Isolation, Structure Elucidation and Biological Evaluation of Lomaiviticins F–H, Dimeric Benzofluorene Glycosides from Marine-Derived Micromonospora sp. Bacterium
Abstract
:1. Introduction
2. Results and Discussion
2.1. IFS-Based Dereplication
2.2. Structure Elucidation
2.3. Biological Activity
3. Conclusions
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Biological Material
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IFS | Isotopic Fine Structure |
DSB | Double-Strand Breaks |
References
- He, H.; Ding, W.; Bernan, V.S.; Richardson, A.D.; Ireland, C.M.; Greenstein, M.; Ellestad, G.A.; Carter, G.T. Lomaiviticins A and B, potent antitumor antibiotics from Micromonospora lomaivitiensis. J. Am. Chem. Soc. 2001, 123, 5362–5363. [Google Scholar] [CrossRef] [PubMed]
- Woo, C.M.; Beizer, N.E.; Janso, J.E.; Herzon, S.B. Isolation of lomaiviticins C−E, transformation of lomaiviticin C to lomaiviticin A, complete structure elucidation of lomaiviticin A, and structure-activity analyses. J. Am. Chem. Soc. 2012, 134, 15285–15288. [Google Scholar] [CrossRef] [PubMed]
- Colis, L.C.; Woo, C.M.; Hegan, D.C.; Li, Z.; Glazer, P.M.; Herzon, S.B. The cytotoxicity of (-)-lomaiviticin A arises from induction of double-strand breaks in DNA. Nat. Chem. 2014, 6, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Colis, L.C.; Hegan, D.C.; Kaneko, M.; Glazer, P.M.; Herzon, S.B. Mechanism of action studies of lomaiviticin A and the monomeric lomaiviticin aglycon. Selective and potent activity toward DNA double-strand break repair-deficient cell lines. J. Am. Chem. Soc. 2015, 137, 5741–5747. [Google Scholar] [CrossRef] [PubMed]
- Herzon, S.B. The mechanism of action of (-)-Lomaiviticin A. Acc. Chem. Res. 2017, 50, 2577–2588. [Google Scholar] [CrossRef]
- Kim, L.J.; Xue, M.; Li, X.; Xu, Z.; Paulson, E.; Mercado, B.; Nelson, H.M.; Herzon, S.B. Structure Revision of the Lomaiviticins. J. Am. Chem. Soc. 2021, 143, 6578–6585. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Matsuya, T.; Omura, S.; Otani, M.; Nakagawa, A.; Takeshima, H.; Iwai, Y.; Ohtani, M.; Hata, T. A new antibiotic, kanamycin. J. Antibiot. 1970, 23, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Hata, T.; Omura, S.; Iwai, Y.; Nakagawa, A.; Otani, M.; Ito, S.; Matsuya, T. A new antibiotic, kinamycin: Fermentation, isolation, purification and properties. J. Antibiot. 1971, 24, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Omura, S.; Nakagawa, A.; Yamada, H.; Hata, T.; Furusaki, A.; Watanabe, T.A. Structures and biological properties of Kinamycin A, B, C, and D. Chem. Pharm. Bull. 1973, 21, 931–940. [Google Scholar] [CrossRef]
