A Bibliometric and In Silico-Based Analysis of Anti-Lung Cancer Compounds from Sea Cucumber
Abstract
:1. Introduction
2. Results
2.1. PubMed Online Database Analysis
2.2. Triterpene Glycosides Are the Most Frequent Components in Anti-Cancer Studies of Sea Cucumber
2.3. Triterpene Glycosides in the Sea Cucumber Extract with Anti-Lung Cancer Properties
2.4. Intercedenside C, Scabraside A, and Scabraside B Had the Most Affinity to Receptors That Are Involved in the Apoptosis of Lung Cancer Cells
3. Materials and Methods
3.1. Data Collection and Extraction
3.2. Molecular Interactions and Docking Studies of Lung Cancer Apoptotic Pathways and Anti-Lung Cancer Molecules of Sea Cucumber Extract
3.3. Visualization of Inter-Molecular Interactions
4. Discussion
4.1. Sea Cucumbers as an Attractive Anti-Cancer Source
4.2. Triterpene Glycosides Are the Most Frequently Studied Compounds in the Field of Anti-Tumor Characteristics of Sea Cucumbers
4.3. Triterpene Glycosides with the Best Affinity to Apoptotic Receptors in Lung Cancer
4.3.1. Intercedenside C Had the Most Affinity to the Fas Receptor
4.3.2. Intercedenside C Had the Most Affinity to the TNFR1 Receptor
4.3.3. Intercedenside C Had the Most Affinity to the DR4 and DR5 Receptors
4.3.4. Scabraside B Had the Most Affinity to the IGFR1 Receptor
4.3.5. Intercedenside C Had the Most Affinity to the PPAR-γ Receptor
4.3.6. Intercedenside C, Scabraside A, and Scabraside B Had the Most Affinity to Caspases 3, 7, 8, and 9
4.3.7. Intercedenside C Had the Most Affinity to CB1 and CB2 Receptors
4.3.8. Intercedenside C Had the Most Affinity to the TLR4 Receptor
4.3.9. Intercedenside C Had the Most Affinity to the TLR9 Receptor
4.3.10. Scabraside B Had the Most Affinity to the EPCR
4.3.11. Intercedenside C Had the Most Affinity to the mGluR8 Receptor
4.3.12. Intercedenside C Had the Most Affinity to the PGD2 Receptor
4.3.13. Intercedenside C Had the Most Affinity to the TGFBR2 Receptor
4.4. Triterpene Glycosides with the Lowest Affinity to Apoptotic Receptors in Lung Cancer
4.5. Future Insights for the Anti-Lung Cancer Properties of Triterpene Glycosides
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Liu, Y.; Hao, J.; Zhao, X.; Lang, Y.; Fan, F.; Cai, C.; Li, G.; Zhang, L.; Yu, G. In-vivo anti-cancer mechanism of low-molecular-weight fucosylated chondroitin sulfate (LFCS) from sea cucumber Cucumaria frondosa. Molecules 2016, 21, 625. [Google Scholar] [CrossRef] [PubMed]
- Gadgeel, S.M.; Ramalingam, S.S.; Kalemkerian, G.P. Treatment of lung cancer. Radiol. Clin. N. Am. 2012, 50, 961–974. [Google Scholar] [CrossRef] [PubMed]
- Wargasetia, T.L.; Permana, S. The role of sea cucumber active compound and its derivative as an anti-cancer agent. Curr. Pharmacol. Rep. 2018, 4, 27–32. [Google Scholar] [CrossRef]
- Janakiram, N.B.; Mohammed, A.; Rao, C.V. Sea cucumbers metabolites as potent anti-cancer agents. Mar. Drugs 2015, 13, 2909–2923. [Google Scholar] [CrossRef] [PubMed]
