antitumor Agents. J. Med. Chem. 2020, 63, 4022–4046. [Google Scholar] [CrossRef]
- Yang, Z.J.; Shao, L.; Wang, M.X.; Rao, M.; Ge, M.; Xu, Y.X. Two novel quinomycins discovered by UPLC-MS from Stretomyces sp. HCCB11876. J. Antibiot. 2019, 72, 164–168. [Google Scholar] [CrossRef]
- Zhen, X.; Gong, T.; Liu, F.; Zhang, P.C.; Zhou, W.Q.; Li, Y.; Zhu, P. A New Analogue of Echinomycin and a New Cyclic Dipeptide from a Marine-Derived Streptomyces sp. LS298. Mar. Drugs 2015, 13, 6947–6961. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, Y.; Sone, R.; Aoki, H.; Kimata, S. Quinomycins H1 and H2, new cytotoxic antibiotics from Streptomyces sp. RAL404. J. Antibiot. 2018, 71, 898–901. [Google Scholar] [CrossRef]
- Otsuka, H.; Shoji, J.; Kawano, K.; Kyogoku, Y. Structure confirmation of triostin a by 1H and 13C magnetic resonance. J. Antibiot. 1976, 29, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.M.; Yu, J.Q.; Wang, Y.J.; Connolly, J.A.; Liu, Y.F.; Zhang, Y.Q.; Yu, L.Y.; Cen, S.; Goss, R.J.M.; Gan, M.L. Zelkovamycins B–E, Cyclic Octapeptides Containing Rare Amino Acid Residues from an Endophytic Kitasatospora sp. Org. Lett. 2020, 22, 9346–9350. [Google Scholar] [CrossRef]
- Bannwarth, C.; Grimme, S. A simplified time-dependent density functional theory approach for electronic ultraviolet and circular dichroism spectra of very large molecules. Comput. Theor. Chem. 2014, 1040–1041, 45–53. [Google Scholar] [CrossRef]
- Fujii, K.; Ikai, Y.; Oka, H.; Suzuki, M.; Harada, K.-I. A Nonempirical Method Using LC/MS for Determination of the Absolute Configuration of Constituent Amino Acids in a Peptide: Combination of Marfey’s Method with Mass Spectrometry and Its Practical Application. Anal. Chem. 1997, 69, 5146–5151. [Google Scholar] [CrossRef]
- Wang, M.X.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.; Vargas, F.; et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020, 15, 1954–1991. [Google Scholar] [CrossRef] [PubMed]
- Höltzel, A.; Schmid, D.G.; Nicholson, G.J.; Stevanovic, S.; Schimana, J.; Gebhardt, K.; Fiedler, H.P.; Jung, G. Arylomycins A and B, new biaryl-bridged lipopeptide antibiotics produced by Streptomyces sp. Tü 6075. II. Structure elucidation. J. Antibiot. 2002, 55, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Lu, T. Molclus Program, Version 1.9.9. Available online: http://www.keinsci.com/research/molclus.html (accessed on 8 May 2022).
- Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci. 2021, 11, e1493. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. B.01; Gaussian Inc: Wallingford, CT, USA, 2016. [Google Scholar]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Xu, H.C.; Hu, K.; Sun, H.D.; Puno, P.-T. Four 14 (13 → 12)-abeolanostane triterpenoids with 6/6/5/6-fused ring system from the roots of Kadsura coccinea. Nat. Prod. Bioprospecting 2019, 9, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Jumai, A.; Rouzimaimaiti, R.; Zou, G.A.; Aisa, H.A. Pyrrolizidine alkaloids and unusual millingtojanine A-B from Jacobaea vulgaris (syn. Senecio jacobaea L.). Phytochemistry 2021, 190, 112862. [Google Scholar] [CrossRef]