- Furusaki, A.; Matsui, M.; Watanabe, T.; Omura, S.; Nakagawa, A.; Hata, T. The Crystal and molecular structure of kinamycin C p-bromobenzoate. Isr. J. Chem. 1972, 10, 173–187. [Google Scholar] [CrossRef]
- Seaton, P.J.; Gould, S.J. New products related to kinamycin from Streptomyces murayamaensis. II. Structures of pre-kinamycin, keto-anhydrokinamycin, and kinamycins E and F. J. Antibiot. 1989, 42, 189–197. [Google Scholar] [CrossRef]
- Young, J.; Ho, S.; Ju, W.; Chang, L. FL-120A-D′, new products related to kinamycin from Streptomyces chattanoogensis subsp. taitungensis subsp. nov. II. Isolation and structure determination. J. Antibiot. 1994, 47, 681–687. [Google Scholar] [CrossRef]
- Isshiki, K.; Sawa, T.; Naganawa, H.; Matsuda, N.; Hattori, S.; Hamada, M.; Takeuchi, T. 3-O-isobutyrylkinamycin C and 4-deacetyl-4-O-isobutyrylkinamycin C, new antibiotics produced by a Saccharothrix species. J. Antibiot. 1989, 42, 467–469. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.J.; Tamayo, N.; Melville, C.R.; Cone, M.C. Revised structures for the kinamycin antibiotics: 5-diazobenzo[b]fluorenes rather than benzo[b]carbazole cyanamides. J. Am. Chem Soc. 1994, 116, 2207–2208. [Google Scholar] [CrossRef]
- Janso, J.E.; Haltli, B.A.; Eustáquio, A.S.; Kulowski, K.; Waldman, A.J.; Zha, L.; Nakamura, H.; Bernan, V.S.; He, H.; Carter, G.T.; et al. Discovery of the lomaiviticin biosynthetic gene cluster in Salinispora pacifica. Tetrahedron 2014, 70, 4156–4164. [Google Scholar] [CrossRef] [PubMed]
- Kersten, R.D.; Lane, A.L.; Nett, M.; Richter, T.K.S.; Duggan, B.M.; Dorrestein, P.C.; Moore, B.S. Bioactivity-guided genome mining reveals the lomaiviticin biosynthetic gene cluster in Salinispora tropica. ChemBioChem 2013, 14, 955–962. [Google Scholar] [CrossRef]
- Xue, M.; Herzon, S.B. Mechanism of nucleophilic activation of (-)-lomaiviticin A. J. Am. Chem. Soc. 2016, 138, 15559–15562. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wyche, T.P.; Zhu, Y.; Braun, D.R.; Yan, J.-X.; Chanana, S.; Ge, Y.; Guzei, I.A.; Chevrette, M.G.; Currie, C.R.; et al. MS-derived isotopic fine structure reveals forazoline A as a thioketone-containing marine-derived natural product. Org. Lett. 2020, 22, 1275–1279. [Google Scholar] [CrossRef]
- Yan, J.X.; Wu, Q.; Maity, M.; Braun, D.R.; Alas, I.; Wang, X.; Yin, X.; Zhu, Y.; Bell, B.A.; Rajski, S.R.; et al. Rapid unambiguous structure elucidation of streptnatamide A, a new cyclic peptide isolated from a marine-derived Streptomyces sp. Chemistry 2023, 29, e202301813. [Google Scholar] [CrossRef]
