Semi-Synthesis and Biological Evaluation of 25(R)-26-Acetoxy-3β,5α-Dihydroxycholest-6-One
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Characteristic Analysis
2.3. Biological Studies
3. Materials and Methods
3.1. Chemistry
3.1.1. Synthesis of (3S,8S,9S,10R,13S,14S,16S,17R)-17-((2R,6R)-7-Hydroxy-6-Methylheptan-2-yl)-10,13-Dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-Tetradecahydro-1H-Cyclopenta[a]Phenanthrene-3,16-diol (8)
3.1.2. Synthesis of (3S,8S,9S,10R,13S,14S,16S,17R)-16-Hydroxy-10,13-Dimethyl-17-((2R,6R)-6-Methyl-7-(Pivaloyloxy)Heptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-Tetradecahydro-1H-Cyclopenta[a]Phenanthren-3-yl Pivalate (9)
3.1.3. Synthesis of (2R,6R)-6-((3S,8S,9S,10R,13S,14S,16S,17R)-10,13-Dimethyl-16-((Methylsulfonyl)oxy)-3-(Pivaloyloxy)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-Tetradecahydro-1H-Yclopenta[a]Phenanthren-17-yl)-2-Methylheptyl Pivalate (10)
3.1.4. Synthesis of (3S,8S,9S,10R,13R,14S,17R)-17-((2R,6R)-7-Hydroxy-6-Methylheptan-2-yl)-10,13-Dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-Tetradecahydro-1H-Cyclopenta[a]Phenanthren-3-ol (11)
3.1.5. Synthesis of (2R,6R)-6-((3S,8S,9S,10R,13R,14S,17R)-3-Hydroxy-10,13-Dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-Tetradecahydro-1H-Cyclopenta[a]Phenanthren-17-yl)-2-Methylheptyl Acetate (12)
3.1.6. Synthesis of (2R,6R)-2-Methyl-6-((3S,5R,6R,8S,9S,10R,13R,14S,17R)-3,5,6-Trihydroxy-10,13-Dimethylhexadecahydro-1H-Cyclopenta[a]Phenanthren-17-yl) Heptyl Acetate (13)
3.1.7. Synthesis of (2R,6R)-6-((3S,5R,8S,9S,10R,13R,14S,17R)-3,5-Dihydroxy-10,13-Dimethyl-6-Oxohexadecahydro-1H-Cyclopenta[a]Phenanthren-17-yl)-2-Methylheptyl Acetate ((25R)-5)
3.2. Biological Studies
3.2.1. Anti-RSV Activity Assay
3.2.2. Anti-Proliferation Assays
3.2.3. Apoptosis Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatti, H.N.; Khera, R.A. Biological transformations of steroidal compounds: A review. Steroids 2012, 77, 1267–1290. [Google Scholar] [CrossRef]
- Sharma, K.; Kumar, H.; Priyanka. Formation of nitrogen-containing six-membered heterocycles on steroidal ring system: A review. Steroids 2022, 191, 109171. [Google Scholar] [CrossRef] [PubMed]
- Huo, H.; Li, G.; Shi, B.; Li, J. Recent advances on synthesis and biological activities of C-17 aza-heterocycle derived steroids. Bioorg. Med. Chem. 2022, 69, 116882. [Google Scholar] [CrossRef]
- Bansal, R.; Acharya, P.C. Man-made cytotoxic steroids: Exemplary agents for cancer therapy. Chem. Rev. 2014, 114, 6986–7005. [Google Scholar] [CrossRef]
- Dabbah-Assadi, F.; Handel, R.; Shamir, A. What we know about the role of corticosteroids in psychiatric disorders; evidence from animal and clinical studies. J. Psychiatr. Res. 2022, 155, 363–370. [Google Scholar] [CrossRef]
