The Discovery of Weddellamycin, a Tricyclic Polyene Macrolactam Antibiotic from an Antarctic Deep-Sea-Derived Streptomyces sp. DSS69, by Heterologous Expression
Abstract
:1. Introduction
2. Results
2.1. Secondary Metabolic Potential of Streptomyces sp. DSS69
2.2. Isolation and Characterization of Weddellamycin (1) Produced by Heterologous Expression of the wdl BGC
2.3. Proposed Biosynthetic Pathway of Weddellamycin
2.4. Enhancing the Production of Weddellamycin
2.5. Biological Activities
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Strains, Plasmids, Primers, and Culture Conditions
3.3. Genome Sequencing and Bioinformatic Analysis
3.4. BAC Library Construction and Screening
3.5. Heterologous Expression, Fermentation, and Isolation
3.6. Construction of Gene Deletion and Overexpression Mutants
3.7. Metabolic Analysis
3.8. Antibacterial and Antifungal Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvarez, R.; de Lera, A.R. Natural polyenic macrolactams and polycyclic derivatives generated by transannular pericyclic reactions: Optimized biogenesis challenging chemical synthesis. Nat. Prod. Rep. 2021, 38, 1136–1220. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Jiang, H.; Liu, X.; Zhou, J.; Wu, B. Polyene macrolactams from marine and terrestrial sources: Structure, production strategies, biosynthesis and bioactivities. Mar. Drugs 2022, 20, 360. [Google Scholar] [CrossRef] [PubMed]
- Messaoudi, O.; Sudarman, E.; Bendahou, M.; Jansen, R.; Stadler, M.; Wink, J. Kenalactams A–E, polyene macrolactams isolated from Nocardiopsis CG3. J. Nat. Prod. 2019, 82, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Kojiri, K.; Nakajima, S.; Suzuki, H.; Kondo, H.; Suda, H. A new marocyclic lactam antibiotic, BE-14106 i. taxonomy, isolation, biological activity and structural elucidation. J. Antibiot. 1992, 45, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Yeo, W.L.; Heng, E.; Tan, L.L.; Lim, Y.W.; Ching, K.C.; Tsai, D.; Jhang, Y.W.; Lauderdale, T.; Shia, K.; Zhao, H.; et al. Biosynthetic engineering of the antifungal, anti-MRSA auroramycin. Microb. Cell Fact. 2020, 19, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, D.; Zhang, R.; Wang, Y.; Kong, F.; Fu, P.; Zhu, W. Novel macrolactams from a deep-sea-derived Streptomyces species. Mar. Drugs 2021, 19, 13. [Google Scholar] [CrossRef]
- Shen, J.; Wang, J.; Chen, H.; Wang, Y.; Zhu, W.; Fu, P. Cyclamenols E and F, two diastereoisomeric bicyclic macrolactams with a cyclopentane moiety from an Antarctic Streptomyces species. Org. Chem. Front. 2020, 7, 310–317. [Google Scholar] [CrossRef]
- Nie, Y.; Wu, Y.; Wang, C.; Lin, R.; Xie, Y.; Fang, D.; Jiang, H.; Lian, Y. Structure elucidation and antitumour activity of a new macrolactam produced by marine-derived actinomycete Micromonospora sp. FIM05328. Nat. Prod. Res. 2018, 32, 2133–2138. [Google Scholar] [CrossRef]
- Qi, S.; Gui, M.; Li, H.; Yu, C.; Li, H.; Zeng, Z.; Sun, P. Secondary metabolites from marine Micromonospora: Chemistry and bioactivities. Chem. Biodivers. 2020, 17, e2000024. [Google Scholar] [CrossRef]
- Derewacz, D.K.; Covington, B.C.; Mclean, J.A.; Bachmann, B.O. Mapping microbial response metabolomes for induced natural product discovery. ACS Chem. Biol. 2015, 10, 1998–2006. [Google Scholar] [CrossRef]
- Chen, J.; Xu, L.; Zhou, Y.; Han, B. Natural products from Actinomycetes associated with marine organisms. Mar. Drugs 2021, 19, 629. [Google Scholar] [CrossRef] [PubMed]
