OSMAC-Based Discovery and Biosynthetic Gene Clusters Analysis of Secondary Metabolites from Marine-Derived Streptomyces globisporus SCSIO LCY30
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification and Genome Analysis of the Strain SCSIO LCY30
2.2. Production of Angucyclines and Streptophenazines via OSMAC Strategies
2.3. Isolation and Characterization of Compounds 1–6
2.4. Proposed Biosynthetic Pathway of Angucycline Compounds 1–3
2.5. Proposed Biosynthetic Pathway of Streptophenazines O and M (4–5)
2.6. Proposed Biosynthetic Pathway of Macrolide Dimeric Dinactin (6)
2.7. GNPS Molecular Network Analysis of Streptophenazines
2.8. Antibacterial Activity of Compounds 1–3
2.9. Tumor Cytotoxic Activity of Compounds 1–3
3. Materials and Methods
3.1. General Experiment Procedure
3.2. Producing Strain and Genome Scanning
3.3. Phylogenetic Construction and Bioinformatic Analysis
3.4. Fermentation Conditions
3.5. Purification and Characterization of Compounds
3.6. Production Analysis by HPLC
3.7. Antibacterial Activity Assays
3.8. Cytotoxic Activity Assays
3.9. Construction of GNPS (Global Natural Products Social) Molecular Network
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, C.; Qian, R.; Xu, Y.; Yi, J.; Gu, Y.; Liu, X.; Yu, H.; Jiao, B.; Lu, X.; Zhang, W. Marine actinomycetes-derived natural products. Curr. Top. Med. Chem. 2019, 19, 2868–2918. [Google Scholar] [CrossRef] [PubMed]
- Ser, H.L.; Tan, L.T.; Law, J.W.; Chan, K.G.; Duangjai, A.; Saokaew, S.; Pusparajah, P.; Ab Mutalib, N.S.; Khan, T.M.; Goh, B.H.; et al. Focused review: Cytotoxic and antioxidant potentials of mangrove-derived Streptomyces. Front. Microbiol. 2017, 8, 2065. [Google Scholar] [CrossRef] [PubMed]
- Julianti, E.; Abrian, I.A.; Wibowo, M.S.; Azhari, M.; Tsurayya, N.; Izzati, F.; Juanssilfero, A.B.; Bayu, A.; Rahmawati, S.I.; Putra, M.Y. Secondary metabolites from marine-derived fungi and actinobacteria as potential sources of novel colorectal cancer drugs. Mar. Drugs 2022, 20, 67. [Google Scholar] [CrossRef] [PubMed]
- Onaka, H. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J. Antibiot. 2017, 70, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Bode, H.B.; Bethe, B.; Höfs, R.; Zeeck, A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. ChemBioChem 2002, 3, 619. [Google Scholar] [CrossRef]
- Romano, S.; Jackson, S.A.; Patry, S.; Dobson, A.D.W. Extending the “one strain many compounds” (OSMAC) principle to marine microorganisms. Mar. Drugs 2018, 16, 244. [Google Scholar] [CrossRef] [PubMed]
- Pinedo-Rivilla, C.; Aleu, J.; Durán-Patrón, R. Cryptic metabolites from marine-derived microorganisms using OSMAC and epigenetic approaches. Mar. Drugs 2022, 20, 84. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Zou, G.; Wang, G.; Kang, W.; Yuan, J.; She, Z. Cytotoxic bromine- and iodine-containing cytochalasins produced by the mangrove endophytic fungus Phomopsis sp. QYM-13 using the OSMAC approach. J. Nat. Prod. 2022, 85, 1229–1238. [Google Scholar] [CrossRef]
