Effects of UV/H2O2 Degradation on the Physicochemical and Antibacterial Properties of Fucoidan
Abstract
:1. Introduction
2. Results and Discussion
2.1. pH Values and Molecular Weights
2.2. Chemical Composition
2.3. Monosaccharide Composition
2.4. Fourier Transform Infrared Spectroscopy
2.5. Antibacterial Zones
2.6. Analysis of Antibacterial Activity of DFuc-90
2.6.1. MIC and MBC
2.6.2. Bacterial Growth Curve
2.6.3. Bacterial Cell Viability and Metabolic Activity
2.6.4. Bacterial Cell Wall Integrity
2.6.5. Bacterial Reactive Oxygen Species
2.6.6. Bacterial Intracellular ATP
3. Materials and Methods
3.1. Chemicals and Regents
3.2. Extract and Degradation of Fucoidan
3.3. pH Values and Molecular Weights
3.4. Chemical Compositions
3.5. Monosaccharide Composition
3.6. Fourier Transform Infrared Spectroscopy
3.7. Bacterial Strains and Culture
3.8. Antibacterial Zones
3.9. Antibacterial Activity of DFuc-90
3.9.1. Bacterial MIC and MBC
3.9.2. Bacterial Growth Curve
3.9.3. Bacterial Cell Viability and Metabolic Activity
3.9.4. Bacterial Cell Wall Integrity
3.9.5. Bacterial Intracellular Reactive Oxygen Species
3.9.6. Bacterial Intracellular ATP
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ge, H.; Wang, Y.; Zhao, X. Research on the drug resistance mechanism of foodborne pathogens. Microb. Pathog. 2022, 162, 105306. [Google Scholar] [CrossRef]
- Berri, M.; Slugocki, C.; Olivier, M.; Helloin, E.; Jacques, I.; Salmon, H.; Demais, H.; Le Goff, M.; Collen, P.N. Marine-sulfated polysaccharides extract of Ulva armoricana green algae exhibits an antimicrobial activity and stimulates cytokine expression by intestinal epithelial cells. J. Appl. Phycol. 2016, 28, 2999–3008. [Google Scholar] [CrossRef]
- Vishwakarma, J.; Vavilala, S.L. Evaluating the antibacterial and antibiofilm potential of sulphated polysaccharides extracted from green algae Chlamydomonas reinhardtii. J. Appl. Microbiol. 2019, 127, 1004–1017. [Google Scholar] [CrossRef] [PubMed]
- Tomori, M.; Nagamine, T.; Miyamoto, T.; Iha, M. Evaluation of the immunomodulatory effects of fucoidan derived from Cladosiphon okamuranus tokida in mice. Mar. Drugs 2019, 17. [Google Scholar] [CrossRef] [PubMed]
- Sanjeewa, K.K.A.; Herath, K.H.I.N.; Yang, H.; Choi, C.S.; Jeon, Y. Anti-inflammatory mechanisms of fucoidans to treat inflammatory diseases: A review. Mar. Drugs 2021, 19, 678. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yi, K.; Zhao, Y. Fucoidan inhibits amyloid-beta-induced toxicity in transgenic Caenorhabditis elegans by reducing the accumulation of amyloid-beta and decreasing the production of reactive oxygen species. Food Funct. 2018, 9, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Ashayerizadeh, O.; Dastar, B.; Pourashouri, P. Study of antioxidant and antibacterial activities of depolymerized fucoidans extracted from Sargassum tenerrimum. Int. J. Biol. Macromol. 2020, 151, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Lahrsen, E.; Liewert, I.; Alban, S. Gradual degradation of fucoidan from Fucus vesiculosus and its effect on structure, antioxidant and antiproliferative activities. Carbohydr. Polym. 2018, 192, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Qishan, S.; Zhang, Q.; Wang, J.; Yue, Y.; Geng, L.; Wu, N. Low molecular weight fucoidan LF2 improves the immunosuppressive tumor microenvironment and enhances the anti-pancreatic cancer activity of oxaliplatin. Biomed. Pharmacother. 