- Seibel, E.; Um, S.; Dayras, M.; Bodawatta, K.H.; de Kruijff, M.; Jønsson, K.A.; Poulsen, M.; Kim, K.H.; Beemelmanns, C. Genome mining for macrolactam-encoding gene cluster allowed for the network-guided isolation of β-amino acid-containing cyclic derivatives and heterologous production of ciromicin A. Commun. Chem. 2020, 6, 257. [Google Scholar] [CrossRef] [PubMed]
- Schulze, C.J.; Donia, M.S.; Siqueira-Neto, J.L.; Ray, D.; Raskatov, J.A.; Green, R.E.; Mckerrow, J.H.; Fischbach, M.A.; Linington, R.G. Genome-directed lead discovery: Biosynthesis, structure elucidation, and biological evaluation of two families of polyene macrolactams against Trypanosoma brucei. ACS Chem. Biol. 2015, 10, 2373–2381. [Google Scholar] [CrossRef] [PubMed]
- Udwary, D.W.; Zeigler, L.; Asolkar, R.N.; Singan, V.; Lapidus, A.; Fenical, W.; Jensen, P.R.; Moore, B.S. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc. Natl. Acad. Sci. USA 2007, 104, 10376–10381. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, X.; Sun, G.; Li, L.; Jiang, B.; Li, S.; Bai, L.; Liu, H.; Yu, L.; Wu, L. Genome-guided discovery of pretilactam from Actinosynnema pretiosum ATCC 31565. Molecules 2019, 24, 2281. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.; Hug, J.J.; Fu, C.; Bian, X.; Zhang, Y.; Müller, R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat. Prod. Rep. 2019, 36, 1412–1436. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Kanagasabhapathy, M.; Janussen, D.; Xue, S.; Zhang, W. Phylogenetic diversity of Gram-positive bacteria cultured from Antarctic deep-sea sponges. Polar Biol. 2011, 34, 1501–1512. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic. Acids. Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Beom, J.Y.; Chung, B.; Shin, Y.; Byun, W.S.; Moon, K.; Bae, M.; Lee, S.K.; Oh, K.; Shin, J.; et al. Bombyxamycins A and B, cytotoxic macrocyclic lactams from an intestinal bacterium of the silkworm Bombyx mori. Org. Lett. 2019, 21, 1804–1808. [Google Scholar] [CrossRef]
- Shin, Y.; Kang, S.; Byun, W.S.; Jeon, C.; Chung, B.; Beom, J.Y.; Hong, S.; Lee, J.; Shin, J.; Kwak, Y.; et al. Absolute configuration and antibiotic activity of piceamycin. J. Nat. Prod. 2020, 83, 277–285. [Google Scholar] [CrossRef]
- Grubbs, K.J.; May, D.S.; Sardina, J.A.; Dermenjian, R.K.; Wyche, T.P.; Pinto-Tomás, A.A.; Clardy, J.; Currie, C.R. Pollen Streptomyces produce antibiotic that inhibits the honey bee pathogen Paenibacillus larvae. Front. Microbiol. 2021, 12, 632637. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Gao, G.; Lü, J.; Long, Q.; Chen, X.; Zhang, F.; Xu, M.; Liu, K.; Wang, Y.; Deng, Z.; et al. Engineered Streptomyces lividans strains for optimal identification and expression of cryptic biosynthetic gene clusters. Front. Microbiol. 2018, 9, 3042. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, N.; Zhou, J.; He, J. Construction of a new bacterial artificial chromosome (BAC) vector for cloning of large DNA fragments and heterologous expression in Streptomyces. Acta Microbiol. Sin. 2012, 52, 30–37. [Google Scholar]
- Schulz, D.; Nachtigall, J.; Riedlinger, J.; Schneider, K.; Poralla, K.; Imhoff, J.F.; Beil, W.; Nicholson, G.; Fiedler, H.P.; Süssmuth, R.D. Piceamycin and its N-acetylcysteine adduct is produced by Streptomyces sp. GB 4-2. J. Antibiot. 2009, 62, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Haydock, S.F.; Aparicio, J.F.; Molnar, I.; Schwecke, T.; Khaw, L.E.; Konig, A.; Marsden, A.F.; Galloway, I.S.; Staunton, J.; Leadlay, P.F. Divergent sequence motifs correlated with the substrate specificity of (methyl)malonyl-CoA: Acyl carrier protein transacylase domains in modular polyketide synthases. FEBS Lett. 1995, 374, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.J.; Khosla, C. Engineering the acyltransferase substrate specificity of sssembly line polyketide synthases. J. R. Soc. Interface 2013, 10, 20130297. [Google Scholar] [CrossRef] [PubMed]
