Evaluation of Phytochemical Screening, Pigment Content, In Vitro Antioxidant, Antibacterial Potential and GC-MS Metabolite Profiling of Green Seaweed Caulerpa racemosa
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pigments Determination
2.2. Biochemical Constituents Analysis
2.3. Preliminary Phytochemical Analysis
2.4. FT-IR Analysis
2.5. GC-MS Analysis
2.6. Total Phenolic Content
2.7. Total Tannin Content
2.8. Total Flavonoid Content
2.9. Antioxidant Activity
2.9.1. DPPH Activity
2.9.2. ABTS Activity
2.10. Antibacterial Activity
2.11. MIC Determination
3. Materials and Methods
3.1. Collection of Seaweed Caulerpa racemosa
3.2. Pigments Determination
3.3. Biochemical Constituents Analysis
3.4. Preparation of Caulerpa racemosa Solvent Extracts
3.5. Preliminary Phytochemical Analysis
3.5.1. Saponins
3.5.2. Terpenoids
3.5.3. Steroids
3.5.4. Phytosterols
3.5.5. Tannins
3.5.6. Flavonoids
3.5.7. Phenol
3.5.8. Phenolic Flavonoids
3.5.9. Alkaloids
3.6. FT-IR Detection
3.7. GC-MS Analysis
3.8. Total Phenolic Content
3.9. Total Tannin Content
3.10. Total Flavonoid Content
3.11. In Vitro Antioxidant Activity
3.11.1. DPPH Radical-Scavenging Activity
3.11.2. ABTS Radical Scavenging Activity
3.12. Anti-Bacterial Activity
3.13. Minimum Inhibitory Concentration (MIC) Determination
3.14. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahendran, S.; Sankaralingam, S.; Muthuramalinga Sethu, S.; Kathiresan, D.; Muthumani, M.; Kousalya, L.; Palpperumal, S.; Harinathan, B. Evaluation of Antioxidant and Cytotoxicity Activities of Polyphenol Extracted from Brown Seaweed Sargassum Tenerrimum Biomass. Biomass Convers. Biorefinery 2022, 1–7. [Google Scholar] [CrossRef]
- Zainuddin, E.N.; Anshary, H.; Huyyirnah, H.; Hiola, R.; Baxa, D.V. Antibacterial Activity of Caulerpa racemosa against Pathogenic Bacteria Promoting “Ice-Ice” Disease in the Red Alga Gracilaria Verrucosa. J. Appl. Phycol. 2019, 31, 3201–3212. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Tiwari, U.; Rajauria, G. Seaweed Nutraceuticals and Their Therapeutic Role in Disease Prevention. Food Sci. Hum. Wellness 2019, 8, 252–263. [Google Scholar] [CrossRef]
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; et al. Seaweed Production: Overview of the Global State of Exploitation, Farming and Emerging Research Activity. Eur. J. Phycol. 2017, 52, 391–406. [Google Scholar] [CrossRef]
- Martelli, F.; Cirlini, M.; Lazzi, C.; Neviani, E.; Bernini, V. Edible Seaweeds and Spirulina Extracts for Food Application: In Vitro and In Situ Evaluation of Antimicrobial Activity towards Foodborne Pathogenic Bacteria. Foods 2020, 9, 1442. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, B.; Chauhan, O.P.; Mishra, A. Edible Seaweeds: A Potential Novel Source of Bioactive Metabolites and Nutraceuticals with Human Health Benefits. Front. Mar. Sci. 2021, 8, 740054. [Google Scholar] [CrossRef]
- Collins, K.G.; Fitzgerald, G.F.; Stanton, C.; Ross, R.P. Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases. Mar. Drugs 2016, 14, 60. [Google Scholar] [CrossRef]
- Amoriello, T.; Mellara, F.; Amoriello, M.; Ceccarelli, D.; Ciccoritti, R. Powdered Seaweeds as a Valuable Ingredient for Functional Breads. Eur. Food Res. Technol. 2021, 247, 2431–2443. [Google Scholar] [CrossRef]
- Suraiya, S.; Lee, J.M.; Cho, H.J.; Jang, W.J.; Kim, D.G.; Kim, Y.O.; Kong, I.S. Monascus spp. fermented brown seaweeds extracts enhance bio-functional activities. Food Biosci. 2018, 21, 90–99. [Google Scholar] [CrossRef]
- Nagaraj, S.R.; Osborne, J.W. Bioactive Compounds from Caulerpa racemosa as a Potent Larvicidal and Antibacterial Agent. Front. Biol. 2014, 9, 300–305. [Google Scholar] [CrossRef]
- Peñalver, R.; Lorenzo, J.M.; Ros, G.; Amarowicz, R.; Pateiro, M.; Nieto, G. Seaweeds as a functional ingredient for a healthy diet. Mar. Drugs 2020, 18, 301. [Google Scholar] [CrossRef] [PubMed]
- Hamid, S.S.; Wakayama, M.; Ichihara, K.; Sakurai, K.; Ashino, Y.; Kadowaki, R.; Soga, T.; Tomita, M. Metabolome Profiling of Various Seaweed Species Discriminates between Brown, Red, and Green Algae. Planta 2019, 249, 1921–1947. [Google Scholar] [CrossRef]
- Moreira, A.; Cruz, S.; Marques, R.; Cartaxana, P. The Underexplored Potential of Green Macroalgae in Aquaculture. Rev. Aquac. 2022, 14, 5–26. [Google Scholar] [CrossRef]
- Rushdi, M.I.; Abdel-Rahman, I.A.M.; Attia, E.Z.; Abdelraheem, W.M.; Saber, H.; Madkour, H.A.; Amin, E.; Hassan, H.M.; Abdelmohsen, U.R. A Review on the Diversity, Chemical and Pharmacological Potential of the Green Algae Genus Caulerpa. S. Afr. J. Bot. 2020, 132, 226–241. [Google Scholar] [CrossRef]
- Kumar, A.; Krishnamoorthy, E.; Devi, H.M.; Uchoi, D.; Tejpal, C.S.; Ninan, G.; Zynudheen, A.A. Influence of Sea Grapes (Caulerpa racemosa) Supplementation on Physical, Functional, and Anti-Oxidant Properties of Semi-Sweet Biscuits. J. Appl. Phycol. 2018, 30, 1393–1403. [Google Scholar] [CrossRef]