- Rateb, M.E.; Houssen, W.E.; Harrison, W.T.; Deng, H.; Okoro, C.K.; Asenjo, J.A.; Andrews, B.A.; Bull, A.T.; Goodfellow, M.; Ebel, R.; et al. Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J. Nat. Prod. 2011, 74, 1965–1971. [Google Scholar] [CrossRef]
- Huynh, T.H.; Lee, J.; Moon, D.H.; Nguyen, T.Q.; Son, S.; Hwang, S.; Du, Y.E.; Cui, J.; Jang, J.H.; Nam, S.J.; et al. Gwanakosides A and B, 6-Deoxy-α-l-talopyranose-Bearing Aromatic Metabolites from a Streptomyces sp. and Coculture with Pandoraea sp. J. Nat. Prod. 2022, 85, 83–90. [Google Scholar] [CrossRef]
- Alanjary, M.; Steinke, K.; Ziemert, N. AutoMLST: An automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res. 2019, 47, W276–W282. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. AntiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Z.; Sun, C.; Shao, M.; Ma, J.; Wei, X.; Zhang, T.; Li, W.; Ju, J. Discovery and biosynthesis of atrovimycin, an antitubercular and antifungal cyclodepsipeptide featuring vicinal-dihydroxylated cinnamic acyl chain. Org. Lett. 2019, 21, 2634–2638. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, Z.; Huang, H.; Luo, M.; Zuo, D.; Wang, B.; Sun, A.; Cheng, Y.Q.; Zhang, C.; Ju, J. Biosynthesis of himastatin: Assembly line and characterization of three cytochrome P450 enzymes involved in the post-tailoring oxidative steps. Angew. Chem. Int. Ed. 2011, 50, 7797–7802. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhu, H.; Sun, C.; Zhou, L.; Wang, H.; Shi, S.; Tian, X.; Ju, J. Halo- and Thiocarbazomycins from coral- and coral reef sands-derived Actinomycetes. Mar. Drugs 2022, 20, 537. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Huang, H.; Xie, Y.; Liu, Z.; Zhao, J.; Zhang, C.; Jia, Y.; Zhang, Y.; Zhang, H.; Zhang, T.; et al. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents. Nat. Commun. 2017, 8, 391. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Huang, H.; Gao, C.; Qin, X.; Ju, J.; Yi, X. Antibacterial anthracimycins from Streptomyces pratensis SCSIO LCY05 isolated from Ascidian. Chin. J. Mar. Drugs 2020, 39, 7–14. [Google Scholar]
- Shi, J.; Liu, C.L.; Zhang, B.; Guo, W.J.; Zhu, J.; Chang, C.Y.; Zhao, E.J.; Jiao, R.H.; Tan, R.X.; Ge, H.M. Genome mining and biosynthesis of kitacinnamycins as a STING activator. Chem. Sci. 2019, 10, 4839–4846. [Google Scholar] [CrossRef]
- Trussart, M.; Yus, E.; Martinez, S.; Baù, D.; Tahara, Y.O.; Pengo, T.; Widjaja, M.; Kretschmer, S.; Swoger, J.; Djordjevic, S.; et al. Defined chromosome structure in the genome-reduced bacterium Mycoplasma pneumoniae. Nat. Commun. 2017, 8, 14665. [Google Scholar] [CrossRef]
- Liang, M.; Liu, L.; Xu, F.; Zeng, X.; Wang, R.; Yang, J.; Wang, W.; Karthik, L.; Liu, J.; Yang, Z.; et al. Activating cryptic biosynthetic gene cluster through a CRISPR-Cas12a-mediated direct cloning approach. Nucleic Acids Res. 2022, 50, 3581–3592. [Google Scholar] [CrossRef]
- Schneemann, I.; Kajahn, I.; Ohlendorf, B.; Zinecker, H.; Erhard, A.; Nagel, K.; Wiese, J.; Imhoff, J.F. Mayamycin, a cytotoxic polyketide from a Streptomyces strain isolated from the marine sponge Halichondria panicea. J. Nat. Prod. 2010, 73, 1309–1312. [Google Scholar] [CrossRef] [PubMed]