- Keatinge-Clay, A.T. A tylosin ketoreductase reveals how chirality is determined in polyketides. Chem. Biol. 2007, 14, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Garg, A.; Khosla, C.; Cane, D.E. Mechanism and stereochemistry of polyketide chain elongation and methyl group epimerization in polyether biosynthesis. J. Am. Chem. Soc. 2017, 139, 3283–3292. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.; Jenner, M.; Jian, X.; Griffiths, D.; Roberts, D.M.; Rey-Carrizo, M.; Challis, G.L. Diene incorporation by a dehydratase domain variant in modular polyketide synthases. Nat. Chem. Biol. 2022, 18, 1410–1416. [Google Scholar] [CrossRef]
- Skellam, E.J.; Stewart, A.K.; Strangman, W.K.; Wright, J.L.C. Identification of micromonolactam, a new polyene macrocyclic lactam from two marine Micromonospora strains using chemical and molecular methods: Clarification of the biosynthetic pathway from a glutamate starter unit. J. Antibiot. 2013, 66, 431–441. [Google Scholar] [CrossRef]
- Oh, D.C.; Poulsen, M.; Currie, C.R.; Clardy, J. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp. Org. Lett. 2011, 13, 752–755. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhao, J.; Li, L.; Chen, Z.; Wen, Y.; Li, J. The pathway-specific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis. Mol. Genet. Genom. 2010, 283, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, H.; Yu, P.; Guo, Y.; Luo, S.; Chen, Z.; Mao, X.; Guan, W.; Li, Y. SlnR is a positive pathway-specific regulator for salinomycin biosynthesis in Streptomyces albus. Appl. Microbiol. Biotechnol. 2017, 101, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, L.; Wan, D.; Qi, J.; Gong, R.; Deng, Z.; Chen, W. Characterization of the aurantimycin biosynthetic gene cluster and enhancing its production by manipulating two pathway-specific activators in Streptomyces aurantiacus JA 4570. Microb. Cell Fact. 2016, 15, 160. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, X.; Luo, S.; He, F.; Chen, Z.; Wen, Y.; Li, J. A novel TetR family transcriptional regulator, SAV576, negatively controls avermectin biosynthesis in Streptomyces avermitilis. PLoS ONE 2013, 8, e71330. [Google Scholar] [CrossRef] [PubMed]
- Ostash, B.; Rebets, Y.; Myronovskyy, M.; Tsypik, O.; Ostash, I.; Kulachkovskyy, O.; Datsyuk, Y.; Nakamura, T.; Walker, S.; Fedorenko, V. Identification and characterization of the Streptomyces globisporus 1912 regulatory gene lndYR that affects sporulation and antibiotic production. Microbiology 2011, 157, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Flett, F.; Mersinias, V.; Smith, C.P. High efficiency intergeneric conjugal transfer of plasmid from Escherichia colI to methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 1997, 155, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef]
- Gregory, M.A.; Till, R.; Smith, M.C.M. Integration site for Streptomyces phage φBT1 and development of site-specific integrating vectors. J. Bacteriol. 2003, 185, 5320–5323. [Google Scholar] [CrossRef]
- Fernández, E.; Weissbach, U.; Sanchez, R.C.; Braña, A.F.; Méndez, C.; Rohr, J.; Salas, J.A. Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J. Bacteriol. 1998, 180, 4929–4937. [Google Scholar] [CrossRef]
- Tominaga, H.; Ishiyama, M.; Ohseto, F.; Sasamoto, K.; Hamamoto, T.; Suzuki, K.; Watanabe, M. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Commun. 1999, 36, 47–50. [Google Scholar] [CrossRef]