- Varela-Álvarez, E.; Gómez Garreta, A.; Rull Lluch, J.; Salvador Soler, N.; Serrao, E.A.; Siguán, M.A.R. Mediterranean Species of Caulerpa Are Polyploid with Smaller Genomes in the Invasive Ones. PLoS ONE 2012, 7, e47728. [Google Scholar] [CrossRef]
- Edison, T.N.J.I.; Atchudan, R.; Kamal, C.; Lee, Y.R. Caulerpa racemosa: A Marine Green Alga for Eco-Friendly Synthesis of Silver Nanoparticles and Its Catalytic Degradation of Methylene Blue. Bioprocess Biosyst. Eng. 2016, 39, 1401–1408. [Google Scholar] [CrossRef]
- Nurkolis, F.; Taslim, N.A.; Subali, D.; Kurniawan, R.; Hardinsyah, H.; Gunawan, W.B.; Kusuma, R.J.; Yusuf, V.M.; Pramono, A.; Kang, S.; et al. Dietary Supplementation of Caulerpa racemosa Ameliorates Cardiometabolic Syndrome via Regulation of PRMT-1/DDAH/ADMA Pathway and Gut Microbiome in Mice. Nutrients 2023, 15, 909. [Google Scholar] [CrossRef]
- Qudus, B.; Aroyehun, A.; Abdul Razak, S.; Palaniveloo, K.; Nagappan, T.; Suraiza Nabila Rahmah, N.; Wee Jin, G.; Chellappan, D.K.; Chellian, J.; Kunnath, A.P. Bioprospecting Cultivated Tropical Green Algae, Caulerpa racemosa (Forsskal) J. Agardh: A Perspective on Nutritional Properties, Antioxidative Capacity and Anti-Diabetic Potential. Foods 2020, 9, 1313. [Google Scholar] [CrossRef]
- Shah, S.A.A.; ul Hassan, S.S.; Bungau, S.; Si, Y.; Xu, H.; Rahman, M.H.; Behl, T.; Gitea, D.; Pavel, F.-M.; Corb Aron, R.A.; et al. Chemically Diverse and Biologically Active Secondary Metabolites from Marine Phylum Chlorophyta. Mar. Drugs 2020, 18, 493. [Google Scholar] [CrossRef]
- Liu, D.-Q.; Mao, S.-C.; Zhang, H.-Y.; Yu, X.-Q.; Feng, M.-T.; Wang, B.; Feng, L.-H.; Guo, Y.-W. Racemosins A and B, Two Novel Bisindole Alkaloids from the Green Alga Caulerpa racemosa. Fitoterapia 2013, 91, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Han, Y.; Yang, L.; Hu, L.; Duan, X.; Yang, X.; Huang, R. Structural Characterization and Immunostimulatory Activity of a Novel Polysaccharide from Green Alga Caulerpa racemosa Var Peltata. Int. J. Biol. Macromol. 2019, 134, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Pratiwi, A.F.; Satyantini, W.H.; Mahasri, G.; Sulmartiwi, L.; Mukti, A.T. Sudarno The Administration of Caulerpa racemosa Extract on Total Bacteria and Survival Rates of White Shrimp (Litopenaeus Vannamei) after Infected by Vibrio Parahaemolyticus. IOP Conf. Ser. Earth Environ. Sci. 2021, 679, 012068. [Google Scholar] [CrossRef]
- Ferdous, U.T.; Yusof, Z.N.B. Medicinal Prospects of Antioxidants From Algal Sources in Cancer Therapy. Front. Pharmacol. 2021, 12, 593116. [Google Scholar] [CrossRef]
- Nazarudin, M.F.; Yasin, I.S.M.; Mazli, N.A.I.N.; Saadi, A.R.; Azizee, M.H.S.; Nooraini, M.A.; Saad, N.; Ferdous, U.T.; Fakhrulddin, I.M. Preliminary Screening of Antioxidant and Cytotoxic Potential of Green Seaweed, Halimeda Opuntia (Linnaeus) Lamouroux. Saudi J. Biol. Sci. 2022, 29, 2698–2705. [Google Scholar] [CrossRef]
- Kumar, M.D.; Kavitha, S.; Tyagi, V.K.; Rajkumar, M.; Bhatia, S.K.; Kumar, G.; Banu, J.R. Macroalgae-Derived Biohydrogen Production: Biorefinery and Circular Bioeconomy. Biomass Convers. Biorefinery 2022, 12, 769–791. [Google Scholar] [CrossRef]
- Myśliwa-Kurdziel, B.; Latowski, D.; Strzałka, K. Chapter Three—Chlorophylls c—Occurrence, Synthesis, Properties, Photosynthetic and Evolutionary Significance. In Advances in Botanical Research; Grimm, B., Ed.; Metabolism, Structure and Function of Plant Tetrapyrroles: Introduction, Microbial and Eukaryotic Chlorophyll Synthesis and Catabolism; Academic Press: London, UK, 2019; Volume 90, pp. 91–119. [Google Scholar]
- Verma, P.; Kumar, M.; Mishra, G.; Sahoo, D. Multivariate Analysis of Fatty Acid and Biochemical Constitutes of Seaweeds to Characterize Their Potential as Bioresource for Biofuel and Fine Chemicals. Bioresour. Technol. 2017, 226, 132–144. [Google Scholar] [CrossRef]
- Arunkumar, R.; Gorusupudi, A.; Bernstein, P.S. The Macular Carotenoids: A Biochemical Overview. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2020, 1865, 158617. [Google Scholar] [CrossRef]
- Bhat, I.; Haripriya, G.; Jogi, N.; Mamatha, B.S. Carotenoid Composition of Locally Found Seaweeds of Dakshina Kannada District in India. Algal Res. 2021, 53, 102154. [Google Scholar] [CrossRef]
- Cikoš, A.-M.; Šubarić, D.; Roje, M.; Babić, J.; Jerković, I.; Jokić, S. Recent Advances on Macroalgal Pigments and Their Biological Activities (2016–2021). Algal Res. 2022, 65, 102748. [Google Scholar] [CrossRef]
- Hao, H.; Fu, M.; Yan, R.; He, B.; Li, M.; Liu, Q.; Cai, Y.; Zhang, X.; Huang, R. Chemical Composition and Immunostimulatory Properties of Green Alga Caulerpa racemosa Var Peltata. Food Agric. Immunol. 2019, 30, 937–954. [Google Scholar] [CrossRef]