2024, 173, 116360. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, X.; Sun-Waterhouse, D.; Zhu, B.; You, L.; Hileuskaya, K. Polysaccharides from Sargassum fusiforme after UV/H2O2 degradation effectively ameliorate dextran sulfate sodium-induced colitis. Food Funct. 2021, 12, 11747–11759. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Yong, J.; Lv, B.; Guo, S.; You, L.; Cheung, P.; Kulikouskaya, V. Enhanced in vitro anti-photoaging effect of degraded seaweed polysaccharides by UV/H2O2 treatment. Mar. Drugs 2023, 21, 430. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Valdez, O.; Champagne, P.; Cunningham, M.F. Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Prog. Polym. Sci. 2018, 76, 151–173. [Google Scholar] [CrossRef]
- Gong, Y.; Ma, Y.; Cheung, P.C.; You, L.; Liao, L.; Pedisić, S.; Kulikouskaya, V. Structural characteristics and anti-inflammatory activity of UV/H2O2-treated algal sulfated polysaccharide from Gracilaria Lemaneiformis. Food Chem. Toxicol. 2021, 152, 112157. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Tao, L.; Wang, Z.; Li, L.; Zhao, C.; Shi, C.; Sheng, J.; Tian, Y. Effects of UV/H2O2 degradation on Moringa oleifera Lam. leaves polysaccharides: Composition, in vitro fermentation and prebiotic properties on gut microorganisms. Food Chem. X 2024, 22, 101272. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yang, J.; Yue, K.; Wang, Z. Preparation of modified citrus pectin (MCP) using an advanced oxidation process with hydroxyl radicals generated by UV/H2O2. Food Hydrocoll. 2020, 102, 105587. [Google Scholar] [CrossRef]
- Chen, X.; Sun-Waterhouse, D.; Yao, W.; Li, X.; Zhao, M.; You, L. Free radical-mediated degradation of polysaccharides: Mechanism of free radical formation and degradation, influence factors and product properties. Food Chem. 2021, 365, 130524. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.; Jung, M.; Jeong, I.; Yamazaki, K.; Kawai, Y.; Kim, B. Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Mar. Drugs 2018, 16, 301. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, Y.; Cao, M.J.; Liu, G.M.; Chen, Q.; Sun, L.; Chen, H. Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydr. Polym. 2017, 172, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Rutz, J.K.; Borges, C.D.; Zambiazi, R.C.; Crizel-Cardozo, M.M.; Kuck, L.S.; Noreña, C.P.Z. Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chem. 2017, 220, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Bai, J.; Shao, C.; Liu, J.; Zhang, Y.; Li, X.; Yang, Y.; Xu, Y.; Wang, L. Degradation of blue honeysuckle polysaccharides, structural characteristics and antiglycation and hypoglycemic activities of degraded products. Food Res. Int. 2021, 143, 110281. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Sun-Waterhouse, D.; You, L. Insights into the mechanisms underlying the degradation of xylooligosaccharides in UV/H2O2 system. Carbohydr. Polym. 2023, 317, 121091. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, H.; Yang, X.; Li, L.; Qi, B.; Hu, X.; Ma, H.; Li, C.; Pan, C. Degradation of sulphated polysaccharides from Grateloupia livida and antioxidant activity of the degraded components. Int. J. Biol. Macromol. 2020, 156, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Ji Kang, X.J.N.W. Insights into the structure-bioactivity relationships of marine sulfated polysaccharides: A review. Food Hydrocoll. 2021. [Google Scholar] [CrossRef]