- Bo, S.T.; Xu, Z.F.; Yang, L.; Cheng, P.; Tan, R.X.; Jiao, R.H.; Ge, H.M. Structure and biosynthesis of mayamycin B, a new polyketide with antibacterial activity from Streptomyces sp. 120454. J. Antibiot. 2018, 71, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.C.; Parker, L.; Slusarchyk, S.; Greenwood, G.L.; Grahm, S.F.; Meyers, E. Isolation, characterization, and structure of rabelomycin, a new antibiotic. J. Antibiot. 1970, 23, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Chen, L.; Ye, X.; Anjum, K.; Lian, X.Y.; Zhang, Z. New streptophenazines from marine Streptomyces sp. 182SMLY. Nat. Prod. Res. 2017, 31, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.J.; Fan, L.M.; Li, G.H.; Zhu, N.; Shen, Y.M. Antibacterial and antitumor macrolides from Streptomyces sp. Is9131. Arch. Pharm. Res. 2005, 28, 1228–1232. [Google Scholar] [CrossRef] [PubMed]
- Kharel, M.K.; Pahari, P.; Shepherd, M.D.; Tibrewal, N.; Nybo, S.E.; Shaaban, K.A.; Rohr, J. Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis. Nat. Prod. Rep. 2012, 29, 264–325. [Google Scholar] [CrossRef] [PubMed]
- Schell, U.; Haydock, S.F.; Kaja, A.L.; Carletti, I.; Lill, R.E.; Read, E.; Sheehan, L.S.; Low, L.; Fernandez, M.J.; Grolle, F.; et al. Engineered biosynthesis of hybrid macrolide polyketides containing d-angolosamine and d-mycaminose moieties. Org. Biomol. Chem. 2008, 6, 3315–3327. [Google Scholar] [CrossRef]
- Bauman, K.D.; Li, J.; Murata, K.; Mantovani, S.M.; Dahesh, S.; Nizet, V.; Luhavaya, H.; Moore, B.S. Refactoring the cryptic streptophenazine biosynthetic gene cluster unites phenazine, polyketide, and nonribosomal peptide biochemistry. Cell Chem. Biol. 2019, 26, 724–736.e7. [Google Scholar] [CrossRef]
- Blankenfeldt, W.; Parsons, J.F. The structural biology of phenazine biosynthesis. Curr. Opin. Struct. Biol. 2014, 29, 26–33. [Google Scholar] [CrossRef]
- Bilal, M.; Guo, S.; Iqbal, H.M.N.; Hu, H.; Wang, W.; Zhang, X. Engineering pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: A review. World J. Microbiol. Biotechnol. 2017, 33, 191. [Google Scholar] [CrossRef]
- Walczak, R.J.; Woo, A.J.; Strohl, W.R.; Priestley, N.D. Nonactin biosynthesis: The potential nonactin biosynthesis gene cluster contains type II polyketide synthase-like genes. FEMS Microbiol. Lett. 2000, 183, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.C.; Xiang, L.; Shen, B. Genetic localization and molecular characterization of the nonS gene required for macrotetrolide biosynthesis in Streptomyces griseus DSM40695. Antimicrob. Agents Chemother. 2000, 44, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Smith, W.C.; Xiang, L.; Shen, B. Cloning and heterologous expression of the macrotetrolide biosynthetic gene cluster revealed a novel polyketide synthase that lacks an acyl carrier protein. J. Am. Chem. Soc. 2001, 123, 3385–3386. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Smith, W.C.; Scharon, A.J.; Hwang, S.H.; Kurth, M.J.; Shen, B. C-O bond formation by polyketide synthases. Science 2002, 297, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Mitova, M.I.; Lang, G.; Wiese, J.; Imhoff, J.F. Subinhibitory concentrations of antibiotics induce phenazine production in a marine Streptomyces sp. J. Nat. Prod. 2008, 71, 824–827. [Google Scholar] [CrossRef] [PubMed]
