Salinity Modulates Carbon Flux to Promote Squalene and PUFA Biosynthesis in the Marine Protist Thraustochytrium
Abstract
1. Introduction
2. Results and Discussion
2.1. Effects of NaCl on Growth and Glucose Utilization
2.2. Effects of NaCl Concentration on Squalene and Fatty Acid Production
2.3. Transcriptomic and Metabolomic Insights into NaCl-Regulated Squalene and Lipid Biosynthesis
2.3.1. Sequencing Data Quality Assessment
2.3.2. High-Salt Stress Enhances Cellular Energy Metabolism via Coordinated Activation of Central Carbon Pathways and Oxidative Phosphorylation
2.3.3. High-Salt Stress Regulates Squalene and Fatty Acid Biosynthesis
3. Materials and Methods
3.1. Microorganism and Culture Conditions
3.2. Biochemical Analyses
3.2.1. Determination of Dry Cell Weight
3.2.2. Determination of Glucose Concentration
3.2.3. Squalene Analysis
3.2.4. Fatty Acids Analysis
3.3. Transcriptomics Analysis
3.4. Metabolomics Analysis
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, M.; Xie, N.; He, Y.; Li, J.; Collier, J.L.; Hunt, D.E.; Johnson, Z.I.; Jiao, N.; Wang, G. Vertical community patterns of Labyrinthulomycetes protists reveal their potential importance in the oceanic biological pump. Environ. Microbiol. 2022, 24, 1703–1713. [Google Scholar] [CrossRef]
- Rau, E.M.; Ertesvag, H. Method development progress in genetic engineering of thraustochytrids. Mar. Drugs 2021, 19, 515. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, M. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol. Rev. 2011, 35, 87–123. [Google Scholar] [CrossRef] [PubMed]
- Bagul, V.P.; Annapure, U.S. Isolation of fast-growing thraustochytrids and seasonal variation on the fatty acid composition of thraustochytrids from mangrove regions of Navi Mumbai, India. J. Environ. Manag. 2021, 290, 112597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Xie, Y.; He, Y.; Wang, W.; Sen, B.; Wang, G. Bio-based squalene production by Aurantiochytrium sp. through optimization of culture conditions, and elucidation of the putative biosynthetic pathway genes. Bioresour. Technol. 2019, 287, 121415. [Google Scholar] [CrossRef]
- Zhang, A.; He, Y.; Sen, B.; Wang, W.; Wang, X.; Wang, G. Optimal NaCl medium enhances squalene accumulation in Thraustochytrium sp. ATCC 26185 and influences the expression levels of key metabolic genes. Front. Microbiol. 2022, 13, 900252. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, X.; Ren, X.; Zhu, Q. Effects of culture conditions on growth and docosahexaenoic acid production from Schizochytrium limacinum. J. Ocean Univ. China 2008, 7, 83–88. [Google Scholar] [CrossRef]
- Xiao, R.; Li, X.; Zheng, Y. Comprehensive study of cultivation conditions and methods on lipid accumulation of a marine protist, Thraustochytrium striatum. Protist 2018, 169, 451–465. [Google Scholar] [CrossRef]
- Gomaa, F.; Mitchell, E.A.D.; Lara, E. Amphitremida (Poche, 1913) is a new major, ubiquitous Labyrinthulomycete clade. PLoS ONE 2013, 8, e53046. [Google Scholar] [CrossRef]
- Takahashi, Y.; Yoshida, M.; Inouye, I.; Watanabe, M.M. Diplophrys mutabilis sp. nov., a new member of Labyrinthulomycetes from freshwater habitats. Protist 2014, 165, 50–65. [Google Scholar] [CrossRef]