- Miri, M.R.; Zare, A.; Saberzadeh, J.; Baghban, N.; Nabipour, I.; Tamadon, A. Anti-lung cancer marine compounds: A review. Ther. Innov. Regul. Sci. 2022, 56, 191–205. [Google Scholar] [CrossRef]
- Baghban, N.; Khoradmehr, A.; Nabipour, I.; Tamadon, A.; Ullah, M. The potential of marine-based gold nanomaterials in cancer therapy: A mini-review. Gold Bull. 2022, 55, 53–63. [Google Scholar] [CrossRef]
- Hossain, A.; Dave, D.; Shahidi, F. Antioxidant potential of sea cucumbers and their beneficial effects on human health. Mar. Drugs 2022, 20, 521. [Google Scholar] [CrossRef]
- Ru, R.; Guo, Y.; Mao, J.; Yu, Z.; Huang, W.; Cao, X.; Hu, H.; Meng, M.; Yuan, L. Cancer cell inhibiting sea cucumber (Holothuria leucospilota) protein as a novel anti-cancer drug. Nutrients 2022, 14, 786. [Google Scholar] [CrossRef]
- Nguyen, B.C.Q.; Yoshimura, K.; Kumazawa, S.; Tawata, S.; Maruta, H. Frondoside A from sea cucumber and nymphaeols from Okinawa propolis: Natural anti-cancer agents that selectively inhibit PAK1 In-Vitro. Drug Discov. Ther. 2017, 11, 110–114. [Google Scholar] [CrossRef]
- Sajwani, F.H. Frondoside A is a potential anticancer agent from sea cucumbers. J. Cancer Res. Ther. 2019, 15, 953. [Google Scholar] [CrossRef]
- Zou, Z.-R.; Yi, Y.-H.; Wu, H.-M.; Wu, J.-H.; Liaw, C.-C.; Lee, K.-H. Intercedensides A−C, three new cytotoxic triterpene glycosides from the sea cucumber Mensamaria intercedens Lampert. J. Nat. Prod. 2003, 66, 1055–1060. [Google Scholar] [CrossRef]
- Liu, B.S.; Yi, Y.H.; Li, L.; Sun, P.; Yuan, W.H.; Sun, G.Q.; Han, H.; Xue, M. Argusides B and C, two new cytotoxic triterpene glycosides from the sea cucumber Bohadschia argus Jaeger. Chem. Biodivers. 2008, 5, 1288–1297. [Google Scholar] [CrossRef]
- Sun, P.; Liu, B.S.; Yi, Y.H.; Li, L.; Gui, M.; Tang, H.F.; Zhang, D.Z.; Zhang, S.L. A new cytotoxic lanostane-type triterpene glycoside from the sea cucumber Holothuria impatiens. Chem. Biodivers. 2007, 4, 450–457. [Google Scholar] [CrossRef]
- Liu, B.S.; Yi, Y.H.; Li, L.; Sun, P.; Han, H.; Sun, G.Q.; Wang, X.H.; Wang, Z.L. Argusides D and E, two new cytotoxic triterpene glycosides from the sea cucumber Bohadschia argus Jaeger. Chem. Biodivers. 2008, 5, 1425–1433. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Zhu, K.-Q. A novel antitumor compound nobiliside D isolated from sea cucumber (Holothuria nobilis Selenka). Exp. Ther. Med. 2017, 14, 1653–1658. [Google Scholar] [CrossRef]
- Han, H.; Yi, Y.; Xu, Q.; La, M.; Zhang, H. Two new cytotoxic triterpene glycosides from the sea cucumber Holothuria scabra. Planta Med. 2009, 75, 1608–1612. [Google Scholar] [CrossRef]
- Hua, H.; Ling, L.; Yi, Y.-H.; Wang, X.-H.; Pan, M.-X. Triterpene glycosides from sea cucumber Holothuria scabra with cytotoxic activity. Chin. Herb. Med. 2012, 4, 183–188. [Google Scholar] [CrossRef]
- Yang, W.-S.; Qi, X.-R.; Xu, Q.-Z.; Yuan, C.-H.; Yi, Y.-H.; Tang, H.-F.; Shen, L.; Han, H. A new sulfated triterpene glycoside from the sea cucumber Colochirus quadrangularis, and evaluation of its antifungal, antitumor and immunomodulatory activities. Bioorg. Med. Chem. 2021, 41, 116188. [Google Scholar] [CrossRef]