- Kunz, A.L.; Labes, A.; Wiese, J.; Bruhn, T.; Bringmann, G.; Imhoff, J.F. Nature’s lab for derivatization: New and revised structures of a variety of streptophenazines produced by a sponge-derived Streptomyces strain. Mar. Drugs 2014, 12, 1699–1714. [Google Scholar] [CrossRef] [PubMed]
- Bunbamrung, N.; Dramae, A.; Srichomthong, K.; Supothina, S.; Pittayakhajonwut, P. Streptophenazines I–L from Streptomyces sp. BCC21835. Phytochem. Lett. 2014, 10, 91–94. [Google Scholar] [CrossRef]
- Yang, Z.; Jin, X.; Guaciaro, M.; Molino, B.F. Asymmetric synthesis and absolute configuration of streptophenazine G. J. Org. Chem. 2012, 77, 3191–3196. [Google Scholar] [CrossRef]
- Yang, Z.; Jin, X.; Guaciaro, M.; Molino, B.F.; Mocek, U.; Reategui, R.; Rhea, J.; Morley, T. The revised structure, total synthesis, and absolute configuration of streptophenazine A. Org. Lett. 2011, 13, 5436–5439. [Google Scholar] [CrossRef]
- Cimmino, A.; Evidente, A.; Mathieu, V.; Andolfi, A.; Lefranc, F.; Kornienko, A.; Kiss, R. Phenazines and cancer. Nat. Prod. Rep. 2012, 29, 487–501. [Google Scholar] [CrossRef]
- Bao, X.F.; Zhu, Y.X.; Xie, W.X.; Liu, Z.Y.; Zhu, L.; Jiang, H.; Zhao, Y. Synthesis of 1-substituted phenazines as novel antichlamydial agents. J. Asian Nat. Prod. Res. 2022, 24, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, W.; Cai, J.; Wang, Y.; Li, D.; Hua, H.; Cao, H. Advances in phenazines over the past decade: Review of their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies. Mar. Drugs 2021, 19, 610. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-R, L.M.; Konstantinidis, K.T. Bypassing cultivation to identify bacterial species: Culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe Mag. 2014, 9, 111–118. [Google Scholar] [CrossRef]
- CLSI Document M07-A9; Methods for Dilution Antimicrobial Susceptibility Tests f or Bacteria That Grow Aerobically; Approved Standard—Ninth Edition. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2012.
- Yang, J.; Song, Y.; Zhou, Z.; Huang, Y.; Wang, S.; Yuan, J.; Wong, N.K.; Yan, Y.; Ju, J. Sulfoxanthicillin from the deep-sea derived Penicillium sp. SCSIO sof101: An antimicrobial compound against Gram-positive and -negative pathogens. J. Antibiot. 2023, 76, 113–120. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, N.; Zhang, H.; Li, Q.; Ma, J.; Wei, X.; Li, W.; Ju, J. Characterization of the glycosyltransferase and methyltransferase encoded remotely from the actinopyrone biosynthetic gene cluster enables access to diverse analogues. Org. Lett. 2022, 24, 9065–9070. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
Bacterial Strains | MIC (μg/mL) of Standard | MIC (μg/mL) of Compounds 1–3 | |||