- Guevara, M.A.; Lu, J.; Moore, R.E.; Chambers, S.A.; Eastman, A.J.; Francis, J.D.; Noble, K.N.; Doster, R.S.; Osteen, K.G.; Damo, S.M.; et al. Vitamin D and streptococci: The interface of nutrition, host Immune response, and antimicrobial activity in response to infection. ACS Infect. Dis. 2020, 6, 3131–3140. [Google Scholar] [CrossRef]
- Thomas, C.; Pellicciari, R.; Pruzanski, M.; Auwerx, J.; Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 2008, 7, 678–693. [Google Scholar] [CrossRef] [PubMed]
- Plum, L.A.; DeLuca, H.F. Vitamin D, disease and therapeutic opportunities. Nat. Rev. Drug Discov. 2010, 9, 941–955. [Google Scholar] [CrossRef]
- Hurley, M.J.; Bates, R.; Macnaughtan, J.; Schapira, A.H.V. Bile acids and neurological disease. Pharmacol. Ther. 2022, 240, 108311. [Google Scholar] [CrossRef]
- Madasu, C.; Xu, Y.-M.; Wijeratne, E.M.K.; Liu, M.X.; Molnár, I.; Gunatilaka, A.A.L. Semi-synthesis and cytotoxicity evaluation of pyrimidine, thiazole, and indole analogues of argentatins A–C from guayule (Parthenium argentatum) resin. Med. Chem. Res. 2022, 31, 1088–1098. [Google Scholar] [CrossRef]
- Xu, Y.-m.; Madasu, C.; Liu, M.X.; Wijeratne, E.M.K.; Dierig, D.; White, B.; Molnár, I.; Gunatilaka, A.A.L. Cycloartane- and Lanostane-Type Triterpenoids from the Resin of Parthenium argentatum AZ-2, a Byproduct of Guayule Rubber Production. ACS Omega 2021, 6, 15486–15498. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.Y.; Dong, X. Microbial biotransformation: Recent developments on steroid drugs. Recent Pat. Biotechnol. 2009, 3, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Gundamraj, S.; Hasbun, R. The Use of Adjunctive Steroids in Central Nervous Infections. Front. Cell. Infect. Microbiol. 2020, 10, 592017. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Gu, Y.C.; Voogd, N.J.; Wang, C.Y.; Guo, Y.W. Xidaosterols A and B, two new steroids with unusual alpha-keto-enol functionality from the south China sea sponge neopetrosia chaliniformis. Nat. Prod. Res. 2022, 36, 1941–1947. [Google Scholar] [CrossRef]
- Chen, B.; Li, W.S.; Gu, Y.C.; Zhang, H.Y.; Luo, H.; Wang, C.Y.; Guo, Y.W. New sterols from the south China sea sponges halichondria sp. Fitoterapia 2021, 152, 104918. [Google Scholar] [CrossRef]
- Cao, F.; Shao, C.L.; Chen, M.; Zhang, M.Q.; Xu, K.X.; Meng, H.; Wang, C.Y. Antiviral C-25 epimers of 26-acetoxy steroids from the south China sea gorgonian echinogorgia rebekka. J. Nat. Prod. 2014, 77, 1488–1493. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhao, Y.J.; Qi, L.; Du, H.F.; Cao, F.; Wang, C.Y. Talasteroid, a new withanolide from the marine-derived fungus talaromyces stollii. Nat. Prod. Res. 2022, 36, 1–7. [Google Scholar] [CrossRef]