- Regal, A.L.; Alves, V.; Gomes, R.; Matos, J.; Bandarra, N.M.; Afonso, C.; Cardoso, C. Drying Process, Storage Conditions, and Time Alter the Biochemical Composition and Bioactivity of the Anti-Greenhouse Seaweed Asparagopsis Taxiformis. Eur. Food Res. Technol. 2020, 246, 781–793. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Hamann, M.T. Marine Pharmacology in 1999: Compounds with Antibacterial, Anticoagulant, Antifungal, Anthelmintic, Anti-Inflammatory, Antiplatelet, Antiprotozoal and Antiviral Activities Affecting the Cardiovascular, Endocrine, Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2002, 132, 315–339. [Google Scholar] [CrossRef]
- Jeeva, S.; Antonisamy, J.M.; Domettila, C.; Anantham, B.; Mahesh, M. Preliminary Phytochemical Studies on Some Selected Seaweeds from Gulf of Mannar, India. Asian Pac. J. Trop. Biomed. 2012, 2, S30–S33. [Google Scholar] [CrossRef]
- Ruela de Sousa, R.R.; Queiroz, K.C.S.; Souza, A.C.S.; Gurgueira, S.A.; Augusto, A.C.; Miranda, M.A.; Peppelenbosch, M.P.; Ferreira, C.V.; Aoyama, H. Phosphoprotein Levels, MAPK Activities and NFκB Expression Are Affected by Fisetin. J. Enzyme Inhib. Med. Chem. 2007, 22, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Desgagné-Penix, I. Biosynthesis of Alkaloids in Amaryllidaceae Plants: A Review. Phytochem. Rev. 2021, 20, 409–431. [Google Scholar] [CrossRef]
- Abbott, D.W.; Aasen, I.M.; Beauchemin, K.A.; Grondahl, F.; Gruninger, R.; Hayes, M.; Huws, S.; Kenny, D.A.; Krizsan, S.J.; Kirwan, S.F.; et al. Seaweed and Seaweed Bioactives for Mitigation of Enteric Methane: Challenges and Opportunities. Animals 2020, 10, 2432. [Google Scholar] [CrossRef]
- Long, H.; Gu, X.; Zhu, Z.; Wang, C.; Xia, X.; Zhou, N.; Liu, X.; Zhao, M. Effects of Bottom Sediment on the Accumulation of Nutrients in the Edible Green Seaweed Caulerpa Lentillifera (Sea Grapes). J. Appl. Phycol. 2020, 32, 705–716. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.E.; Allendorf, M.E. Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. Annu. Rev. Food Sci. Technol. 2011, 2, 467–483. [Google Scholar] [CrossRef]
- Mariselvam, R.; Ranjitsingh, A.J.A.; Usha Raja Nanthini, A.; Kalirajan, K.; Padmalatha, C.; Mosae Selvakumar, P. Green Synthesis of Silver Nanoparticles from the Extract of the Inflorescence of Cocos Nucifera (Family: Arecaceae) for Enhanced Antibacterial Activity. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2014, 129, 537–541. [Google Scholar] [CrossRef]
- Yang, K.; Wang, G.; Chen, X.; Wang, X.; Liu, F. Treatment of Wastewater Containing Cu2+ Using a Novel Macromolecular Heavy Metal Chelating Flocculant Xanthated Chitosan. Colloids Surf. Physicochem. Eng. Asp. 2018, 558, 384–391. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A. Impact of Plant Derivatives on the Growth of Foodborne Pathogens and the Functionality of Probiotics. Appl. Microbiol. Biotechnol. 2012, 95, 29–45. [Google Scholar] [CrossRef]
- Patil, D.-S.; Dubal, K.; Dongare, M.; Kale, M. Investigation of Chemical Composition from Dryopteris Chochleata (D. Don) C. CHR. (Dryopteridaceae). Asian J. Pharm. Clin. Res. 2015, 8, 1–4. [Google Scholar]
- Arulkumar, A.; Rosemary, T.; Paramasivam, S.; Rajendran, R.B. Phytochemical Composition, in Vitro Antioxidant, Antibacterial Potential and GC-MS Analysis of Red Seaweeds (Gracilaria corticata and Gracilaria edulis) from Palk Bay, India. Biocatal. Agric. Biotechnol. 2018, 15, 63–71. [Google Scholar] [CrossRef]
- Rostom, S.A.F.; Ashour, H.M.A.; Razik, H.A.A.E.; Fattah, A.E.F.H.A.E.; El-Din, N.N. Azole Antimicrobial Pharmacophore-Based Tetrazoles: Synthesis and Biological Evaluation as Potential Antimicrobial and Anticonvulsant Agents. Bioorg. Med. Chem. 2009, 17, 2410–2422. [Google Scholar] [CrossRef]
- Hashem, N.M.; Soltan, Y.A.; El-Desoky, N.I.; Morsy, A.S.; Sallam, S.M.A. Effects of Moringa Oleifera Extracts and Monensin on Performance of Growing Rabbits. Livest. Sci. 2019, 228, 136–143. [Google Scholar] [CrossRef]
- Laparra, J.M.; Sanz, Y. Interactions of Gut Microbiota with Functional Food Components and Nutraceuticals. Pharmacol. Res. 2010, 61, 219–225. [Google Scholar] [CrossRef]
- Yu, J.; Lei, J.; Yu, H.; Cai, X.; Zou, G. Chemical Composition and Antimicrobial Activity of the Essential Oil of Scutellaria Barbata. Phytochemistry 2004, 65, 881–884. [Google Scholar] [CrossRef]
- Kumaran, A.; Joel Karunakaran, R. In Vitro Antioxidant Activities of Methanol Extracts of Five Phyllanthus Species from India. LWT—Food Sci. Technol. 2007, 40, 344–352. [Google Scholar] [CrossRef]
- Ye, H.; Zhou, C.; Sun, Y.; Zhang, X.; Liu, J.; Hu, Q.; Zeng, X. Antioxidant Activities in Vitro of Ethanol Extract from Brown Seaweed Sargassum Pallidum. Eur. Food Res. Technol. 2009, 230, 101–109. [Google Scholar] [CrossRef]