---|---|---|---|---|---|
Vancomycin | Ampicillin | Mayamycin (1) | Mayamycin B (2) | Rabelomycin (3) | |
Staphylococcus aureus ATCC 29213 | 1 | 1 | 16 | 16 | 8 |
Staphylococcus aureus 16339 | 1 | 64 | 16 | 16 | 8 |
Staphylococcus aureus 1862 | 1 | 4 | 16 | 16 | 8 |
Staphylococcus aureus 3090 | 0.5 | 16 | 16 | 8 | 8 |
Staphylococcus aureus 991 | 0.5 | 4 | 16 | 16 | 16 |
Staphylococcus aureus 669 | 1 | 8 | 16 | 16 | 16 |
Staphylococcus aureus 745324 | 1 | 4 | 16 | 8 | 8 |
Staphylococcus aureus 16162 | 0.5 | 16 | 16 | 16 | 8 |
Staphylococcus aureus (cfr) GDE4P037P | 1 | 16 | 8 | 8 | 4 |
Staphylococcus simulans AKA1 | 0.5 | >64 | 32 | 64 | 16 |
Enterococcus faecalis ATCC 29212 | 2 | 1 | 32 | 16 | 8 |
Enterococcus faecalis 36950 | 0.5 | >64 | 8 | 8 | 8 |
Micrococcus luteus ML01 | 0.13 | 0.13 | 1 | 1 | 2 |
MRSA | 0.5 | 32 | 8 | 8 | 8 |
Bacillus subtilis BS01 | 0.13 | 0.13 | 8 | 8 | 4 |
Enterococcus gallinarum 5F52C | 4 | 8 | 32 | 32 | 32 |
Enterococcus faecium 36711 | >64 | >64 | 16 | 32 | 32 |
Human Cell Line | IC50(μM) of the Standard | IC50(μM) of Compounds 1–3 | |||
---|---|---|---|---|---|
Cisplatin | Adriamycin | Mayamycin (1) | Mayamycin B (2) | Rabelomycin (3) | |
LX-2 | 12.13 | 1.36 | 2.31 | 5.33 | 13.42 |
HEPG2 | 11.02 | 15.47 | 2.12 | 6.00 | 8.64 |
NCM460 | 3.17 | 3.89 | 2.64 | 7.16 | 7.05 |
HCT116 | 4.83 | 1.54 | 1.08 | 2.05 | 4.72 |
SW480 | 1.82 | 17.49 | 1.05 | 2.87 | 1.57 |
MCF-10A | 6.43 | 3.72 | 5.98 | 5.21 | 11.31 |
MCF7 | 4.56 | 3.05 | 2.10 | 4.15 | 4.48 |
MDA-MB-231 | 15.66 | 4.04 | 0.60 | 3.01 | 8.67 |
MDA-MB-468 | 8.35 | 3.16 | 2.22 | 6.08 | 2.18 |
Bt-549 | 7.54 | 3.75 | 1.88 | 3.87 | 7.85 |
HUVEC | 7.70 | 11.97 | 1.68 | 4.41 | 10.92 |
A549 | 9.31 | 1.51 | 1.65 | 5.08 | 5.97 |
Hela | 7.62 | 7.02 | 0.91 | 2.80 | 16.13 |
RBE | 13.48 | 4.26 | 1.05 | 4.06 | 4.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Gong, N.; Zhou, L.; Yang, Z.; Zhang, H.; Gu, Y.; Ma, J.; Ju, J. OSMAC-Based Discovery and Biosynthetic Gene Clusters Analysis of Secondary Metabolites from Marine-Derived Streptomyces globisporus SCSIO LCY30. Mar. Drugs 2024, 22, 21. https://doi.org/10.3390/md22010021
Li Y, Gong N, Zhou L, Yang Z, Zhang H, Gu Y, Ma J, Ju J. OSMAC-Based Discovery and Biosynthetic Gene Clusters Analysis of Secondary Metabolites from Marine-Derived Streptomyces globisporus SCSIO LCY30. Marine Drugs. 2024; 22(1):21. https://doi.org/10.3390/md22010021
Chicago/Turabian StyleLi, Yanqing, Naying Gong, Le Zhou, Zhijie Yang, Hua Zhang, Yucheng Gu, Junying Ma, and Jianhua Ju. 2024. "OSMAC-Based Discovery and Biosynthetic Gene Clusters Analysis of Secondary Metabolites from Marine-Derived Streptomyces globisporus SCSIO LCY30" Marine Drugs 22, no. 1: 21. https://doi.org/10.3390/md22010021
APA StyleLi, Y., Gong, N., Zhou, L., Yang, Z., Zhang, H., Gu, Y., Ma, J., & Ju, J. (2024). OSMAC-Based Discovery and Biosynthetic Gene Clusters Analysis of Secondary Metabolites from Marine-Derived Streptomyces globisporus SCSIO LCY30. Marine Drugs, 22(1), 21. https://doi.org/10.3390/md22010021