- Saravana, P.S.; Cho, Y.; Patil, M.P.; Cho, Y.; Kim, G.; Park, Y.B.; Woo, H.; Chun, B. Hydrothermal degradation of seaweed polysaccharide: Characterization and biological activities. Food Chem. 2018, 268, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Chen, W.; Zhang, W.; Zhang, H. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: A primary approach. Carbohydr. Polym. 2009, 78, 620–625. [Google Scholar] [CrossRef]
- Hua, Y.; Zhang, M.; Fu, C.; Chen, Z.; Chan, G.Y.S. Structural characterization of a 2-O-acetylglucomannan from Dendrobium officinale stem. Carbohydr. Res. 2004, 339, 2219–2224. [Google Scholar] [CrossRef] [PubMed]
- Xiang, A.; Li, W.; Zhao, Y.; Ju, H.; Xu, S.; Zhao, S.; Yue, T.; Yuan, Y. Purification, characterization and antioxidant activity of selenium-containing polysaccharides from pennycress (Thlaspi arvense L.). Carbohydr. Res. 2022, 512, 108498. [Google Scholar] [CrossRef]
- Peasura, N.; Laohakunjit, N.; Kerdchoechuen, O.; Wanlapa, S. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents. Int. J. Biol. Macromol. 2015, 81, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, S.; Wang, Q.; Lu, X.; Lin, L.; Tian, Y.; Xiao, J.; Zheng, B. Characterization and hypoglycemic activity of a β-pyran polysaccharides from bamboo shoot (Leleba oldhami Nakal) shells. Carbohydr. Polym. 2016, 144, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.S. Pyrone-derived marine natural products: A review on isolation, bio-activities and synthesis. Curr. Org. Chem. 2020, 24, 354–401. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, Y.; Lai, Z.; Hu, X.; Wang, L.; Wang, X.; Li, Z.; Gao, M.; Yang, Y.; Wang, Q.; et al. Effect of monosaccharide composition and proportion on the bioactivity of polysaccharides: A review. Int. J. Biol. Macromol. 2024, 254, 127955. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Chen, T.; Chen, X. A review of the antibacterial activity and mechanisms of plant polysaccharides. Trends Food Sci. Technol. 2022, 123, 264–280. [Google Scholar] [CrossRef]
- Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.L.; Heux, L.; Dubreuil, F.; Rochas, C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 2008, 9, 57–65. [Google Scholar] [CrossRef] [PubMed]
- López-Lorente, Á.I.; Cárdenas, S.; González-Sánchez, Z.I. Effect of synthesis, purification and growth determination methods on the antibacterial and antifungal activity of gold nanoparticles. Mater. Sci. Eng. C 2019, 103, 109805. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Zheng, W.; Han, X.; Jiang, Y.; Hu, P.; Tang, Z.; Shi, L. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae. J. Funct. Foods 2017, 38, 273–279. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, Y.; Wu, Q.; Guo, W.; Chen, H.; Zhang, W.; Li, Y.; Lu, Y.; Wu, Q.; Pan, W.; et al. Antibacterial effect and mechanism against Escherichia coli of polysaccharides from Armillariella tabescens mycelia. Int. J. Biol. Macromol. 2022, 207, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Benito, A.; Ventoura, G.; Casadei, M.; Robinson, T.; Mackey, B. Variation in resistance of natural isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat, and other stresses. Appl. Environ. Microbiol. 1999, 65, 1564–1569. [Google Scholar] [CrossRef] [PubMed]