- Mu, T.; Xi, Y.; Huang, M.; Chen, G. Search for optimal monomers for fabricating active layers in thin-film composite osmosis membranes by conceptual density functional theory. J. Mol. Model. 2020, 26, 334. [Google Scholar] [CrossRef]
- Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar] [CrossRef]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Weinstein, M.P. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; National Committee for Clinical Laboratory Standards: Malvern, PA, USA, 2018. [Google Scholar]
Position | Natural-1 | Synthetic-1 | ||
---|---|---|---|---|
δH (multi, J, Hz) | δC | δH (multi, J, Hz) | δC | |
QXA/QXA′ | ||||
23/23′ | 143.1 | 143.1 | ||
24/24′ | 9.53 (s) | 143.4 | 9.53 (s) | 143.4 |
26/26′ | 8.19–8.22 (m) | 129.0 | 8.18–8.21 (m) | 129.0 |
27/27′ | 7.97–8.02 (m) | 132.0 | 7.96–8.02 (m) | 132.1 |
28/28′ | 7.97–8.02 (m) | 131.6 | 7.96–8.02 (m) | 131.6 |
29/29′ | 8.19–8.22 (m) | 129.2 | 8.18–8.22 (m) | 129.2 |
25a/25a′ | 143.1 | 143.1 | ||
29a/29a′ | 139.4 | 139.4 | ||
22/22′ | 162.6 | 162.5 | ||
Ser/Ser′ | ||||
21-NH/21′-NH | 8.70 (d, 8.4) | 8.69 (d, 8.4) | ||
11/11′ | 4.98 (m) | 50.9 | 4.99 (m) | 50.9 |
12/12′ | 4.43 (m) | 64.4 a | 4.43 (m) | 64.4 |
10/10′ | 167.9 | 167.9 | ||
Ala/Ala′ | ||||
9-NH/9′-NH | 8.24 (m) | 8.23 (m) | ||
8/8′ | 4.61 (m) | 47.2 a | 4.62 (m) | 47.4 a |
20/20′ | 1.29 (d, 7.2) | 16.5 | 1.29 (d, 6.6) | 16.5 |
7/7′ | 171.4 | 171.4 | ||
NMe-Abu/ NMe-Abu′ | ||||
19/19′ | 2.85 (s) | 29.5 | 2.85 (s) | 29.5 |
5/5′ | 5.36 (m) | 54.4 | 5.37 (m) | 54.5 |
17a/17a′ | 1.66–1.74 (m) | 21.1 | 1.66–1.74 (m) | 21.1 |
17b/17b′ | 1.74–1.81 (m) | 1.74–1.82 (m) | ||
18/18′ | 0.80 (t, 7.2) | 9.5 | 0.80 (t, 7.2) | 9.5 |
4/4′ | 170.0 | 170.1 | ||
NMe-Val/ NMe-Val′ | ||||
16/16′ | 2.92 (s) | 31.2 | 2.92 (s) | 31.2 |
2/2′ | 4.86 (d, 10.8) | 62.1 | 4.87 (d,10.8) | 62.1 |
13/13′ | 2.28–2.35 (m) | 26.3 | 2.28–2.35 (m) | 26.3 |
14/14′ | 0.95 (d, 6.6) | 19.9 | 0.96 (d, 6.6) | 19.9 |
15/15′ | 0.70 (br s) | 18.3 | 0.70 (d, 6.6) | 18.3 |
1/1′ | 169.3 | 169.2 |
Compound 1 | Compound 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Meas m/z | Calc. m/z | mDa | ppm | Formula | Meas m/z | Calc. m/z | mDa | ppm | Formula |
962.4108 | 962.4137 | −2.9 | −3.0 | C46H57N11NaO11 | 1037.4832 | 1037.4845 | −1.3 | −1.3 | C51H65N12O12 |
863.3412 | 863.3453 | −4.1 | −4.7 | C41H48N10NaO10 | 964.3925 | 964.3929 | −0.4 | −0.4 | C45H55N11NaO12 |
739.4117 | 739.4143 | −2.6 | −3.5 | C37H55N8O8 | 865.3262 | 865.3245 | 1.7 | 2.0 | C40H46N10NaO11 |
640.3446 | 640.3459 | −1.3 | −2.0 | C32H46N7O7 | 863.3428 | 863.3453 | −2.5 | −2.9 | C41H48N10NaO10 |