- Han, H.; Xu, Q.Z.; Yi, Y.H.; Gong, W.; Jiao, B.H. Two new cytotoxic disulfated holostane glycosides from the sea cucumber Pentacta quadrangularis. Chem. Biodivers. 2010, 7, 158–167. [Google Scholar] [CrossRef]
- Soltani, M.; Parivar, K.; Baharara, J.; Kerachian, M.A.; Asili, J. Hemolytic and cytotoxic properties of saponin purified from Holothuria leucospilota sea cucumber. Rep. Biochem. Mol. Biol. 2014, 3, 43. [Google Scholar]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Zare, A.; Afshar, A.; Khoradmehr, A.; Baghban, N.; Mohebbi, G.; Barmak, A.; Daneshi, A.; Bargahi, A.; Nabipour, I.; Almasi-Turk, S. Chemical compositions and experimental and computational modeling of the anticancer effects of cnidocyte venoms of jellyfish Cassiopea andromeda and Catostylus mosaicus on human adenocarcinoma A549 cells. Mar. Drugs 2023, 21, 168. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery; ACS Publications: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Wargasetia, T.L. Mechanisms of cancer cell killing by sea cucumber-derived compounds. Investig. New Drugs 2017, 35, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Mondol, M.A.M.; Shin, H.J.; Rahman, M.A.; Islam, M.T. Sea cucumber glycosides: Chemical structures, producing species and important biological properties. Mar. Drugs 2017, 15, 317. [Google Scholar] [CrossRef]
- Gordon, N.; Kleinerman, E.S. Aerosol therapy for the treatment of osteosarcoma lung metastases: Targeting the Fas/FasL pathway and rationale for the use of gemcitabine. J. Aerosol. Med. Pulm. Drug Deliv. 2010, 23, 189–196. [Google Scholar] [CrossRef]
- Sanlioglu, A.D.; Aydin, C.; Bozcuk, H.; Terzioglu, E.; Sanlioglu, S. Fundamental principals of tumor necrosis factor-alpha gene therapy approach and implications for patients with lung carcinoma. Lung Cancer 2004, 44, 199–211. [Google Scholar] [CrossRef]
- Yang, A.; Wilson, N.S.; Ashkenazi, A. Proapoptotic DR4 and DR5 signaling in cancer cells: Toward clinical translation. Curr. Opin. Cell Biol. 2010, 22, 837–844. [Google Scholar] [CrossRef]
- Velcheti, V.; Govindan, R. Insulin-like growth factor and lung cancer. J. Thorac. Oncol. 2006, 1, 607–610. [Google Scholar] [CrossRef]
- Elrod, H.A.; Sun, S.-Y. PPARγ and apoptosis in cancer. PPAR Res. 2008, 2008, 704165. [Google Scholar] [CrossRef]
- Li, M.; Lee, T.W.; Yim, A.P.; Mok, T.S.; Chen, G.G. Apoptosis induced by troglitazone is both peroxisome proliferator-activated receptor-γ-and ERK-dependent in human non-small lung cancer cells. J. Cell. Physiol. 2006, 209, 428–438. [Google Scholar] [CrossRef]
- Zhang, C.-C.; Li, C.-G.; Wang, Y.-F.; Xu, L.-H.; He, X.-H.; Zeng, Q.-Z.; Zeng, C.-Y.; Mai, F.-Y.; Hu, B.; Ouyang, D.-Y. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis 2019, 24, 312–325. [Google Scholar] [CrossRef]
- Pagano, C.; Navarra, G.; Coppola, L.; Bifulco, M.; Laezza, C. Molecular mechanism of cannabinoids in cancer progression. Int. J. Mol. Sci. 2021, 22, 3680. [Google Scholar] [CrossRef]