- Shpigel, M.; Shauli, L.; Odintsov, V.; Ben-Ezra, D.; Neori, A.; Guttman, L. The Sea Urchin, Paracentrotus lividus, in an Integrated Multi-Trophic Aquaculture (IMTA) System with Fish (Sparus aurata) and Seaweed (Ulva lactuca): Nitrogen Partitioning and Proportional Configurations. Aquaculture 2018, 490, 260–269. [Google Scholar] [CrossRef]
- Vega, J.; Álvarez-Gómez, F.; Güenaga, L.; Figueroa, F.L.; Gómez-Pinchetti, J.L. Antioxidant Activity of Extracts from Marine Macroalgae, Wild-Collected and Cultivated, in an Integrated Multi-Trophic Aquaculture System. Aquaculture 2020, 522, 735088. [Google Scholar] [CrossRef]
- Akbary, P.; Aminikhoei, Z.; Hobbi, M.; Samadi Kuchaksaraei, B.; Rezaei Tavabe, K. Antioxidant Properties and Total Phenolic Contents of Extracts from Three Macroalgae Collected from Chabahar Coasts. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2021, 91, 327–334. [Google Scholar] [CrossRef]
- Marinho, G.S.; Sørensen, A.-D.M.; Safafar, H.; Pedersen, A.H.; Holdt, S.L. Antioxidant Content and Activity of the Seaweed Saccharina Latissima: A Seasonal Perspective. J. Appl. Phycol. 2019, 31, 1343–1354. [Google Scholar] [CrossRef]
- Rodríguez-Bernaldo de Quirós, A.; Frecha-Ferreiro, S.; Vidal-Pérez, A.M.; López-Hernández, J. Antioxidant Compounds in Edible Brown Seaweeds. Eur. Food Res. Technol. 2010, 231, 495–498. [Google Scholar] [CrossRef]
- Petchidurai, G.; Nagoth, J.A.; John, M.S.; Sahayaraj, K.; Murugesan, N.; Pucciarelli, S. Standardization and Quantification of Total Tannins, Condensed Tannin and Soluble Phlorotannins Extracted from Thirty-Two Drifted Coastal Macroalgae Using High Performance Liquid Chromatography. Bioresour. Technol. Rep. 2019, 7, 100273. [Google Scholar] [CrossRef]
- Bharath, B.; Pavithra, A.N.; Divya, A.; Perinbam, K. Chemical Composition of Ethanolic Extracts from Some Seaweed Species of the South Indian Coastal Zone, Their Antibacterial and Membrane-Stabilizing Activity. Russ. J. Mar. Biol. 2020, 46, 370–378. [Google Scholar] [CrossRef]
- Usman, R.B.; Adamu, M.; Isyaku, I.M.; Bala, H.A. Quantitative and Qualitative Phytochemicals and Proximate Analysis of Aloe Vera (Aloe Barbadensis Miller). Int. J. Adv. Acad. Res. Sci. Technol. Eng. 2020, 6, 16. [Google Scholar]
- Rengasamy, K.R.R.; Amoo, S.O.; Aremu, A.O.; Stirk, W.A.; Gruz, J.; Šubrtová, M.; Doležal, K.; Van Staden, J. Phenolic Profiles, Antioxidant Capacity, and Acetylcholinesterase Inhibitory Activity of Eight South African Seaweeds. J. Appl. Phycol. 2015, 27, 1599–1605. [Google Scholar] [CrossRef]
- Eahamban, K.; Antonisamy, J.M. Preliminary Phytochemical, UV-VIS, HPLC and Anti-Bacterial Studies on Gracilaria corticata J. Ag. Asian Pac. J. Trop. Biomed. 2012, 2, S568–S574. [Google Scholar] [CrossRef]
- Kolodziej, H.; Kiderlen, A.F. Antileishmanial Activity and Immune Modulatory Effects of Tannins and Related Compounds on Leishmania Parasitised RAW 264.7 Cells. Phytochemistry 2005, 66, 2056–2071. [Google Scholar] [CrossRef] [PubMed]
- Tanna, B.; Choudhary, B.; Mishra, A. Metabolite Profiling, Antioxidant, Scavenging and Anti-Proliferative Activities of Selected Tropical Green Seaweeds Reveal the Nutraceutical Potential of Caulerpa Spp. Algal Res. 2018, 36, 96–105. [Google Scholar] [CrossRef]
- Sobuj, M.K.A.; Islam, M.A.; Islam, M.S.; Islam, M.M.; Mahmud, Y.; Rafiquzzaman, S.M. Effect of Solvents on Bioactive Compounds and Antioxidant Activity of Padina Tetrastromatica and Gracilaria Tenuistipitata Seaweeds Collected from Bangladesh. Sci. Rep. 2021, 11, 19082. [Google Scholar] [CrossRef] [PubMed]
- Yap, W.-F.; Tay, V.; Tan, S.-H.; Yow, Y.-Y.; Chew, J. Decoding Antioxidant and Antibacterial Potentials of Malaysian Green Seaweeds: Caulerpa racemosa and Caulerpa lentillifera. Antibiotics 2019, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Lulan, T.Y.; Fatmawati, S.; Santoso, M.; Ersam, T. Antioxidant Capacity of Some Selected Medicinal Plants in East Nusa Tenggara, Indonesia: The Potential of Sterculia Quadrifida R.Br. Free Radic. Antioxid. 2018, 8, 96–101. [Google Scholar] [CrossRef]
- Fonseca, I.; Guarda, I.; Mourato, M.; Martins, L.L.; Gomes, R.; Matos, J.; Gomes-Bispo, A.; Bandarra, N.M.; Cardoso, C.; Afonso, C. Undervalued Atlantic Brown Seaweed Species (Cystoseira Abies-Marina and Zonaria Tournefortii): Influence of Treatment on Their Nutritional and Bioactive Potential and Bioaccessibility. Eur. Food Res. Technol. 2021, 247, 221–232. [Google Scholar] [CrossRef]
- Maheswari, A.; Salamun, D.E. In Vitro Correlation Studies of Antidiabetic, Antioxidant Activity and HPLC-ESI-MS/MS Analysis of Marine Seaweeds from Gulf of Mannar. Reg. Stud. Mar. Sci. 2022, 56, 102682. [Google Scholar] [CrossRef]
- Mani, A.E.; Chakraborty, K.; Pananghat, V. Comparative Phytochemical and Pharmacological Properties of Commonly Available Tropical Green Seaweeds. J. Aquat. Food Prod. Technol. 2021, 30, 988–1001. [Google Scholar] [CrossRef]