- Kind, T.; Fiehn, O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinf. 2007, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhang, Q.; Zhu, Y.; Nie, F.; Wu, Z.; Yang, C.; Zhang, L.; Tian, X.; Zhang, C. Isolation, structure elucidation and biosynthesis of benzo[b]fluorene nenestatin A from deep-sea derived Micromonospora echinospora SCSIO 04089. Tetrahedron 2017, 73, 3585–3590. [Google Scholar] [CrossRef]
- Jiang, X.; Fang, Z.; Zhang, Q.; Liu, W.; Zhang, L.; Zhang, W.; Yang, C.; Zhang, H.; Zhu, Y.; Zhang, C. Discovery of a new asymmetric dimer nenestatin B and implications of a dimerizing enzyme in a deep sea actinomycete. Org. Biomol. Chem. 2021, 19, 4243–4247. [Google Scholar] [CrossRef] [PubMed]
- Bear, H.H.; Georges, F.F.Z. The synthesis of D-angolosamine. Can. J. Chem. 1977, 55, 1100–1103. [Google Scholar] [CrossRef]
- Hayakawa, M.; Nonomura, H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J. Ferment. Technol. 1987, 65, 501–509. [Google Scholar] [CrossRef]
- Shirling, E.B.; Gottlieb, D. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 1966, 16, 313–340. [Google Scholar] [CrossRef]
- Reasoner, D.J.; Geldreich, E.E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 1985, 49, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gauze, G.F.; Preobrazhenskaya, J.P.; Kudrina, E.E.; Blinov, N.O.; Ryabova, I.D.; Sveshnikova, M.A. Problems in the Classification of Antagonistic Actinomycetes; State Publishing House for Medical Literature: Moscow, Russia, 1957. [Google Scholar]
- Kim, B.-Y.; Kshetrimayum, J.D.; Goodfellow, M. Detection, selective isolation and characterisation of Dactylosporangium strains from diverse environmental samples. Syst. Appl. Microbiol. 2011, 34, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Wyche, T.P.; Hou, Y.; Braun, D.; Cohen, H.C.; Xiong, M.P.; Bugni, T.S. First natural analogs of the cytotoxic thiodepsipeptide thiocoraline A from a marine Verrucosispora sp. J. Org. Chem. 2011, 76, 6542–6547. [Google Scholar] [CrossRef]
Position | δC, Mult. | δH (J in Hz) | 1H-1H COSY | HMBC 1 | ROESY |
---|---|---|---|---|---|
1 | 201.8, C | ||||
2 | 43.1, CH | 3.78, s | 4 | 1, 3, 4, 11b, 12, 2′ | 4, 12, 13 |
3 | 85.6, C | ||||
4 | 74.6, CH | 4.84, s | 2 | 2, 3, 4a, 5a, 11b, 12-OMe | 2 |
4-OMe | 59.1, CH3 | 3.51, s | 4 | ||
4a | 128.9, C | ||||
5 | 118.3, CH | 7.00, s | 1, 4a, 5a, 6, 11, 11a, 11b | ||
5a | 123.4, C | ||||
6 | 184.9, C | ||||
6a | 118.1, C | ||||