- Zhang, R.; Dong, Y.; Sun, M.; Wang, Y.; Cai, C.; Zeng, Y.; Wu, Y.; Zhao, Q. Tumor-associated inflammatory microenvironment in non-small cell lung cancer: Correlation with FGFR1 and TLR4 expression via PI3K/Akt pathway. J. Cancer 2019, 10, 1004–1012. [Google Scholar] [CrossRef]
- Yuan, S.; Qiao, T.; Li, X.; Zhuang, X.; Chen, W.; Chen, X.; Zhang, Q. Toll-like receptor 9 activation by CpG oligodeoxynucleotide 7909 enhances the radiosensitivity of A549 lung cancer cells via the p53 signaling pathway. Oncol. Lett. 2018, 15, 5271–5279. [Google Scholar] [CrossRef]
- Spitz, A.Z.; Gavathiotis, E. Physiological and pharmacological modulation of BAX. Trends Pharmacol. Sci. 2022, 43, 206–220. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Wang, J.; Hu, W.; Feng, Z. The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int. J. Mol. Sci. 2020, 21, 8387. [Google Scholar] [CrossRef]
- Antón, I.; Molina, E.; Luis-Ravelo, D.; Zandueta, C.; Valencia, K.; Ormazabal, C.; Martínez-Canarias, S.; Perurena, N.; Pajares, M.J.; Agorreta, J. Receptor of activated protein C promotes metastasis and correlates with clinical outcome in lung adenocarcinoma. Am. J. Respir. Crit. 2012, 186, 96–105. [Google Scholar] [CrossRef]
- Li, T.-J.; Huang, Y.-H.; Chen, X.; Zhou, Z.; Luo, S.-W.; Feng, D.-D.; Han, J.-Z.; Luo, Z.-Q. Metabotropic glutamate receptor 8 activation promotes the apoptosis of lung carcinoma A549 cells In-Vitro. Sheng Li Xue Bao 2015, 67, 513–520. [Google Scholar] [PubMed]
- Jara-Gutiérrez, Á.; Baladrón, V. The role of prostaglandins in different types of cancer. Cells 2021, 10, 1487. [Google Scholar] [CrossRef]
- Li, G.; Wu, F.; Yang, H.; Deng, X.; Yuan, Y. MiR-9-5p promotes cell growth and metastasis in non-small cell lung cancer through the repression of TGFBR2. Biomed. Pharmacother. 2017, 96, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Aminin, D.L.; Menchinskaya, E.S.; Pisliagin, E.A.; Silchenko, A.S.; Avilov, S.A.; Kalinin, V.I. Anticancer activity of sea cucumber triterpene glycosides. Mar. Drugs 2015, 13, 1202–1223. [Google Scholar] [CrossRef]
- Adrian, T.E.; Collin, P. The anti-cancer effects of frondoside A. Mar. Drugs 2018, 16, 64. [Google Scholar] [CrossRef] [PubMed]
- Sireesha, D. Treatment of cancer by using sea cucumber. Int. J. Res. Eng. Sci. Manag. 2019, 2, 142–145. [Google Scholar]
Keywords | Cluster | Link | Total Link Strength | Occurrence |
---|---|---|---|---|
Triterpene glycosides | 12 | 46 | 66 | 24 |
Fucosylated chondroitin sulfate | 18 | 50 | 55 | 14 |
Frondoside A | 13 | 27 | 28 | 9 |
Compounds | Sources | Type of Cancer cell | Mechanism | References |
---|---|---|---|---|
Frondoside A | Cucumaria frondosa Okinawa propolis | A549 LNM35 NCI-H460-Luc2 | Anti-proliferation Anti-metastasis Anti-angiogenesis Anti-invasion Cytotoxicity | [9,10] |
Intercedenside A | Mensamaria intercedens | Lewis lung carcinoma cells | Cytotoxicity | [11] |
Intercedenside B | ||||
Intercedenside C | ||||