- Pangestuti, R.; Haq, M.; Rahmadi, P.; Chun, B.-S. Nutritional Value and Biofunctionalities of Two Edible Green Seaweeds (Ulva lactuca and Caulerpa racemosa) from Indonesia by Subcritical Water Hydrolysis. Mar. Drugs 2021, 19, 578. [Google Scholar] [CrossRef]
- Thomas, J.; Thanigaivel, S.; Vijayakumar, S.; Acharya, K.; Shinge, D.; Seelan, T.S.J.; Mukherjee, A.; Chandrasekaran, N. Pathogenecity of Pseudomonas Aeruginosa in Oreochromis Mossambicus and Treatment Using Lime Oil Nanoemulsion. Colloids Surf. B Biointerfaces 2014, 116, 372–377. [Google Scholar] [CrossRef]
- Divya, D.; Beulah, G.; Govinda Rao, K.; Sravya, M.V.N.; Simhachalam, G.; Sai Krishna, M.; Sampath Kumar, N.S. Bioactivity of Excoecaria Agallocha Leaf Extract against Pseudomonas Aeruginosa Infection in Labeo Rohita. J. Appl. Aquac. 2022, 1–19. [Google Scholar] [CrossRef]
- Kukułowicz, A.; Steinka, I.; Siwek, A. Presence of Antibiotic-Resistant Staphylococcus Aureus in Fish and Seafood Originating from Points of Sale in the Tri-City Area (Poland). J. Food Prot. 2021, 84, 1911–1914. [Google Scholar] [CrossRef] [PubMed]
- Sivaraman, G.K.; Muneeb, K.H.; Sudha, S.; Shome, B.; Cole, J.; Holmes, M. Prevalence of Virulent and Biofilm Forming ST88-IV-T2526 Methicillin-Resistant Staphylococcus Aureus Clones Circulating in Local Retail Fish Markets in Assam, India. Food Control 2021, 127, 108098. [Google Scholar] [CrossRef]
- Montaser, M.M.; El-sharnouby, M.E.; EL-Noubi, G.; El-Shaer, H.M.; Khalil, A.A.; Hassanin, M.; Amer, S.A.; El-Araby, D.A. Boswellia Serrata Resin Extract in Diets of Nile Tilapia, Oreochromis Niloticus: Effects on the Growth, Health, Immune Response, and Disease Resistance to Staphylococcus Aureus. Animals 2021, 11, 446. [Google Scholar] [CrossRef] [PubMed]
- Jebasingh, S.E.J.; Rosemary, S.; Elaiyaraja, S.; Sivaraman, K.; Lakshmikandan, M.; Murugan, A.; Raja, P. Potential Antibacterial Activity of Selected Green and Red Seaweeds. J. Pharm. Biomed. Sci. 2011, 5, 1–7. [Google Scholar]
- Belkacemi, L.; Belalia, M.; Djendara, A.C.; Bouhadda, Y. Antioxidant and Antibacterial Activities and Identification of Bioactive Compounds of Various Extracts of Caulerpa racemosa from Algerian Coast. Asian Pac. J. Trop. Biomed. 2020, 10, 87. [Google Scholar] [CrossRef]
- Darmasiwi, S.; Aramsirirujiwet, Y.; Kimkong, I. Biological Activities and Chemical Profile of Hericium Erinaceus Mycelium Cultivated on Mixed Red and White Jasmine Rice. Food Sci. Technol. 2022, 42, 21. [Google Scholar] [CrossRef]
- Talreja, S.C. Evaluation of Methanolic Extract of Seaweed Ulva lactuca against Resistant Pathogenic Fungal and Microbial Strains. Indian J. Res. 2017, 6, 312–316. [Google Scholar]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- McNicholl, B.P.; McGrath, J.W.; Quinn, J.P. Development and Application of a Resazurin-Based Biomass Activity Test for Activated Sludge Plant Management. Water Res. 2007, 41, 127–133. [Google Scholar] [CrossRef]
- Riahi, L.; Elferchichi, M.; Ghazghazi, H.; Jebali, J.; Ziadi, S.; Aouadhi, C.; Chograni, H.; Zaouali, Y.; Zoghlami, N.; Mliki, A. Phytochemistry, antioxidant and antimicrobial activities of the essential oils of Mentha rotundifolia L. in Tunisia. Ind. Crop. Prod. 2013, 49, 883–889. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021, 90, 153626. [Google Scholar] [CrossRef]
- Nefzi, K.; Ben Jemaa, M.; Baraket, M.; Dakhlaoui, S.; Msaada, K.; Nasr, Z. In Vitro Antioxidant, Antibacterial and Mechanisms of Action of Ethanolic Extracts of Five Tunisian Plants against Bacteria. Appl. Sci. 2022, 12, 5038. [Google Scholar] [CrossRef]
- Thanigaivel, S.; Chandrasekaran, N.; Mukherjee, A. John Thomas Seaweeds as an Alternative Therapeutic Source for Aquatic Disease Management. Aquaculture 2016, 464, 529–536. [Google Scholar] [CrossRef]
- Yuan, Y.V.; Bone, D.E.; Carrington, M.F. Antioxidant Activity of Dulse (Palmaria palmata) Extract Evaluated in Vitro. Food Chem. 2005, 91, 485–494. [Google Scholar] [CrossRef]
- Raj, G.A.; Chandrasekaran, M.; Krishnamoorthy, S.; Venkatesalu, V. Antibacterial Activity of Diff Erent Solvent Extracts of Caulerpa Chemnitzia (Esper) J.V. Lamououx, from Mandapam, Gulf of Mannar Southeast Coast, Tamil Nadu, India. J. Med. Herbs Ethnomed. 2015, 1, 24–31. [Google Scholar] [CrossRef]
- Sudhakar, M.P.; Ananthalakshmi, J.S.; Nair, B.B. Extraction, Purification and Study on Antioxidant Properties of Fucoxanthin from Brown Seaweeds. J. Chem. Pharm. Res. 2013, 5, 169–175. [Google Scholar]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase In Beta Vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Dexbury, A.C.; Yentch, C.S. Plankton Pigment Monograph. J. Mater. Res. 1956, 15, 93–101. [Google Scholar]
- Jensen, A.R.N.E. Quantitative Paper Chromatography of Carotenoids. Acta Chem. Scand. 1959, 13, 1863. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000.