7/10 | 157.0, C/ 156.5, C | ||||
8 | 126.0, CH | 6.74, d (9.1) | 9 | 7, 9, 10, 6a | |
9 | 125.8, CH | 6.58, d (9.1) | 8 | 7, 8, 10, 10a | |
10a | 117.1, C | ||||
11 | 186.2, C | ||||
11a | 128.0, C | ||||
11b | 137.0, C | ||||
12 | 30.9, CH2 | a: 2.25, m; b: 2.06, m | 13 | 2, 3, 13 | 2 |
13 | 10.0, CH3 | 1.11, t (6.9) | 12 | 3, 12 | 2, 16, 18 |
14 | 94.4, CH | 6.11, d (2.6) | 15 | 3, 16, 18 | 12b, 13 |
15 | 31.0, CH2 | a: 2.45, m; b: 1.82, m | 14, 16 | 14, 16, 17 | |
16 | 62.6, CH | 3.33, m | 15, 17 | 15, 17, 21, 22 | 18 |
17 | 84.5, CH | 2.98, t (9.4) | 16, 18 | 16, 18, 19, 20 | 15b, 19, 20, 21, 22 |
18 | 69.8, CH | 4.10, dt (6.2, 9.4) | 17, 19 | 16, 17, 19 | 16 |
19 | 19.6, CH3 | 1.33 d (6.2) | 18 | 17, 18 | 17, 20 |
20 | 60.4, CH3 | 3.56, s | 17 | 15a, 17, 19 | |
21 | 41.2, CH3 | 2.44, s | 16, 22 | 16, 17, 20 | |
22 | 41.2, CH3 | 2.44, s | 16, 21 | 16, 17, 20 |
Position | δC, Mult. | δH (J in Hz) | 1H-1H COSY | HMBC 1 | ROESY | 13C-13C COSY |
---|---|---|---|---|---|---|
1 | 200.9, C | 3, 4a | ||||
2 | 44.4, CH | 3.51, m | 4, 2′ | 13 | 4, 2′ | |
3 | 84.6, C | 2, 12 | ||||
4 | 25.7, CH2 | a: 3.36, m; b: 2.80, m | 2 | 3, 11b, 2′ | 2, 11b | |
4a | 129.4, C | 1 | ||||
5 | 120.1, CH | 6.75, s | 4a, 5a, 11a, 11b | |||
5a | 121.0, C | 6 | ||||
6 | 184.8, C | 5a, 6a | ||||
6a | 118.1, C | 6, 7 | ||||
7/10 | 157.2, C/ 157.0, C | |||||
8 | 126.3, CH | 6.83, d (9.1) | 9 | 7, 10, 6a | 7 | |
9 | 125.7, CH | 6.72, d (9.1) | 8 | 7, 10, 10a | 10 | |
10a | 117.4, C | 10 | ||||
11 | 185.1, C | 11a | ||||
11a | 127.3, C | 11 | ||||
11b | 142.7, C | 1 | ||||
12 | 27.4, CH2 | 1.98, m; 1.81, m | 13 | 13 | ||
13 | 9.8, CH3 | 1.14, t (7.3) | 12 | 3, 12 | 1b, 2, 14 | 12 |
14 | 94.1, CH | 6.00, br s | 15 | 3, 16, 18 | 13 | 15 |
15 | 31.6, CH2 | a: 2.69, m; b: 1.79, m | 14, 16 | 14, 16 | ||
16 | 62.7, CH | 3.44, m | 15, 17 | 18 | ||
17 | 83.6, CH | 3.05, t (10.2) | 16, 18 | 16, 18, 19, 20 | 15b, 19, 21, 22 | 18 |
18 | 69.9, CH | 4.04, dt (6.0, 10.2) | 17, 19 | 17 | 16 | 17, 19 |
19 | 19.4, CH3 | 1.30 d (6.0) | 18 | 17, 18 | 17, 20 | 18 |
20 | 59.8, CH3 | 3.52, s | 17 | 19 | ||
21 | 40.9, CH3 | 2.51, s | 16, 22 | 17, 20 | ||
22 | 40.9, CH3 | 2.51, s | 16, 21 | 17, 20 | ||
1′ | 200.9, C | 3′, 4a′ | ||||
2′ | 59.0, CH | 4.11, d (2.4) | 1′, 3′, 4′, 11b′ | 13′ | 2, 4′ | |
3′ | 85.0, C | 2′, 12′ | ||||
4′ | 197.0, C | 2′, 11b′ | ||||
4a′ | 132.7, C | 1′ | ||||
5′ | 118.2, CH | 7.00, s | 4′, 4a′, 5a′, 11b′ | |||
5a′ | 122.3, C | 6′ | ||||
6′ | 185.4, C | 5a′ | ||||
6a′ | 117.5, C | 7′ | ||||
7′/10′ | 158.1, C/ 157.3, C | |||||