Arguside B Arguside C Arguside D Arguside E | Bohadschia argus | A549 | Cytotoxicity | [12,13,14] |
Impatienside A | Holothuria impatiens | |||
Nobiliside D | Holothuria nobilis | A549 | Cytotoxicity Anti-proliferation Apoptosis | [15] |
Scabraside A | Holothuria scabra | A549 | Cytotoxicity | [16] |
Scabraside B | ||||
Scabraside D | [17] | |||
Coloquadranoside A | Colochirus quadrangularis | A549 | Cytotoxicity | [18] |
Philinopside A | ||||
Philinopside B | ||||
Philinopside E | ||||
Pentactaside B | Pentacta quadrangularis | [19] | ||
Pentactaside C | Pentacta quadrangularis | A549 | Cytotoxicity | [19] |
Fuscocineroside C | Holothuria scabra | A549 | Cytotoxicity | [17] |
24-Dehydroechinoside A | ||||
Saponin | Holothuria leucospilota | A549 | Cytotoxicity | [20] |
Compounds | Receptors | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fas R. | TNFR1 | DR4 | DR5 | IGFR1 | PPAR-γ | Caspase-3 | Caspase-7 | Caspase-8 | Caspase-9 | CB1 | CB2 | TLR- 4 | TLR- 9 | EPCR | mGluR 8 | PGD2R | TGFBR2 | |
Frondoside A | −6.41 | −6.09 | −3.93 | −5.36 | −1.94 | −4.71 | −4.40 | −2.96 | −2.25 | −6.67 | −6.40 | −4.38 | −5.57 | −3.73 | −2.82 | +1.28 | −1.91 | −7.08 |
Intercedenside A | −9.95 | −9.34 | −12.53 | −14.02 | −6.93 | −10.05 | −10.69 | −11.32 | −12.77 | −12.04 | −9.66 | −10.06 | −10.54 | −12.93 | −12.63 | −8.64 | −12.47 | −12.44 |
Intercedenside B | −11.98 | −9.64 | −10.63 | −9.66 | −8.52 | −7.95 | −11.26 | −11.59 | −11.78 | −11.94 | −10.61 | −11.86 | −11.80 | −11.55 | −16.64 | −11.10 | −13.28 | −12.67 |
Intercedenside C | −13.26 | −13.39 | −14.98 | −15.35 | −13.85 | −20.23 | −19.79 | −14.49 | −15.14 | −16.92 | −14.87 | −14.04 | −15.64 | −16.52 | −20.14 | −13.57 | −13.68 | −14.16 |
Arguside B | +0.16 | −0.47 | −2.06 | −0.06 | +3.91 | +0.94 | −1.00 | −3.74 | +1.71 | −0.09 | −0.87 | −1.65 | +2.84 | +1.31 | −0.92 | +1.76 | +2.85 | −2.67 |
Arguside C | −4.57 | −3.49 | −5.91 | −2.12 | −0.54 | −5.08 | −6.92 | −4.72 | −7.40 | −5.20 | −7.16 | −3.63 | −4.12 | −3.88 | −4.32 | −2.68 | −1.95 | −3.21 |
Arguside D | −3.29 | −4.21 | −6.99 | −8.52 | −2.57 | −5.11 | −3.43 | −6.27 | −9.09 | −6.77 | −6.52 | −2.96 | −7.84 | −3.55 | −4.67 | −4.51 | −3.99 | −6.57 |
Arguside E | −4.89 | −7.67 | −7.09 | −5.78 | −4.92 | −4.48 | −4.15 | −5.58 | −4.97 | −5.76 | −2.49 | −4.45 | −3.28 | −3.42 | −11.42 | −4.04 | −5.51 | −5.82 |
Impatienside A | −2.14 | −3.98 | −4.21 | −4.50 | −0.36 | −2.51 | −4.52 | −3.86 | −4.45 | −4.55 | −3.79 | −2.50 | −3.61 | −3.50 | −5.08 | −1.37 | −2.67 | −3.23 |
Nobiliside D | −9.08 | −9.88 | −10.42 | −9.58 | −8.91 | −14.75 | −11.97 | −11.71 | −11.36 | −9.90 | −9.55 | −10.69 | −9.82 | −9.20 | −13.07 | −8.25 | −9.45 | −10.14 |
Scabraside A | −12.35 | −13.32 | −6.41 | −8.01 | −12.94 | −8.59 | −11.18 | −14.59 | −13.77 | −18.04 | −9.58 | −9.11 | −9.80 | −5.20 | −6.29 | −6.87 | −6.85 | −10.28 |
Scabraside B | −10.84 | −12.97 | −13.61 | −13.59 | −15.64 | −15.69 | −14.19 | −17.94 | −12.97 | −17.94 | −11.07 | −13.43 | −13.86 | −13.05 | −20.35 | −11.36 | −12.34 | −12.48 |