- Kumar, S.; Yadav, M.; Yadav, A.; Yadav, J.P. Impact of Spatial and Climatic Conditions on Phytochemical Diversity and in Vitro Antioxidant Activity of Indian Aloe Vera (L.) Burm.f. S. Afr. J. Bot. 2017, 111, 50–59. [Google Scholar] [CrossRef]
- Sadasivam, S. Biochemical Methods; New Age International: New Delhi, India, 1996; ISBN 978-81-224-0976-5. [Google Scholar]
- Salar, R.K.; Certik, M.; Brezova, V. Modulation of Phenolic Content and Antioxidant Activity of Maize by Solid State Fermentation with Thamnidium Elegans CCF 1456. Biotechnol. Bioprocess Eng. 2012, 17, 109–116. [Google Scholar] [CrossRef]
- Amorim, E.L.C.; Nascimento, J.E.; Monteiro, J.M. A Simple and Accurate Procedure for the Determination of Tannin and Flavonoid Levels and Some Applications in Ethnobotany and Ethnopharmacology. Funct. Ecosyst. Communities 2008, 2, 88–94. [Google Scholar]
- Lamaison, J.L.; Carnart, A. Teneurs En Principaux Falvonoïdes Des Fleurs et Des Feuilles de Crataegus Monogyna Jacq. et de Crataegus Laevigata (Poiret) DC. En Fonction de La Période de Végétation. Plantes Médicinales Et Phytothérapie 1990, 25, 12–16. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Arumugam, M.; Manikandan, D.B.; Sridhar, A.; Palaniyappan, S.; Jayaraman, S.; Ramasamy, T. GC–MS Based Metabolomics Strategy for Cost-Effective Valorization of Agricultural Waste: Groundnut Shell Extracts and Their Biological Inhibitory Potential. Waste Biomass Valorization 2022, 13, 4179–4209. [Google Scholar] [CrossRef]
- Logaranjan, K.; Raiza, A.J.; Gopinath, S.C.B.; Chen, Y.; Pandian, K. Shape- and Size-Controlled Synthesis of Silver Nanoparticles Using Aloe Vera Plant Extract and Their Antimicrobial Activity. Nanoscale Res. Lett. 2016, 11, 520. [Google Scholar] [CrossRef]
- Chakansin, C.; Yostaworakul, J.; Warin, C.; Kulthong, K.; Boonrungsiman, S. Resazurin Rapid Screening for Antibacterial Activities of Organic and Inorganic Nanoparticles: Potential, Limitations and Precautions. Anal. Biochem. 2022, 637, 114449. [Google Scholar] [CrossRef]
Biochemical Constituents | Caulerpa racemosa |
---|---|
Moisture | 7.04% |
Crude protein | 12.64% |
Crude fibre | 2.85% |
Ether extract | 1.80% |
Total ash | 48.41% |
Nitrogen free extract | 27.26% |
Gross energy | 2089 Kcal/kg |
S. No | Test | Methanol | Ethanol | Acetone | Ethyl Acetate | Petroleum Ether | Hexane |
---|---|---|---|---|---|---|---|
1. | Saponins | + | + | – | – | – | – |
2. | Terpenoids | + | + | + | + | – | + |
3. | Steroids | + | + | + | + | – | – |
4. | Phytosterol | + | + | + | + | – | – |
5. | Tannins | + | + | + | + | + | + |
6. | Flavonoids | + | + | + | + | – | – |
7. | Phenol | + | + | + | – | – | – |
8. | Phenolic flavonoids | + | + | + | – | – | – |
9. | Alkaloids | + | + | – | – | – | – |
Extract | Compound Name | Molecular Formula | Molecular Weight | Area % |
---|---|---|---|---|
Methanol | Oxalic acid, allyl ethyl ester | C8H10O4 | 170 | 0.11 |
3-Butynoic acid | C4H4O2 | 84 | 0.03 | |
3-Hexadecene | C16H32 | 224.42 | 0.8 | |
Phthalic acid | C8H6O4 | 166.14 | 0.23 | |
Dodecane | C12H26 | 170.33 | 2.16 | |
3-Octadecene, (E)- | C18H36 | 252.5 | 3.3 | |
Pentadecane | C15H32 | 212.41 | 12.99 | |
Heptadecane, 7-methyl- | C18H38 | 254.5 | 0.48 | |
Carbonic acid, decyl vinyl ester | C13H24O | 228.33 | 0.15 | |
1-Heptadecene | C17H34 | 238.5 | 32.37 | |
1-Decene, 3,3,4-trimethyl- | C13H26 | 160.21 | 0.27 | |
Pentadecane | C15H32 | 212.42 | 2.72 | |
Neophytadiene | C20H38 | 278.5 | 0.60 | |
2-Tridecenal, (E)- | C13H24O | 196.33 | 0.39 | |
9-Heptadecanone | C17H34O | 254.5 | 1.11 | |
Tetradecane | C14H30 | 198.39 | 0.28 | |
9-Octadecenoic acid (Z)- methyl ester | C19H36O2 | 296.5 | 0.22 | |
Tridecanoic acid, methyl ester | C14H28O2 | 228.37 | 8.53 | |
1,1-Diisobutoxy-butane | C12H26O2 | 202.33 | 0.36 | |
Nonane, 3,7-dimethyl- | C11H24 | 156.31 | 0.18 | |
1-Dodecene, 2-ethyl- | C12H24 | 168.32 | 0.29 | |
8,11,14-Eicosatrienoic acid, methyl ester, | C21H36O2 | 320.5 | 0.60 | |