8′ | 127.8, CH | 6.95, d (9.1) | 7′, 10′, 6a′ | 7′ | ||
9′ | 127.4, CH | 6.90, d (9.1) | 7′, 10′, 10a′ | 10′ | ||
10a′ | 115.7, C | 10′, 11′ | ||||
11′ | 186.9, C | 10a′, 11a′ | ||||
11a′ | 131.5, C | 11′ | ||||
11b′ | 131.0, C | 4′ | ||||
12′ | 30.3, CH2 | a: 2.00, m; b: 1.79, m | 13′ | 2′, 3′, 13′ | 3′, 13′ | |
13′ | 9.67, CH3 | 1.03, t (7.3) | 12′ | 3′, 12′ | 2′, 14′ | 12′ |
14′ | 94.0, CH | 5.98, br s | 15′ | 3′, 16′, 18′ | 13′ | 15′ |
15′ | 30.9, CH2 | 2.45, m; 1.82, m | 14′, 16′ | 14′, 16′ | ||
16′ | 62.7, CH | 3.26, m | 15′, 17′ | 18′ | ||
17′ | 83.6, CH | 3.01, t (10.5) | 16′, 18′ | 16′, 18′, 19′, 20′ | 15b′, 19′, 21′, 22′ | 18′ |
18′ | 69.8, CH | 4.00, dt (10.5, 6.1) | 17′, 19′ | 17′ | 16′ | 17′, 19′ |
19′ | 19.3, CH3 | 1.29 d (6.1) | 18′ | 17′, 18′ | 17′, 20′ | 18′ |
20′ | 59.8, CH3 | 3.52, s | 17′ | 19′ | 19′ | |
21′ | 40.5, CH3 | 2.44, s | 16′, 22′ | 17′, 20′ | ||
22′ | 40.5, CH3 | 2.44, s | 16′, 21′ | 17′, 20′ |
Position | δC, Mult. | δH (J in Hz) | 1H-1H COSY | HMBC 1 | ROESY |
---|---|---|---|---|---|
1 | 201.8, C | ||||
2 | 43.1, CH | 3.78, s | 4 | 1, 3, 4, 11b, 12, 2′ | 4, 12, 13 |
3 | 85.6, C | ||||
4 | 74.6, CH | 4.84, s | 2 | 2, 3, 4a, 5a, 11b, 12-OMe | 2, 23 |
4a | 128.9, C | ||||
5 | 118.3, CH | 7.00, s | 1, 4a, 5a, 6, 11, 11a, 11b | ||
5a | 123.4, C | ||||
6 | 184.9, C | ||||
6a | 118.1, C | ||||
7/10 | 157.0, C/ 156.5, C | ||||
8 | 126.0, CH | 6.74, d (9.1) | 9 | 7, 9, 10, 6a | |
9 | 125.8, CH | 6.58, d (9.1) | 8 | 7, 8, 10, 10a | |
10a | 117.1, C | ||||
11 | 186.2, C | ||||
11a | 128.0, C | ||||
11b | 137.0, C | ||||
12 | 30.9, CH2 | a: 2.25, m; b: 2.06, m | 13 | 2, 3, 13 | 2 |
13 | 10.0, CH3 | 1.11, t (6.9) | 12 | 3, 12 | 2, 16, 18 |
14 | 94.4, CH | 6.11, d (2.6) | 15 | 3, 16, 18 | 12b, 13 |
15 | 31.0, CH2 | a: 2.45, m; b: 1.82, m | 14, 16 | 14, 16, 17 | |
16 | 62.6, CH | 3.33, m | 15, 17 | 15, 17, 21, 22 | 18 |
17 | 84.5, CH | 2.98, t (9.4) | 16, 18 | 16, 18, 19, 20 | 15b, 19, 20, 21, 22 |
18 | 69.8, CH | 4.10, dt (6.2, 9.4) | 17, 19 | 16, 17, 19 | 16 |
19 | 19.6, CH3 | 1.33 d (6.2) | 18 | 17, 18 | 17, 20 |
20 | 60.4, CH3 | 3.56, s | 17 | 15a, 17, 19 | |
21 | 41.2, CH3 | 2.44, s | 16, 22 | 16, 17, 20 | |
22 | 41.2, CH3 | 2.44, s | 16, 21 | 16, 17, 20 | |
1′ | 201.8, C | ||||
2′ | 43.1, CH | 3.78, s | 4′ | 1′, 3′, 4′, 11b′, 12′, 2 | 4′, 12′, 13′ |
3′ | 85.6, C | ||||
4′ | 74.6, CH | 4.84, s | 2′ | 2′, 3′, 4a′, 5a′, 11b′, 12′-OMe | 2′, 23′ |
4a′ | 128.9, C | ||||
5′ | 118.3, CH | 7.00, s | 1′, 4a′, 5a′, 6′, 11′, 11b′ | ||
5a′ | 123.4, C | ||||
6′ | 184.9, C | ||||
6a′ | 118.1, C | ||||