- Shabala, L.; McMeekin, T.; Shabala, S. Thraustochytrids can be grown in low-salt media without affecting PUFA production. Mar. Biotechnol. 2013, 15, 437–444. [Google Scholar] [CrossRef]
- Marchan, L.F.; Chang, K.J.L.; Nichols, P.D.; Mitchell, W.J.; Polglase, J.L.; Gutierrez, T. Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnol. Adv. 2018, 36, 26–46. [Google Scholar] [CrossRef]
- Chauhan, A.S.; Patel, A.K.; Singhania, R.R.; Vadrale, A.P.; Chen, C.-W.; Giri, B.S.; Chang, J.-S.; Dong, C.-D. Fine-tuning of key parameters to enhance biomass and nutritional polyunsaturated fatty acids production from Thraustochytrium sp. Bioresour. Technol. 2024, 394, 130252. [Google Scholar] [CrossRef]
- Zhang, A.; Mernitz, K.; Wu, C.; Xiong, W.; He, Y.; Wang, G.; Wang, X. ATP drives efficient terpene biosynthesis in marine thraustochytrids. mBio 2021, 12, e0088121. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.-Y.; Zhu, S.; Zhang, Y.; Sun, X.; Hu, X.; Huang, H.; Ren, L.-J. Integration of lipidomic and transcriptomic profiles reveals novel genes and regulatory mechanisms of Schizochytrium sp. in response to salt stress. Bioresour. Technol. 2019, 294, 122231. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, H.; Long, L.; Dong, J.; Huang, S. Acclimation and stress response of Prochlorococcus to low salinity. Front. Microbiol. 2022, 13, 1038136. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Nakazawa, A.; Matsuura, H.; Kose, R.; Kato, S.; Honda, D.; Inouye, I.; Kaya, K.; Watanabe, M.M. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour. Technol. 2012, 109, 287–291. [Google Scholar] [CrossRef]
- Frankel, G.S. Pitting corrosion of metals—A review of the critical factors. J. Electrochem. Soc. 1998, 145, 2186–2198. [Google Scholar] [CrossRef]
- Tsutsumi, Y.; Nishikata, A.; Tsuru, T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions. Corros. Sci. 2007, 49, 1394–1407. [Google Scholar] [CrossRef]
- Raghukumar, S. Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur. J. Protistol. 2002, 38, 127–145. [Google Scholar] [CrossRef]
- Arafiles, K.H.V.; Alcantara, J.C.O.; Cordero, P.R.F.; Batoon, J.A.L.; Galura, F.S.; Leao, E.M.; Dedeles, G.R. Cultural optimization of thraustochytrids for biomass and fatty acid production. Mycosphere 2011, 2, 521–531. [Google Scholar]
- Perveen, Z.; Ando, H.; Ueno, A.; Ito, Y.; Yamamoto, Y.; Yamada, Y.; Takagi, T.; Kaneko, T.; Kogame, K.; Okuyama, H. Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid. Biotechnol. Lett. 2006, 28, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Shabala, L.; McMeekin, T.; Shabala, S. Osmotic adjustment and requirement for sodium in marine protist thraustochytrid. Environ. Microbiol. 2009, 11, 1835–1843. [Google Scholar] [CrossRef]
- Ren, L.J.; Sun, X.M.; Ji, X.J.; Chen, S.L.; Guo, D.S.; Huang, H. Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp. Bioresour. Technol. 2017, 223, 141–148. [Google Scholar] [CrossRef]