11,14-Eicosadienoic acid, methyl ester | C21H38O2 | 322.5 | 0.43 | |
7-Hexadecenoic acid, methyl ester, (Z)- | C17H32O2 | 268.4 | 0.24 | |
Tetracosanoic acid, methyl ester | C25H50O2 | 382.7 | 0.26 | |
1-Nonadecene | C19H38 | 266.5 | 0.80 | |
2-Aminophenol, 2TBDMS derivative | C18H35NOSi2 | 337.6476 | 12.77 | |
Heneicosane | C21H44 | 296.57 | 6.37 | |
Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11 13,13,15,15- Hexadecamethyl(Alpha reductase inhibitor, 5-HT inhibitor) | C16H50O7Si8 | 578 | 27.47 | |
Ethanol | 3-Hexadecene | C16H32 | 224.42 | 1.92 |
Acetic acid | 13.57 | |||
2-(Benzyloxy)ethanamine | C9H13NO | 151 | 13.27 | |
Propiolactone | C3H4O2 | 72 | 4.98 | |
N-(4-Tolylsulfonyl)azetidin-3-one | C10H11NO3S | 225 | 10.38 | |
1H-Tetrazole | CH2N4 | 70 | 2.87 | |
N-Methylene-2-phenylethanamine | C9H11N | 133 | 1.43 | |
Butanenitrile | C4H7N | 69.11 | 2.90 | |
Hexadecane | C16H34 | 226 | 1.17 | |
Neophytadiene | C20H38 | 278 | 5.63 | |
3,7,11,15-Tetramethyl-2-hexadecen-1-ol | C20H40O | 296.5 | 11.06 | |
Hexadecanoic acid, ethyl ester | C18H36O2 | 284 | 2.10 | |
Acetone | Propanoic acid | C3H6O2 | 74.08 | 6.15 |
2-Pentanone, 4-hydroxy-4-methyl | C18H20O2 | 116.16 | 25.88 | |
Acetic acid, hydroxy-, methyl ester (methyl glycolate) | C3H6O3 | 90.08 | 0.90 | |
(3S,4S)-3,4-Bis(methoxymethoxy)pyrrolidine | C8H17NO4 | 191 | 0.34 | |
Oxalic acid, diallyl ester | C8H10O4 | 170.16 | 1.28 | |
Butanenitrile | C4H7N | 69.11 | 1.84 | |
Heptadecane | C17H36 | 240.471 | 7.57 | |
3,7,11,15-Tetramethyl-2-hexadecen-1-ol | C20H40O | 296.5 | 5.78 | |
Ethyl acetate | 1H-Tetrazole | CH2N4 | 70 | 8.20 |
Propiolactone | C3H4O2 | 72 | 4.42 | |
2-Butanol, 4-chloro-3-methyl- | C5H11ClO | 122.59 | 4.08 | |
Hexahydro-1,3,5-trinitroso-1,3,5-triazine | C3H6N6O3 | 174 | 7.45 | |
2-Butanone, 3-hydroxy | C4H8O | 88.11 | 3.19 | |
2-Benzyloxyethylamine | C19H13NO | 271 | 10.05 | |
Propanoic acid | C3H6O2 | 74.08 | 7.76 | |
1-Tridecene | C13H26 | 182 | 6.96 | |
1-Heptadecene | C17H34 | 238.5 | 5.45 | |
Petroleum ether | Propiolic acid | C3H2O2 | 70.05 | 0.87 |
2-Pentanone, 5-hydroxy- | C5H10O2 | 102 | 19.53 | |
1H-Tetrazole | CH2N4 | 70 | 5.87 | |
2-Tetradecanol | C14H30O | 214 | 1.06 | |
Tricosane | C23H48 | 324 | 1.27 | |
Hexanoic acid | C6H12O2 | 116.15 | 3.25 | |
Isopropyl myristate | C17H34O2 | 270.45 | 4.16 | |
Pentadecanoic acid, methyl ester | C17H34O2 | 270 | 3.58 | |
Hexanedioic acid, bis(2-ethylhexyl) ester | C22H42O4 | 370.6 | 2.35 | |
Hexane | Cyclopentane, 1-acetyl-1,2-epoxy | C7H10O2 | 126 | 54.36 |
N,N′,N″-Trinitro-1,3,5-triazacycloheptane | C4H8N6O6 | 36 | 6.89 | |
1H-Tetrazole | CH2N4 | 70 | 6.66 | |
Propiolactone | C3H4O2 | 72 | 2.12 | |
Butanenitrile | C4H7N | 69 | 0.64 | |
Tricosane | C23H48 | 324 | 1.77 | |
Pentadecane | C15H32 | 212 | 3.50 |
Extracts of Caulerpa racemosa | DPPH Assay (µg/mL) | ABTS Assay (µg/mL) |
---|---|---|
Vitamin C (standard) | 36.79 | 32.06 |
Methanol | 86.33 | 54.51 |
Ethanol | 104.46 | 75.10 |
Acetone | 102.52 | 73.64 |
Ethyl acetate | 111.59 | 74.41 |
Petroleum ether | 124.41 | 69.92 |
Hexane | 173.21 | 76.28 |
Zone of Inhibition (mm) | |||||||
---|---|---|---|---|---|---|---|
Extract | Bacterial Strain | Control (Streptomycin) | 50µg/mL | 100 µg/mL | 150 µg/mL | 200 µg/mL | MIC µg/mL |
Methanol | Aeromonas hydrophila | 25.5 ± 2.12 | - | 15.5 ± 0.72 ** | 17.5 ± 2.12 ** | 21.5 ± 2.12 * | 100 |
Aeromonas veronii | 29 ± 1.41 | - | 20 ± 2.82 * | 24 ± 2.83 * | 27 ± 0.71 * | 100 | |
Aeromonas salmonicida | 26.5 ± 0.70 | - | 16 ± 1.41 ** | 17.5 ± 2.12 ** | 23.5 ± 0.71 * | 100 | |
Pseudomonas aeruginosa | 29 ± 1.41 | - | 11.5 ± 2.12 ** | 14 ± 0.70 ** | 19.5 ± 2.12 * | 200 | |
Staphylococcus aureus | 26.5 ± 0.70 | - | 12.25 ± 1.06 ** | 15 ± 1.41 ** | 17.5 ± 0.71 ** | 200 | |
Klebsiella pneumoniae | 26 ± 2.83 | - | 12 ± 1.41 ** | 14 ± 1.41 ** | 17.75 ± 1.06 ** | 200 | |
Ethanol | Aeromonas hydrophila | 30 ± 2.83 | - | 12.5 ± 0.71 ** | 16 ± 1.41 ** | 19.5 ± 0.71 * | 100 |