7′/10′ | 157.0, C/ 156.5, C | ||||
8′ | 126.0, CH | 6.74, d (9.1) | 9′ | 7′, 9′, 10′, 6a′ | |
9′ | 125.8, CH | 6.58, d (9.1) | 8′ | 7′, 8′, 10′, 10a′ | |
10a′ | 117.1, C | ||||
11′ | 186.2, C | ||||
11a′ | 128.0, C | ||||
11b′ | 137.0, C | ||||
12′ | 30.9, CH2 | 2.25, m; 2.06, m | 13′ | 2′, 3′, 13′ | 2′ |
13′ | 10.0, CH3 | 1.11, t (6.9) | 12′ | 3′, 12′ | 2′, 16′, 18′ |
14′ | 94.4, CH | 6.11, d (2.6) | 15′ | 3′, 16′, 18′ | 12b′, 13′ |
15′ | 31.0, CH2 | 2.45, m; 1.82, m | 14′, 16′ | 14′, 16′, 17′ | |
16′ | 62.6, CH | 3.33, m | 15′, 17′ | 15′, 17′, 21′, 22′ | 18′ |
17′ | 84.5, CH | 2.98, m | 16′, 18′ | 16′, 18′, 19′, 20′ | 15b′, 19′, 20′, 21′, 22′ |
18′ | 69.8, CH | 4.10, m | 17′, 19′ | 16′, 17′, 19′ | 16′ |
19′ | 19.6, CH3 | 1.33 d (6.2) | 18′ | 17′, 18′ | 17′, 20′ |
20′ | 60.4, CH3 | 3.56, s | 17′ | 15a′, 17′, 19′ | |
21′ | 41.2, CH3 | 2.44, s | 16′, 22′ | 16′, 17′, 20′ | |
22′ | 41.2, CH3 | 2.44, s | 16′, 21′ | 16′, 17′, 20′ |
Cell Lines | 1 | 2 | 3 |
---|---|---|---|
LNCaP | >20 | >20 | >20 |
K562 | >20 | 5.75 | >20 |
NHDF | >20 | >20 | >20 |
A549 | 9.4 | 8.34 | 12 |
MCF7 | 5.4 | >20 | >20 |
HCT-116 | >20 | >20 | 9.79 |
HeLa | 11.1 | 10.6 | 13.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Wang, W.; Braun, D.R.; Ananiev, G.E.; Liao, W.; Harper, M.K.; Rajski, S.R.; Bugni, T.S. Isolation, Structure Elucidation and Biological Evaluation of Lomaiviticins F–H, Dimeric Benzofluorene Glycosides from Marine-Derived Micromonospora sp. Bacterium. Mar. Drugs 2025, 23, 65. https://doi.org/10.3390/md23020065
Zhang F, Wang W, Braun DR, Ananiev GE, Liao W, Harper MK, Rajski SR, Bugni TS. Isolation, Structure Elucidation and Biological Evaluation of Lomaiviticins F–H, Dimeric Benzofluorene Glycosides from Marine-Derived Micromonospora sp. Bacterium. Marine Drugs. 2025; 23(2):65. https://doi.org/10.3390/md23020065
Chicago/Turabian StyleZhang, Fan, Wenhui Wang, Doug R. Braun, Gene E. Ananiev, Weiting Liao, Mary Kay Harper, Scott R. Rajski, and Tim S. Bugni. 2025. "Isolation, Structure Elucidation and Biological Evaluation of Lomaiviticins F–H, Dimeric Benzofluorene Glycosides from Marine-Derived Micromonospora sp. Bacterium" Marine Drugs 23, no. 2: 65. https://doi.org/10.3390/md23020065
APA StyleZhang, F., Wang, W., Braun, D. R., Ananiev, G. E., Liao, W., Harper, M. K., Rajski, S. R., & Bugni, T. S. (2025). Isolation, Structure Elucidation and Biological Evaluation of Lomaiviticins F–H, Dimeric Benzofluorene Glycosides from Marine-Derived Micromonospora sp. Bacterium. Marine Drugs, 23(2), 65. https://doi.org/10.3390/md23020065