- Ali, M.K.; Sen, B.; He, Y.; Bai, M.; Wang, G. Media supplementation with mannitol and biotin enhances squalene production of Thraustochytrium ATCC 26185 through increased glucose uptake and antioxidative mechanisms. Molecules 2022, 27, 2449. [Google Scholar] [CrossRef]
- Ren, L.-J.; Sun, G.-N.; Ji, X.-J.; Hu, X.-C.; Huang, H. Compositional shift in lipid fractions during lipid accumulation and turnover in Schizochytrium sp. Bioresour. Technol. 2014, 157, 107–113. [Google Scholar] [CrossRef]
- Patel, A.; Rova, U.; Christakopoulos, P.; Matsakas, L. Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate. Sci. Total Environ. 2020, 736, 139691. [Google Scholar] [CrossRef]
- Miras-Moreno, B.; Almagro, L.; Angeles Pedreno, M.; Belen Sabater-Jara, A. Effect of terbinafine on the biosynthetic pathway of isoprenoid compounds in carrot suspension cultured cells. Plant Cell Rep. 2018, 37, 1011–1019. [Google Scholar] [CrossRef]
- Amarowicz, R. Squalene: A natural antioxidant? Eur. J. Lipid Sci. Technol. 2009, 111, 411–412. [Google Scholar] [CrossRef]
- Unagul, P.; Assantachai, C.; Phadungruengluij, S.; Suphantharika, M.; Verduyn, C. Properties of the docosahexaenoic acid-producer Schizochytrium mangrovei Sk-02:: Effects of glucose, temperature and salinity and their interaction. Bot. Mar. 2005, 48, 387–394. [Google Scholar] [CrossRef]
- Bhakar, R.N.; Kumar, R.; Pabbi, S. Total lipids and fatty acid profile of different Spirulina strains as affected by salinity and incubation time. Vegetos 2013, 26, 148–154. [Google Scholar] [CrossRef]
- Baccouch, R.; Shi, Y.; Vernay, E.; Mathelie-Guinlet, M.; Taib-Maamar, N.; Villette, S.; Feuillie, C.; Rascol, E.; Nuss, P.; Lecomte, S.; et al. The impact of lipid polyunsaturation on the physical and mechanical properties of lipid membranes. Biochim. Biophys. Acta-Biomembr. 2023, 1865, 184084. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, H.; Orikasa, Y.; Nishida, T. Significance of antioxidative functions of eicosapentaenoic and docosahexaenoic acids in marine microorganisms. Appl. Environ. Microbiol. 2008, 74, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Bi, J.; Xu, S.; Rao, M.; Wang, Q.; Yuan, Y.; Fan, B. Metabolic regulation mechanism of Aconiti Radix Cocta extract in rats based on 1H-NMR metabonomics. Chin. Herb. Med. 2022, 14, 602–611. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, D.; Zhang, N.; Li, F.; Luo, X.; Li, Q.; Li, C.; Huang, X. Transcriptional analysis of Microcystis aeruginosa co-cultured with algicidal bacteria Brevibacillus laterosporus. Int. J. Environ. Res. Public Health 2021, 18, 8615. [Google Scholar] [CrossRef]
- Cheng, R.-L.; Feng, J.; Zhang, B.-X.; Huang, Y.; Cheng, J.; Zhang, C.-X. Transcriptome and gene expression analysis of an oleaginous diatom under different salinity conditions. Bioenergy Res. 2014, 7, 192–205. [Google Scholar] [CrossRef]
- Ma, Z.; Tian, M.; Tan, Y.; Cui, G.; Feng, Y.; Cui, Q.; Song, X. Response mechanism of the docosahexaenoic acid producer Aurantiochytrium under cold stress. Algal Res.-Biomass Biofuels Bioprod. 2017, 25, 191–199. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Kreider, R.B.; Stout, J.R.; Forero, D.A.; Kerksick, C.M.; Roberts, M.D.; Rawson, E.S. Metabolic basis of creatine in health and disease: A bioinformatics-assisted review. Nutrients 2021, 13, 1238. [Google Scholar] [CrossRef]