Aeromonas veronii | 29.5 ± 2.12 | - | 16.5 ± 2.12 ** | 19 ± 2.83 * | 25 ± 0.35 * | 100 | |
Aeromonas salmonicida | 32.75 ± 0.35 | - | 14.5 ± 2.12 ** | 17.5 ± 0.71 ** | 21.25 ± 0.35 * | 100 | |
Pseudomonas aeruginosa | 24.5 ± 0.71 | - | 12 ± 1.41 ** | 14 ± 1.41 ** | 16.5 ± 0.71 ** | 200 | |
Staphylococcus aureus | 24.5 ± 0.71 | - | 10.75 ± 0.35 ** | 11.5 ± 0.71 ** | 13.5 ± 0.71 ** | 200 | |
Klebsiella pneumoniae | 29.5 ± 0.71 | - | - | 11.25 ± 1.06 ** | 13.5 ± 2.12 ** | 200 | |
Acetone | Aeromonas hydrophila | 28.5 ± 2.12 | - | 11 ± 1.14 ** | 13.5 ± 0.71 ** | 16 ± 1.41 ** | 100 |
Aeromonas veronii | 31 ± 1.41 | - | 14.5 ± 2.12 ** | 18 ± 2.83 ** | 21.5 ± 0.71 * | 100 | |
Aeromonas salmonicida | 27.5 ± 2.12 | - | 15.5 ± 0.71 ** | 16 ± 1.41 ** | 18 ± 1.41 ** | 100 | |
Pseudomonas aeruginosa | 29 ± 1.41 | - | - | 10.5 ± 0.71 ** | 11.5 ± 0.71 ** | 200 | |
Staphylococcus aureus | 25.5 ± 2.12 | - | 10.5 ± 0.71 ** | 11.5 ± 0.71 ** | 11.75 ± 1.06 ** | 200 | |
Klebsiella pneumoniae | 28.5 ± 0.71 | - | - | 10.5 ± 0.71 ** | 13.5 ± 0.71 ** | 200 | |
Ethyl acetate | Aeromonas hydrophila | 29 ± 0.71 | - | 11 ± 1.41 ** | 12 ± 2.82 ** | 15.5 ± 0.71 ** | 200 |
Aeromonas veronii | 30.5 ± 0.71 | - | 12 ± 2.83 ** | 15.5 ± 2.12 ** | 20 ± 1.41 * | 100 | |
Aeromonas salmonicida | 29.5 ± 2.12 | - | 12.5 ± 0.71 ** | 13.5 ± 2.12 ** | 15.5 ± 0.71 ** | 100 | |
Pseudomonas aeruginosa | 29 ± 1.14 | - | - | - | 10.5 ± 0.71 ** | 200 | |
Staphylococcus aureus | 27.25 ± 0.35 | - | 11 ± 0.35 ** | 11 ± 0.35 ** | 11.5 ± 0.71 ** | 200 | |
Klebsiella pneumoniae | 26 ± 2.83 | - | - | 11.5 ± 0.71 ** | 11 ± 1.41 ** | 400 | |
Petroleum ether | Aeromonas hydrophila | 26.5 ± 0.71 | - | - | - | 12 ± 1.41 ** | 400 |
Aeromonas veronii | 28.5 ± 0.71 | - | 11.5 ± 2.12 ** | 11.5 ± 0.71 ** | 14.25 ± 1.06 ** | 200 | |
Aeromonas salmonicida | 26.5 ± 0.71 | - | 11.5 ± 0.71 ** | 10.75 ± 1.06 ** | 11.5 ± 0.71 ** | 200 | |
Pseudomonas aeruginosa | 29.5 ± 2.12 | - | - | 11 ± 0.71 ** | 12 ± 1.41 ** | 400 | |
Staphylococcus aureus | 28.5 ± 2.12 | - | - | 10.5 ± 0.71 ** | 12.5 ± 0.71 ** | 400 | |
Klebsiella pneumoniae | 27 ± 1.41 | - | - | - | 11.5 ± 2.12 ** | 400 | |
Hexane | Aeromonas hydrophila | 27.5 ± 0.71 | - | - | 10.5 ± 0.71 ** | 12 ± 1.41 ** | 400 |
Aeromonas veronii | 30 ± 0.71 | - | 10.5 ± 0.71 ** | 13.5 ± 0.71 ** | 16 ± 1.41 ** | 200 | |
Aeromonas salmonicida | 32 ± 1.41 | - | 10.5 ± 0.71 ** | 10.5 ± 0.71 ** | 12 ± 1.41 ** | 400 | |
Pseudomonas aeruginosa | 29 ± 1.41 | - | - | - | 13.5 ± 0.70 ** | 400 | |
Staphylococcus aureus | 26 ± 1.41 | - | - | 11 ± 1.14 ** | 12 ± 2.82 ** | 400 | |
Klebsiella pneumoniae | 27.5 ± 0.71 | - | - | - | 12.5 ± 2.12 ** | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palaniyappan, S.; Sridhar, A.; Kari, Z.A.; Téllez-Isaías, G.; Ramasamy, T. Evaluation of Phytochemical Screening, Pigment Content, In Vitro Antioxidant, Antibacterial Potential and GC-MS Metabolite Profiling of Green Seaweed Caulerpa racemosa. Mar. Drugs 2023, 21, 278. https://doi.org/10.3390/md21050278
Palaniyappan S, Sridhar A, Kari ZA, Téllez-Isaías G, Ramasamy T. Evaluation of Phytochemical Screening, Pigment Content, In Vitro Antioxidant, Antibacterial Potential and GC-MS Metabolite Profiling of Green Seaweed Caulerpa racemosa. Marine Drugs. 2023; 21(5):278. https://doi.org/10.3390/md21050278
Chicago/Turabian StylePalaniyappan, Sivagaami, Arun Sridhar, Zulhisyam Abdul Kari, Guillermo Téllez-Isaías, and Thirumurugan Ramasamy. 2023. "Evaluation of Phytochemical Screening, Pigment Content, In Vitro Antioxidant, Antibacterial Potential and GC-MS Metabolite Profiling of Green Seaweed Caulerpa racemosa" Marine Drugs 21, no. 5: 278. https://doi.org/10.3390/md21050278
APA StylePalaniyappan, S., Sridhar, A., Kari, Z. A., Téllez-Isaías, G., & Ramasamy, T. (2023). Evaluation of Phytochemical Screening, Pigment Content, In Vitro Antioxidant, Antibacterial Potential and GC-MS Metabolite Profiling of Green Seaweed Caulerpa racemosa. Marine Drugs, 21(5), 278. https://doi.org/10.3390/md21050278