626.3304 | 626.3302 | 0.2 | 0.3 | C31H44N7O7 | 642.3270 | 642.3251 | 1.9 | 3.0 | C31H44N7O8 |
527.2615 | 527.2618 | −0.3 | −0.6 | C26H35N6O6 | 628.3102 | 628.3095 | 0.7 | 1.1 | C30H42N7O8 |
428.1935 | 428.1934 | 0.1 | 0.2 | C21H26N5O5 | 610.2996 | 610.2989 | 0.7 | 1.1 | C30H40N7O7 |
414.1781 | 414.1777 | 0.4 | 1.0 | C20H24N5O5 | 529.2429 | 529.2411 | 1.8 | 3.4 | C25H33N6O7 |
396.1681 | 396.1672 | 0.9 | 2.3 | C20H22N5O4 | 527.2623 | 527.2618 | 0.5 | 0.9 | C26H35N6O6 |
511.2306 | 511.2305 | 0.1 | 0.2 | C25H31N6O6 | |||||
428.1939 | 428.1934 | 0.5 | 1.2 | C21H26N5O5 | |||||
416.1592 | 416.1570 | 2.2 | 5.3 | C19H22N5O6 | |||||
414.1778 | 414.1777 | 0.1 | 0.2 | C20H24N5O5 | |||||
398.1472 | 398.1464 | 0.8 | 2.0 | C19H20N5O5 | |||||
396.1679 | 396.1672 | 0.7 | 1.8 | C20H22N5O4 | |||||
380.1367 | 380.1359 | 0.8 | 2.1 | C19H18N5O4 | |||||
337.0923 | 337.0913 | 1.0 | 3.0 | C15H14N4NaO4 |
Samples | l-FDLA (RT; m/z) | d-FDLA (RT; m/z) | Configuration |
---|---|---|---|
l-NMe- Ser | 8.91 min; 412 [M − H]− | 9.44 min; 412 [M − H]− | |
d-Ser | 9.74 min; 398 [M − H]− | 9.11 min; 398 [M − H]− | |
l-Ala | 10.83 min; 382 [M − H]− | 13.17 min; 382 [M − H]− | |
l-NMe-Abu | 13.85 min; 410 [M − H]− | 15.21 min; 410 [M − H]− | |
l-NMe-Val | 15.03 min; 424 [M − H]− | 17.31 min; 424 [M − H]− | |
Ser from hydrolysates of 1 | 9.74 min; 398 [M − H]− | 9.11 min; 398 [M − H]− | d |
Ala from hydrolysates of 1 | 10.83 min; 382 [M − H]− | 13.15 min; 382 [M − H]− | l |
NMe-Abu from hydrolysates of 1 | 13.85 min; 410 [M − H]− | 15.19 min; 410 [M − H]− | l |
NMe-Val from hydrolysates of 1 | 15.01 min; 424 [M − H]− | 17.31 min; 424 [M − H]− | l |
NMe-Ser from hydrolysates of 2 | 8.90 min; 412 [M − H]− | 9.44 min; 412 [M − H]− | l |
Ser from hydrolysates of 2 | 9.75 min; 398 [M − H]− | 9.11 min; 398 [M − H]− | d |
Ala from hydrolysates of 2 | 10.85 min; 382 [M − H]− | 13.17 min; 382 [M − H]− | l |
NMe-Abu from hydrolysates of 2 | 13.85 min; 410 [M − H]− | 15.21 min; 410 [M − H]− | l |
NMe-Val from hydrolysates of 2 | 15.03 min; 424 [M − H]− | 17.31 min; 424 [M − H]− | l |
Position | Natural-2 | Synthetic-2 | ||
---|---|---|---|---|
δH (Multi, J, Hz) | δC | δH (Multi, J, Hz) | δC | |
QXA/QXA′ | ||||
23/23′ | 143.1/143.1 | 143.1/143.1 | ||
24/24′ | 9.51(s)/9.52(s) | 143.4/143.4 | 9.50 (s)/9.52 (s) | 143.3/143.3 |
26/26′ | 8.14–8.22 (m) | 129.1/129.0 | 8.13–8.24 (m) | 129.1/129.0 |
27/27′ | 7.98–8.06 (m) | 132.1/132.2 | 7.98–8.06 (m) | 132.1/132.2 |
28/28′ | 7.98–8.06 (m) | 131.5/131.6 | 7.98–8.06 (m) | 131.5/131.6 |
29/29′ | 8.14–8.22 (m) | 129.4/129.6 | 8.13–8.24 (m) | 129.4/129.6 |
25a/25a′ | 143.1/143.1 | 143.1/143.1 | ||
29a/29a′ | 139.6/139.7 | 139.6/139.7 | ||
22/22′ | 162.1/162.1 | 162.2/162.2 | ||
Ser/Ser′ | ||||
21-NH/21′-NH | 8.83 (d, 7.8)/8.56 (d, 7.8) | 8.83 (d, 7.8)/8.55 (d, 7.2) | ||