- Paramasivan, K.; Mutturi, S. Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae. J. Agric. Food Chem. 2017, 65, 8162–8170. [Google Scholar] [CrossRef]
- Berthelot, K.; Estevez, Y.; Deffieux, A.; Peruch, F. Isopentenyl diphosphate isomerase: A checkpoint to isoprenoid biosynthesis. Biochimie 2012, 94, 1621–1634. [Google Scholar] [CrossRef]
- Manzoor, R.; Ahmed, M.; Riaz, N.; Kiani, B.H.; Kaleem, U.; Rashid, Y.; Nawaz, A.; Awan, M.U.F.; Khan, H.; Imtiaz, U.; et al. Self-redirection of metabolic flux toward squalene and ethanol pathways by engineered yeast. Metabolites 2020, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Garaiova, M.; Zambojova, V.; Simova, Z.; Griac, P.; Hapala, I. Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae. Fems Yeast Res. 2014, 14, 310–323. [Google Scholar] [CrossRef] [PubMed]
- Meadows, A.L.; Hawkins, K.M.; Tsegaye, Y.; Antipov, E.; Kim, Y.; Raetz, L.; Dahl, R.H.; Tai, A.; Mahatdejkul-Meadows, T.; Xu, L.; et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 2016, 537, 694–697. [Google Scholar] [CrossRef]
- Oren, A. Industrial and environmental applications of halophilic microorganisms. Environ. Technol. 2010, 31, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; He, Y.; Xie, Y.; Sen, B.; Wang, G. Fed-batch fermentation of mixed carbon source significantly enhances the production of docosahexaenoic acid in Thraustochytriidae sp. PKU#Mn16 by differentially regulating fatty acids biosynthetic pathways. Bioresour. Technol. 2020, 297, 122402. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, H.; Sen, B.; Xie, Y.; He, Y.; Park, S.; Wang, G. Improved production of docosahexaenoic acid in batch fermentation by newly-isolated strains of Schizochytrium sp. and Thraustochytriidae sp. through bioprocess optimization. Synth. Syst. Biotechnol. 2018, 3, 121–129. [Google Scholar] [CrossRef]
- Chen, X.; He, Y.; Ye, H.; Xie, Y.; Sen, B.; Jiao, N.; Wang, G. Different carbon and nitrogen sources regulated docosahexaenoic acid (DHA) production of Thraustochytriidae sp. PKU#SW8 through a fully functional polyunsaturated fatty acid (PUFA) synthase gene (pfaB). Bioresour. Technol. 2020, 318, 124273. [Google Scholar] [CrossRef]
- Martin, M. CUTADAPT removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Chen, Q.; Wang, Y.; Zhang, D.; Guo, J.; Zhang, Q.; Zhang, W.; Gong, Z. The acetylation of MDH1 and IDH1 is associated with energy metabolism in acute liver failure. Iscience 2024, 27, 109678. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, X. Integration of transcriptomics and non-targeted metabolomics reveals the underlying mechanism of skeletal muscle development in duck during embryonic stage. Int. J. Mol. Sci. 2023, 24, 5214. [Google Scholar] [CrossRef]