- Taslimi, P.; Turkan, F.; Gungordu, S.D.; Aras, A.; Erden, Y.; Celebioglu, H.U.; Tuzun, B.; Agirtas, M.S.; Gunay, S.; Gulcin, I. Metal contained Phthalocyanines with 3,4-Dimethoxyphenethoxy substituents: Their anticancer, antibacterial activities and their inhibitory effects on some metabolic enzymes with molecular docking studies. J. Biomol. Struct. Dyn. 2022, 40, 2991–3002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhou, X.; Gou, H.; Chang, H.; Lan, J.; Li, J.; Li, Z.; Gao, M.; Wang, Z.; Yi, Y.; et al. Antibacterial activity of a polysaccharide isolated from Artemisia argyi leaf against Staphylococcus aureus and mechanism investigation. Int. J. Biol. Macromol. 2023, 253, 126636. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Kang, S.; Guo, M.; Shen, C.; Wang, L.; Xia, X.; Lü, X.; Shi, C. Evaluation of the antibacterial mechanism and biofilm removal effect of eugenol on Vibrio vulnificus and its application in fresh oysters. Food Biosci. 2022, 50, 102103. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Z.; Guo, Z.; Zhao, Z.; Zhao, Y.; Wang, X. Structural investigation of a polysaccharide from the mycelium of Enterobacter cloacae and its antibacterial activity against extensively drug-resistant E. cloacae producing SHV-12 extended-spectrum β-lactamase. Carbohydr. Polym. 2018, 195, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, J.; Li, W.; Li, R.; Wang, X.; Qiao, H.; Sun, Q.; Zhang, H. Antibacterial mechanism of the polysaccharide produced by Chaetomium globosum CGMCC 6882 against Staphylococcus aureus. Int. J. Biol. Macromol. 2020, 159, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wang, S.; Hu, Y.; Liu, X.; Tao, J.; Sagratini, G.; Xiang, Q. Insight into the antibacterial activity of lauric arginate against Escherichia coli O157:H7: Membrane disruption and oxidative stress. LWT 2022, 162, 113449. [Google Scholar] [CrossRef]
- Chen, X.; You, L.; Ma, Y.; Zhao, Z.; Kulikouskaya, V. Influence of UV/H2O2 treatment on polysaccharides from Sargassum fusiforme: Physicochemical properties and RAW 264.7 cells responses. Food. Chem. Toxicol. 2021, 153, 112246. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Chen, X.; Chen, Y.; You, L.; Hileuskaya, K. UV/H2O2-degraded polysaccharides from Sargassum fusiforme: Purification, structural properties, and anti-inflammatory activity. Mar. Drugs 2023, 21, 561. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiao, S.; Chen, J.; Xu, H. Inulin-type fructans obtained from Atractylodis Macrocephalae by water/alkali extraction and immunoregulatory evaluation. Int. J. Biol. Macromol. 2023, 230, 123212. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Liu, M.; Wei, Y.; Tong, L.; Guo, S.; Kang, H.; Zhang, W.; Yu, Z.; Zhang, F.; Duan, J.A. Structural characteristics and structure-activity relationship of four polysaccharides from Lycii fructus. Int. J. Biol. Macromol. 2023, 253, 127256. [Google Scholar] [CrossRef]
- Matuschek, E.; Copsey-Mawer, S.; Petersson, S.; Ahman, J.; Morris, T.E.; Kahlmeter, G. The European committee on antimicrobial susceptibility testing disc diffusion susceptibility testing method for frequently isolated anaerobic bacteria. Clin. Microbiol. Infect. 2023, 29, 791–795. [Google Scholar] [CrossRef]
- He, R.; Zhong, Q.; Chen, W.; Zhang, M.; Pei, J.; Chen, H.; Chen, W. Antimicrobial mechanism of linalool against Brochothrix thermosphacta and its application on chilled beef. Food Res. Int. 2022, 157, 111407. [Google Scholar] [CrossRef] [PubMed]