- MacNeil, D.J.; Gewain, K.M.; Ruby, C.L.; Dezeny, G.; Gibbons, P.H.; Maeneil, T. Analysis of Streptomyces avermitilis Genes Required for Avermectin Biosynthesis Utilizing a Novel Intergration Vector. Gene 1992, 1, 61–68. [Google Scholar]
- Gao, G.; Liu, X.; Xu, M.; Wang, Y.; Zhang, F.; Xu, L.; Lv, J.; Long, Q.; Kang, Q.; Ou, H.; et al. Formation of an Angular Aromatic Polyketide from a Linear Anthrene Precursor via Oxidative Rearrangement. Cell Chem. Biol. 2017, 24, 881–891. [Google Scholar] [CrossRef] [PubMed]
No. | 1H NMR | 13C NMR | No. | 1H NMR | 13C NMR |
---|---|---|---|---|---|
1 | 165.6 (C) | 15 | 5.61 (1H, br dd, 6.4, 3.7) | 78.0 (CH) | |
2 | 5.49 (1H, d, 11.4) | 123.5 (CH) | 16 | 5.76 (1H, dd, 15.5, 3.7) | 129.4 (CH) |
3 | 6.49 (1H, dd, 11.8, 11.4) | 131.8 (CH) * | 17 | 6.43 (1H, dd, 15.5, 11.2) | 129.0 (CH) |
4 | 6.89 (1H, dd, 11.8, 10.8) | 124.1 (CH) | 18 | 5.95 (1H, dd, 11.2, 10.8) | 126.9 (CH) |
5 | 5.95 (1H, dd, 11.2, 10.8) | 133.6 (CH) | 19 | 6.08 (1H, dd, 11.6, 10.8) | 132.5 (CH) |
6 | 6.37 (1H, dd, 15.3, 11.2) | 122.8 (CH) | 20 | 6.28 (1H, dd, 14.8, 11.6) | 126.5 (CH) |
7 | 5.75 (1H, d, 15.3) | 143.2 (CH) | 21 | 6.54 (1H, dd, 14.8, 11.2) | 131.7 (CH) * |
8 | 39.8 (C) ** | 22 | 6.00 (1H, dd, 11.2, 11.0) | 129.4 (CH) | |
9 | 2.45 (1H, d, 19.2) 2.55 (1H, d, 19.2) | 49.5 (CH2) | 23 | 5.13 (1H, dd, 11.0, 9.2) | 136.9 (CH) |
10 | 202.1 (C) | 24 | 2.92 (1H, m) | 32.5 (CH) | |
11 | 158.8 (C) | 25 | 2.96 (1H, ddd, 12.5, 10.1, 7.5) 3.05 (1H, ddd, 12.5, 4.3, 3.7) | 44.4 (CH2) | |
12 | 138.4 (C) | 26 | 0.94 (3H, d, 6.3) | 18.0 (CH3) | |
13 | 191.1 (C) | 27 | 1.42 (3H, s) | 24.1 (CH3) | |
14 | 2.90 (1H, br d, 17.6) 3.15 (1H, dd, 17.6, 6.4) | 38.6 (CH2) | NH | 7.65 (1H, dd, 7.5, 4.3) |
Strains | 1 | Ampicillin |
---|---|---|
Staphylococcus aureus ATCC25923 | 0.21 | 0.20 |
MRSA | 0.10 | 50 |
MRSE | 0.21 | >100 |
Enterococcus faecalis ATCC29212 | 0.83 | >100 |
Micrococcus luteus ATCC4698 | 0.21 | 0.39 |
Bacillus altitudinis 41KF2b | 0.21 | 0.20 |
Listeria monocytogenes ATCC BAA-679 | 0.10 | 3.12 |
Candida albicans | 3.33 | >100 |
Escherichia coli DH10B | >27 | 100 |
Cell Line | 1 | DOX |
---|---|---|
HL-60 | 4.93 ± 0.26 | 0.51 ± 0.02 |
HepG2 | 11.50 ± 0.14 | 0.19 ± 0.01 |
HCT 116 | 2.07 ± 0.04 | 0.07 ± 0.01 |
U-87MG | 8.76 ± 0.12 | 0.09 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Liu, K.; Hong, J.; Cui, Z.; He, W.; Wang, Y.; Deng, Z.; Tao, M. The Discovery of Weddellamycin, a Tricyclic Polyene Macrolactam Antibiotic from an Antarctic Deep-Sea-Derived Streptomyces sp. DSS69, by Heterologous Expression. Mar. Drugs 2024, 22, 189. https://doi.org/10.3390/md22040189
Chen L, Liu K, Hong J, Cui Z, He W, Wang Y, Deng Z, Tao M. The Discovery of Weddellamycin, a Tricyclic Polyene Macrolactam Antibiotic from an Antarctic Deep-Sea-Derived Streptomyces sp. DSS69, by Heterologous Expression. Marine Drugs. 2024; 22(4):189. https://doi.org/10.3390/md22040189
Chicago/Turabian StyleChen, Lu, Kai Liu, Jiali Hong, Zhanzhao Cui, Weijun He, Yemin Wang, Zixin Deng, and Meifeng Tao. 2024. "The Discovery of Weddellamycin, a Tricyclic Polyene Macrolactam Antibiotic from an Antarctic Deep-Sea-Derived Streptomyces sp. DSS69, by Heterologous Expression" Marine Drugs 22, no. 4: 189. https://doi.org/10.3390/md22040189
APA StyleChen, L., Liu, K., Hong, J., Cui, Z., He, W., Wang, Y., Deng, Z., & Tao, M. (2024). The Discovery of Weddellamycin, a Tricyclic Polyene Macrolactam Antibiotic from an Antarctic Deep-Sea-Derived Streptomyces sp. DSS69, by Heterologous Expression. Marine Drugs, 22(4), 189. https://doi.org/10.3390/md22040189