11/11′ | 4.90–4.99 (m)/5.04–5.10 (m) | 51.0/51.0 | 4.90–4.99 (m)/5.04–5.10 (m) | 51.0/51.0 |
12a/12′a | 4.46–4.54 (m)/4.56–4.60(m) | 64.5/65.1a | 4.46–4.54 (m))/4.55–4.60(m) | 64.3/65.0a |
12b/12′b | 4.32–4.38 (d, 10.8)/4.46–4.54 (m) | 4.32–4.38 (d, 10.2)/4.46–4.54 (m) | ||
10/10′ | 167.9/167.9 | 167.9/167.9 | ||
Ala/Ala′ | ||||
9-NH/9′-NH | - | - | ||
8/8′ | 4.83–4.88 (m) | 45.0/46.4 | 4.83–4.88 (m) | 45.0/46.5 |
20/20′ | 1.20 (d, 7.2)/1.42 (d, 7.2) | 17.3/18.1 | 1.20 (d, 6.6)/1.42 (d, 6.6) | 17.4/18.1 |
7/7′ | 172.1/172.7 | 172.2 /172.7 | ||
NMe-Abu | ||||
19 | 3.27 (s) | 30.2 | 3.28 (s) | 30.2 |
5 | 5.04–5.10 (m) | 54.4 | 5.04–5.10 (m) | 54.4 |
17a | 1.35–1.50 (m) | 21.7 | 1.35–1.50 (m) | 21.7 |
17b | 1.62–1.75 (m) | 1.62–1.75 (m) | ||
18 | 0.64 (m) | 10.0 | 0.64 (m) | 10.0 |
4 | 169.2 | 169.2 | ||
NMe-Ser | ||||
19′ | 2.69 (s) | 29.6 | 2.69 (s) | 29.6 |
5′ | 5.27 (d, 7.2) | 59.0 | 5.27 (d, 7.8) | 59.0 |
17a′ | 3.70–3.74 (m) | 59.3 | 3.70–3.74 (m) | 59.3 |
17b′ | 3.70–3.74 (m) | 3.70–3.74 (m) | ||
18′-OH | - | - | - | - |
4′ | 168.7 | 168.7 | ||
NMe-Val/NMe-Val′ | ||||
16/16′ | 2.94 (s)/3.20 (s) | 31.2/31.3 | 2.94 (s)/3.20 (s) | 31.2/31.4 |
2/2′ | 4.81 (d, 12.0)/4.70 (d, 10.8) | 62.1/61.9 a | 4.81 (d, 12.6)/4.70 (d, 10.8) | 62.0/62.0 a |
13/13′ | 2.38–2.48 (m)/2.10–2.26 (m) | 26.4/27.4 | 2.38–2.48 (m)/2.10–2.26 (m) | 26.3/27.4 |
14/14′ | 0.94 (d, 6.6)/0.90 (m) | 19.9/19.7 | 0.94 (d, 6.6)/0.90 (d, 6.6) | 20.0/19.8 |
15/15′ | 0.68 (d, 6.6)/0.75 (m) | 18.4/19.0 | 0.68 (m)/0.75 (m) | 18.4/19.1 |
1/1′ | 169.4/170.3 | 169.4/170.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Wu, G.; Hao, X.; Hu, X.; Cai, H.; Liu, X.; You, X.; Guo, H.; Sun, C. Isolation, Structure Elucidation, and First Total Synthesis of Quinomycins K and L, Two New Octadepsipeptides from the Maowei Sea Mangrove-Derived Streptomyces sp. B475. Mar. Drugs 2023, 21, 143. https://doi.org/10.3390/md21030143
Lu Q, Wu G, Hao X, Hu X, Cai H, Liu X, You X, Guo H, Sun C. Isolation, Structure Elucidation, and First Total Synthesis of Quinomycins K and L, Two New Octadepsipeptides from the Maowei Sea Mangrove-Derived Streptomyces sp. B475. Marine Drugs. 2023; 21(3):143. https://doi.org/10.3390/md21030143
Chicago/Turabian StyleLu, Qinpei, Gang Wu, Xiaomeng Hao, Xinxin Hu, Hao Cai, Xiujun Liu, Xuefu You, Hongwei Guo, and Chenghang Sun. 2023. "Isolation, Structure Elucidation, and First Total Synthesis of Quinomycins K and L, Two New Octadepsipeptides from the Maowei Sea Mangrove-Derived Streptomyces sp. B475" Marine Drugs 21, no. 3: 143. https://doi.org/10.3390/md21030143
APA StyleLu, Q., Wu, G., Hao, X., Hu, X., Cai, H., Liu, X., You, X., Guo, H., & Sun, C. (2023). Isolation, Structure Elucidation, and First Total Synthesis of Quinomycins K and L, Two New Octadepsipeptides from the Maowei Sea Mangrove-Derived Streptomyces sp. B475. Marine Drugs, 21(3), 143. https://doi.org/10.3390/md21030143