- Sun, X.P.; Cao, F.; Shao, C.L.; Chen, M.; Liu, H.J.; Zheng, C.J.; Wang, C.Y. Subergorgiaols A-L, 9,10-secosteroids from the South China Sea gorgonian Subergorgia rubra. Steroids 2015, 94, 7–14. [Google Scholar] [CrossRef]
- Cao, F.; Shao, C.-L.; Wang, Y.; Xu, K.-X.; Qi, X.; Wang, C.-Y. Polyhydroxylated Sterols from the South China Sea Gorgonian Verrucella umbraculum. Helv. Chim. Acta 2014, 97, 900–908. [Google Scholar] [CrossRef]
- Chen, M.; Wu, X.D.; Zhao, Q.; Wang, C.Y. Topsensterols A-C, Cytotoxic Polyhydroxylated Sterol Derivatives from a Marine Sponge Topsentia sp. Mar. Drugs 2016, 14, 146. [Google Scholar] [CrossRef] [Green Version]
- Battles, M.B.; McLellan, J.S. Respiratory syncytial virus entry and how to block it. Nat. Rev. Microbiol. 2019, 17, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Rho, J.-R.; Lee, H.-S.; Seo, Y.; Cho, K.W.; Shin, J. New bioactive steroids from the gorgonian acalycigorgia inernis. Bull. Korean Chem. Soc. 2000, 21, 518–520. [Google Scholar]
- Gong, H.; Williams, J.R. Synthesis of the aglycone of the shark repellent pavoninin-4 using remote functionalization. Org. Lett. 2006, 8, 2253–2255. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.; Schmidt, A.W.; Theumer, G.; Krause, T.; Entchev, E.V.; Kurzchalia, T.V.; Knölker, H.J. Synthesis and biological activity of the (25R)-cholesten-26-oic acids--ligands for the hormonal receptor DAF-12 in Caenorhabditis elegans. Org. Biomol. Chem. 2009, 7, 909–920. [Google Scholar] [CrossRef]
- Carvalho, J.F.S.; Silva, M.M.C.; Moreira, J.N.; Simões, S.; Sá e Melo, M.L. Sterols as anticancer agents: Synthesis of ring-B oxygenated steroids, cytotoxic profile, and comprehensive SAR analysis. J. Med. Chem. 2010, 53, 7632–7638. [Google Scholar] [CrossRef]
- Carvalho, J.F.S.; Silva, M.M.C.; Sá e Melo, M.L. Efficient trans-diaxial hydroxylation of Δ5-steroids. Tetrahedron 2010, 66, 2455–2462. [Google Scholar] [CrossRef]
- Joshi, S.; Chaudhari, A.A.; Dennis, V.; Kirby, D.J.; Perrie, Y.; Singh, S.R. Anti-RSV peptide-loaded liposomes for the inhibition of respiratory syncytial virus. Bioengineering 2018, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, H.; Ishiyama, M.; Ohseto, F.; Sasamoto, K.; Hamamoto, T.; Suzuki, K.; Watanabe, M. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Commun. 1999, 36, 47–50. [Google Scholar] [CrossRef]
- Liu, X.; Wei, W.; Wang, C.; Yue, H.; Ma, D.; Zhu, C.; Ma, G.; Du, Y. Apoferritin-camouflaged Pt nanoparticles: Surface effects on cellular uptake and cytotoxicity. J. Mater. Chem. 2011, 21, 7105–7110. [Google Scholar] [CrossRef]