Scabraside D | −7.94 | −10.08 | −8.08 | −8.53 | −5.61 | −9.03 | −8.22 | −7.53 | −8.49 | −8.75 | −7.51 | −6.02 | −4.99 | −6.80 | −9.11 | −6.20 | −6.95 | −5.08 |
Coloquadranoside A | −2.00 | −4.58 | −1.30 | −2.60 | +1.11 | −0.91 | −3.65 | −4.11 | −4.84 | −1.78 | −3.03 | −0.54 | −0.85 | −0.84 | −3.66 | −0.74 | −1.73 | −3.14 |
Philinopside A | −3.08 | −2.19 | −4.86 | −1.37 | −2.19 | −4.30 | −4.99 | −4.77 | −5.56 | −5.89 | −4.79 | −5.33 | −9.80 | −4.07 | −6.92 | −2.00 | −2.08 | −6.05 |
Philinopside B | −4.42 | −6.49 | −5.78 | −5.59 | −3.01 | −4.11 | −7.34 | −7.40 | −6.29 | −7.31 | −4.19 | −3.78 | −1.87 | −2.46 | −6.01 | −3.09 | −5.25 | −5.75 |
Philinopside E | −9.33 | −9.20 | −10.47 | −10.47 | −10.59 | −9.10 | −12.18 | −13.30 | −11.58 | −9.37 | −9.84 | −8.82 | −9.11 | −9.79 | −12.43 | −7.88 | −9.95 | −11.12 |
Pentactaside B | −9.82 | −9.28 | −12.55 | −9.28 | −10.49 | −17.17 | −11.30 | −12.70 | −14.13 | −11.83 | −11.16 | −11.41 | −9.13 | −11.61 | −18.02 | −8.81 | −8.79 | −7.52 |
Pentactaside C | −8.45 | −6.76 | −7.61 | −7.78 | −7.06 | −6.45 | −10.01 | −7.82 | −6.34 | −6.09 | −4.07 | −9.44 | −1.90 | −7.44 | −4.77 | −5.26 | −1.93 | −9.43 |
Fuscocineroside C | −6.39 | −7.36 | −6.30 | −6.94 | −3.53 | −5.50 | −6.17 | −6.80 | −8.11 | −7.45 | −7.56 | −3.64 | −5.68 | −3.14 | −11.77 | −4.60 | −4.05 | −4.71 |
24-Dehydroechinoside A | +1.25 | −0.97 | −1.63 | +3.96 | +0.94 | +3.79 | −2.06 | −0.91 | −0.47 | −6.85 | +0.54 | −0.06 | +0.89 | +0.85 | +1.42 | +0.73 | +1.65 | −0.22 |
Saponin | −5.80 | −6.80 | −7.49 | −5.05 | −4.49 | −9.25 | −4.96 | −8.64 | −8.78 | −8.32 | −5.42 | −6.92 | −5.72 | −6.44 | −14.98 | −3.86 | −3.54 | −6.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zare, A.; Izanloo, S.; Khaledi, S.; Maratovich, M.N.; Kaliyev, A.A.; Abenova, N.A.; Rahmanifar, F.; Mahdipour, M.; Bakhshalizadeh, S.; Shirazi, R.; et al. A Bibliometric and In Silico-Based Analysis of Anti-Lung Cancer Compounds from Sea Cucumber. Mar. Drugs 2023, 21, 283. https://doi.org/10.3390/md21050283
Zare A, Izanloo S, Khaledi S, Maratovich MN, Kaliyev AA, Abenova NA, Rahmanifar F, Mahdipour M, Bakhshalizadeh S, Shirazi R, et al. A Bibliometric and In Silico-Based Analysis of Anti-Lung Cancer Compounds from Sea Cucumber. Marine Drugs. 2023; 21(5):283. https://doi.org/10.3390/md21050283
Chicago/Turabian StyleZare, Afshin, Safoura Izanloo, Sajed Khaledi, Mussin Nadiar Maratovich, Asset Askerovich Kaliyev, Nurgul Abdullayevna Abenova, Farhad Rahmanifar, Mahdi Mahdipour, Shabnam Bakhshalizadeh, Reza Shirazi, and et al. 2023. "A Bibliometric and In Silico-Based Analysis of Anti-Lung Cancer Compounds from Sea Cucumber" Marine Drugs 21, no. 5: 283. https://doi.org/10.3390/md21050283
APA StyleZare, A., Izanloo, S., Khaledi, S., Maratovich, M. N., Kaliyev, A. A., Abenova, N. A., Rahmanifar, F., Mahdipour, M., Bakhshalizadeh, S., Shirazi, R., Tanideh, N., & Tamadon, A. (2023). A Bibliometric and In Silico-Based Analysis of Anti-Lung Cancer Compounds from Sea Cucumber. Marine Drugs, 21(5), 283. https://doi.org/10.3390/md21050283