- Usjak, L.; Stojkovic, D.; Carevic, T.; Milutinovic, V.; Sokovic, M.; Niketic, M.; Petrovic, S. Chemical analysis and investigation of antimicrobial and antibiofilm activities of prangos trifida (Apiaceae). Antibiotics 2024, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wei, M.; You, L. Protective effect of peptides from Pinctada martensii meat on the H2O2-induced oxidative injured HepG2 cells. Antioxidants 2023, 12, 535. [Google Scholar] [CrossRef]
- Josué Villegas-Mendoza, R.C.H.M. The chemical transformation of the cellular toxin INT (2-(4-Iodophenyl)-3-(4-Nitrophenyl)-5-(Phenyl) Tetrazolium Chloride) as an indicator of prior respiratory activity in Aquatic bacteria. Int. J. Mol. Sci. 2019, 20, 782. [Google Scholar] [CrossRef]
- Liu, Y.; Dou, B.; Gong, F.; Hu, J.; Zhou, M.; Pan, Y.; Wu, X.; Huang, X.; Xie, Z.; Hao, H.; et al. Chemical characteristics and anti-Escherichia coli mechanism of water-soluble extracts from yeast cell walls. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 16–82. [Google Scholar] [CrossRef]
- Aqawi, M.; Sionov, R.V.; Gallily, R.; Friedman, M.; Steinberg, D. Anti-bacterial properties of cannabigerol toward Streptococcus mutans. Front. Microbiol. 2021, 12, 656471. [Google Scholar] [CrossRef]
Sample | Average Molecular Weights (kDa) |
---|---|
Fuc | 530.7 |
DFuc-15 | 121.8 |
DFuc-30 | 88.3 |
DFuc-45 | 47.7 |
DFuc-60 | 39.6 |
DFuc-75 | 26.7 |
DFuc-90 | 23.2 |
DFuc-120 | 3.6 |
DFuc-150 | 3.5 |
DFuc-180 | 3.4 |
Sample | Total Sugar (%) | Uronic Acid (%) | Protein (%) | Sulfate Group (%) |
---|---|---|---|---|
Fuc | 73.9 ± 2.0 a | 9.1± 0.8 a | 6.4± 0.2 d | 26.9 ± 0.2 d |
DFuc-15 | 72.4 ± 1.3 a | 7.9 ± 0.6 b | 8.3± 0.5 bc | 26.6 ± 0.8 d |
DFuc-30 | 62.1 ± 2.2 b | 7.7 ± 0.7 b | 8.0 ± 0.5 abc | 27.1 ± 1.0 cd |
DFuc-45 | 61.9± 2.6 b | 7.6 ± 0.6 b | 8.7 ± 0.7 a | 27.1 ± 0.9 bcd |
DFuc-60 | 60.4 ± 3.3 c | 7.7± 0.5 b | 8.5 ± 0.1 ab | 27.4 ± 0.5 bcd |
DFuc-75 | 59.6 ± 2.3 c | 7.6± 0.7 b | 7.5 ± 0.8 c | 27.5 ± 0.6 bcd |
DFuc-90 | 61.2 ± 3.8 b | 7.5 ± 0.6 b | 7.7 ± 0.7 bc | 28.4 ± 0.3 ab |
DFuc-120 | 59.6 ± 2.2 bc | 7.3± 0.5 bc | 7.3 ± 0.6 cd | 28.2 ± 0.4 abc |
DFuc-150 | 59.2 ± 3.4 c | 5.9± 0.5 d | 7.9 ± 0.9 c | 28.5 ± 0.5 d |
DFuc-180 | 56.4± 4.4 c | 6.5 ± 0.2 c | 8.1 ± 0.5 abc | 28.7 ± 0.4 d |
Sample | Fucose | Rhamnose | Arabinose | Galactose | Glucose | Mannose | Xylose | Galacturonic Acid | Glucuronic Acid |
---|---|---|---|---|---|---|---|---|---|
Fuc | 39.1 | 1.7 | 1.0 | 44.4 | 1.4 | 2.9 | 1.1 | 0.0 | 8.5 |
DFuc-30 | 40.3 | 1.2 | 0.9 | 45.5 | 1.3 | 2.7 | 1.0 | 0.0 | 7.1 |
DFuc-90 | 41.0 | 0.8 | 1.0 | 43.4 | 1.9 | 3.3 | 0.8 | 0.3 | 7.5 |
DFuc-180 | 44.9 | 1.7 | 1.0 | 39.5 | 2.3 | 4.7 | 0.0 | 0.8 | 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Zhu, B.; Deng, L.; You, L. Effects of UV/H2O2 Degradation on the Physicochemical and Antibacterial Properties of Fucoidan. Mar. Drugs 2024, 22, 209. https://doi.org/10.3390/md22050209
He Z, Zhu B, Deng L, You L. Effects of UV/H2O2 Degradation on the Physicochemical and Antibacterial Properties of Fucoidan. Marine Drugs. 2024; 22(5):209. https://doi.org/10.3390/md22050209
Chicago/Turabian StyleHe, Zhicheng, Biyang Zhu, Lijuan Deng, and Lijun You. 2024. "Effects of UV/H2O2 Degradation on the Physicochemical and Antibacterial Properties of Fucoidan" Marine Drugs 22, no. 5: 209. https://doi.org/10.3390/md22050209
APA StyleHe, Z., Zhu, B., Deng, L., & You, L. (2024). Effects of UV/H2O2 Degradation on the Physicochemical and Antibacterial Properties of Fucoidan. Marine Drugs, 22(5), 209. https://doi.org/10.3390/md22050209