- Lin, S.Z.; Wei, W.T.; Chen, H.; Chen, K.J.; Tong, H.F.; Wang, Z.H.; Ni, Z.L.; Liu, H.B.; Guo, H.C.; Liu, D.L. Antitumor activity of emodin against pancreatic cancer depends on its dual role: Promotion of apoptosis and suppression of angiogenesis. PLoS ONE 2012, 7, e42146. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, S.L.; Li, X.; Li, J.L.; Qiang, O.; Liu, R.; He, L. Synthesis and anti-breast cancer activity of new indolylquinone derivatives. Eur. J. Med. Chem. 2012, 54, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.Y.; Lee, S.Y.; Kang, S.S.; Kim, Y.S. Antitumor activity of jujuboside B and the underlying mechanism via induction of apoptosis and autophagy. J. Nat. Prod. 2014, 77, 370–376. [Google Scholar] [CrossRef] [PubMed]
Position | 5 (CDCl3, δ in ppm) a | (25R)-5 (CDCl3, δ in ppm) b | ||
---|---|---|---|---|
1H NMR | 13C NMR | 1H NMR | 13C NMR | |
1 | 1.70, m 1.54, brd | 29.8 | 1.79–1.66, m 1.56–1.42, m | 29.8 |
2 | 1.87, m 1.46, m | 30.3 | 1.89–1.82, m 1.56–1.42, m | 30.2 |
3 | 3.98, m | 67.3 | 4.01–3.98, m | 67.2 |
4 | 1.86–1.81, m 1.79, m | 36.4 | 1.89–1.82, m 1.79–1.66, m | 36.1 |
5 | 80.9 | 80.5 | ||
6 | 212.3 | 213.5 | ||
7 | 2.72, dd (13.2, 12.2) 2.12, dd (13.2, 4.4) | 41.8 | 2.73, t (12.6) 2.10, dd (13.0, 4.6) | 41.8 |
8 | 1.70, m | 37.3 | 1.79–1.66, m | 37.4 |
9 | 1.86–1.81, m | 44.5 | 1.89–1.82, m | 44.3 |
10 | 42.4 | 42.5 | ||
11 | 1.46, m 1.29, m | 21.4 | 1.56–1.42, m 1.38–1.20, m | 21.4 |
12 | 2.02, ddd (12.2, 3.4, 2.4) 1.23, ddd (12.8, 12.2, 3.4) | 39.6 | 2.03–1.98, m 1.38–1.20, m | 39.6 |
13 | 43.1 | 43.1 | ||
14 | 1.31, m | 56.3 | 1.38–1.20, m | 56.3 |
15 | 1.51, m 1.04, m | 23.9 | 1.56–1.42, m 1.07–0.95, m | 23.9 |
16 | 1.86–1.81, m 1.25, m | 28.1 | 1.89–1.82, m 1.38–1.20, m | 28.1 |
17 | 1.12, m | 56.05 56.02 | 1.15–1.10, m | 56.1 |
18 | 0.65, s | 12.0 | 0.64, s | 12.0 |
19 | 0.81, s | 14.1 | 0.79, s | 14.0 |
20 | 1.35, m | 35.68 35.62 | 1.38–1.20, m | 35.6 |
21 | 0.91, d (6.8) | 18.6 | 0.90, d (6.5) | 18.6 |
22 | 1.30, m 1.21, m | 33.85 33.70 | 1.38–1.20, m | 33.7 |
23 | 1.35, m 1.19, m | 23.30 23.26 | 1.38–1.20, m | 23.3 |
24 | 1.35, m 1.02, m | 36.05 35.95 | 1.38–1.20, m 1.07–0.95, m | 36.0 |
25 | 1.77, m | 32.54 32.48 | 1.79–1.66, m | 32.5 |
26 | 0.93, d (6.8), maj 0.92, d (6.8), maj | 17.01 16.78 | 0.91, d (6.7) | 16.8 |
27 | 3.96, dd (10.7, 7.3), min 3.95, dd (10.7, 7.3), maj 3.84, dd (10.7, 2.4), maj 3.83, dd (10.7, 1.9), min | 69.59 69.45 | 3.93, dd, (10.6, 6.0) 3.83, dd, (10.7, 6.9) | 69.6 |
OAC | 2.06, s | 171.3 (C) 21.0 (CH3) | 2.05, s | 171.4 (C) 21.0 (CH3) |
Compounds | 8 | 11 | 13 | (25R)-5 | 5 | Remdesivir |
---|---|---|---|---|---|---|
Inhibition rate (%) | 24.9 ± 2.6 | 22.2 ± 3.9 | 13.6 ± 2.1 | 29.4 ± 7.1 | 18.3 ± 3.8 | 91.8 ± 0.5 |
Compds. | Inhibition Rate (%) | |||||
---|---|---|---|---|---|---|
Cell Lines | 8 (at 20 µM) | 11 (at 20 µM) | 13 (at 20 µM) | (25R)-5 (at 20 µM) | Doxorubicin (at 10 µM) | |
K-562 | 7.2 ± 2.2 | 13.1 ± 1.8 | 7.8 ± 2.3 | 17.1 ± 2.8 | 67.5 ± 1.0 | |
A549 | 53.0 ± 2.7 | 31.2 ± 3.9 | 3.9 ± 2.7 | 35.3 ± 1.3 | 75.9 ± 2.5 | |
MKN-45 | 54.4 ± 1.9 | 53.8 ± 1.6 | 52.7 ± 2.4 | 61.1 ± 1.4 | 89.8 ± 0.5 | |
HCT 116 | 61.7 ± 2.1 | 19.8 ± 1.4 | 19.3 ± 1.2 | 59.3 ± 3.8 | 88.9 ± 1.5 | |
HeLa | 49.7 ± 3.6 | 14.9 ± 2.2 | −2.3 ± 1.7 | 22.7 ± 1.2 | 97.7 ± 0.4 | |
786-O | 69.0 ± 1.8 | 65.9 ± 2.4 | 20.5 ± 1.3 | 65.3 ± 0.5 | 86.3 ± 1.9 | |
TE-1 | 34.0 ± 3.8 | 27.7 ± 0.6 | 13.5 ± 2.6 | 29.5 ± 2.2 | 83.3 ± 1.1 | |
5637 (HTB-9) | 75.1 ± 0.8 | 80.5 ± 2.5 | 52.2 ± 4.5 | 64.7 ± 3.4 | 99.3 ± 0.3 | |
GBC-SD | 26.8 ± 1.3 | 10.4 ± 3.3 | 6.0 ± 2.4 | 28.1 ± 1.5 | 76.7 ± 1.5 | |
L-02 | 8.1 ± 1.3 | 2.8 ± 2.1 | 6.3 ± 3.2 | −4.9 ± 3.4 | 99.2 ± 0.1 | |
MCF7 | 31.2 ± 1.4 | 14.1 ± 0.5 | 19.0 ± 1.1 | 19.3 ± 2.1 | 55.9 ±1.7 | |
HepG2 | 76.8 ± 1.3 | 64.2 ± 2.5 | 58.0 ± 1.2 | 66.8 ± 2.1 | 95.9 ±1.9 | |
SF126 | 30.7 ± 2.4 | 11.7 ± 2.9 | 4.7 ± 1.3 | 28.1 ± 0.5 | 97.1 ± 1.0 | |
DU145 | 26.0 ± 1.7 | 18.4 ± 3.7 | −0.4 ± 3.9 | 12.2 ± 2.0 | 76.4 ± 1.6 | |
CAL-62 | 28.0 ± 4.0 | 12.5 ± 3.9 | 7.5 ± 2.7 | 18.2 ± 1.9 | 92.6 ± 1.3 | |
PATU8988T | 62.7 ± 2.0 | 63.3 ± 4.2 | 53.6 ± 1.7 | 65.9 ± 4.2 | 98.4 ± 0.6 | |
HOS | 2.7 ± 4.0 | 9.3 ± 4.3 | 52.6 ± 1.5 | 22.2 ± 1.1 | 98.4 ± 0.9 | |
A-375 | 72.3 ± 0.6 | 60.8 ± 1.4 | 54.8 ± 1.7 | 76.3 ± 1.7 | 95.3 ± 1.0 | |
A-673 | 51.9 ± 2.8 | 26.5 ± 2.1 | 66.3 ± 3.2 | 49.4 ± 1.4 | 98.7 ± 0.6 | |
293T | 42.4 ± 2.1 | −18.2 ± 1.3 | 37.3 ± 2.7 | 26.2 ± 1.5 | 88.2 ± 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maimaitiming, M.; Lv, L.; Zhang, X.; Xia, S.; Li, X.; Wang, P.; Liu, Z.; Wang, C.-Y. Semi-Synthesis and Biological Evaluation of 25(R)-26-Acetoxy-3β,5α-Dihydroxycholest-6-One. Mar. Drugs 2023, 21, 191. https://doi.org/10.3390/md21030191
Maimaitiming M, Lv L, Zhang X, Xia S, Li X, Wang P, Liu Z, Wang C-Y. Semi-Synthesis and Biological Evaluation of 25(R)-26-Acetoxy-3β,5α-Dihydroxycholest-6-One. Marine Drugs. 2023; 21(3):191. https://doi.org/10.3390/md21030191
Chicago/Turabian StyleMaimaitiming, Mireguli, Ling Lv, Xuetao Zhang, Shuli Xia, Xin Li, Pingyuan Wang, Zhiqing Liu, and Chang-Yun Wang. 2023. "Semi-Synthesis and Biological Evaluation of 25(R)-26-Acetoxy-3β,5α-Dihydroxycholest-6-One" Marine Drugs 21, no. 3: 191. https://doi.org/10.3390/md21030191
APA StyleMaimaitiming, M., Lv, L., Zhang, X., Xia, S., Li, X., Wang, P., Liu, Z., & Wang, C.-Y. (2023). Semi-Synthesis and Biological Evaluation of 25(R)-26-Acetoxy-3β,5α-Dihydroxycholest-6-One. Marine Drugs, 21(3), 191. https://doi.org/10.3390/md21030191