- Chen, M.; Gong, L.; Zhu, L.; Fang, X.; Zhang, C.; You, Z.; Chen, H.; Wei, R.; Wang, R. Lipidomics combined with random forest machine learning algorithms to reveal freshness markers for duck eggs during storage in different rearing systems. Poult. Sci. 2024, 103, 104201. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, Q.; Feng, Y.; Han, J.; Lu, C.; Zhou, J.; Wang, Z.; Su, X. Targeted screening of an anti-inflammatory polypeptide from Rhopilema esculentum Kishinouye cnidoblasts and elucidation of its mechanism in alleviating ulcerative colitis based on an analysis of the gut microbiota and metabolites. Food Sci. Hum. Wellness 2024, 13, 1336–1347. [Google Scholar] [CrossRef]
Sample | Raw_Reads | Raw_Bases | Valid_Reads | Valid_Bases | Valid% | Q30% | GC% |
---|---|---|---|---|---|---|---|
LS72 | 41,205,283 | 6.18 | 38,987,255 | 5.43 | 94.61 | 93.86 | 63.61 |
NS72 | 40,762,481 | 6.11 | 39,130,041 | 5.45 | 96.00 | 93.89 | 63.89 |
HS72 | 40,343,527 | 6.05 | 38,487,931 | 5.36 | 95.39 | 93.74 | 63.92 |
LS144 | 41,151,169 | 6.17 | 39,584,795 | 5.51 | 96.19 | 93.83 | 63.64 |
NS144 | 43,231,437 | 6.48 | 41,160,139 | 5.73 | 95.21 | 93.24 | 63.88 |
HS144 | 42,497,021 | 6.37 | 40,259,607 | 5.61 | 94.73 | 93.16 | 63.91 |
All | GC% | Min Length | Median Length | Max Length | Total Assembled Bases | N50 |
---|---|---|---|---|---|---|
27,812 | 62.65 | 201 | 641 | 40,915 | 33,143,887 | 2110 |
Sample | Total DEGs | Upregulated DEGs | Downregulated DEGs |
---|---|---|---|
NS72_vs_LS72 | 2649 | 877 | 1772 |
HS72_vs_LS72 | 2935 | 1358 | 1577 |
HS72_vs_NS72 | 1312 | 891 | 421 |
NS144_vs_LS144 | 4012 | 1835 | 2177 |
HS144_vs_LS144 | 4542 | 1666 | 2876 |
HS144_vs_NS144 | 1407 | 221 | 1186 |
Mode | All | MS2 | HMDB | KEGG | Annotated |
---|---|---|---|---|---|
negative | 7907 | 403 | 3640 | 2921 | 4321 |
positive | 14,410 | 716 | 6659 | 4887 | 7635 |
Enzyme | Gene Expression Quantity (TPM) | NS144-vs-LS144 | HS144-vs-LS144 | ||||||
---|---|---|---|---|---|---|---|---|---|
LS144 | NS144 | HS144 | FC | log2FC | p Value | FC | log2FC | p Value | |
ACAT | 199.26 | 709.89 | 814.95 | 3.56 | 1.91 | 7.70 × 10−21 | 4.09 | 2.20 | 1.54 × 10−26 |
HMGR | 71.3 | 178.93 | 188.62 | 2.51 | 1.44 | 4.02 × 10−12 | 2.65 | 1.59 | 9.02 × 10−11 |
MVK | 79.79 | 219.75 | 272.24 | 2.75 | 1.57 | 3.25 × 10−12 | 3.41 | 1.96 | 6.34 × 10−20 |
PMK | 18.67 | 32.82 | 44.91 | 1.76 | 0.93 | 8.81 × 10−5 | 2.41 | 1.47 | 2.19 × 10−15 |
MDD | 36.22 | 70.62 | 83.5 | 1.95 | 1.08 | 5.61 × 10−6 | 2.31 | 1.40 | 1.00 × 10−8 |
IDI | 59.66 | 282.93 | 326.72 | 4.74 | 2.26 | 3.43 × 10−28 | 5.48 | 2.55 | 1.80 × 10−36 |
GPS | 126.33 | 252.00 | 348.26 | 1.99 | 1.11 | 1.93 × 10−5 | 2.76 | 1.66 | 2.45 × 10−11 |
FPS | 126.33 | 252.00 | 348.26 | 1.99 | 1.11 | 1.93 × 10−5 | 2.76 | 1.66 | 2.45 × 10−11 |
SQS | 118.77 | 75.25 | 86.25 | −1.58 | −0.54 | 0.017 | - | - | 0.36 |
ACC | 208.67 | 23.21 | 80.13 | −8.99 | −3.05 | 2.58 × 10−12 | - | - | 0.16 |
FAS-α | 214.39 | 15.36 | 31.96 | −13.96 | −3.69 | 8.33 × 10−11 | −6.71 | −2.58 | 0.0037 |
FAS-β | 90.91 | 5.46 | 10.23 | −16.65 | −3.92 | 2.91 × 10−11 | −8.89 | −2.96 | 0.0003 |
PKSA | 188.28 | 49.16 | 149.78 | −3.83 | 1.79 | 0.00011 | - | - | 0.85 |
PKSB | 93.23 | 262.3 | 296.58 | 2.81 | 1.60 | 1.61 × 10−7 | 3.18 | 1.86 | 1.39 × 10−18 |
Δ12 desaturase | 539.44 | 239.15 | 281.48 | −2.26 | −1.08 | −1.92 | −0.75 | 0.0061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhu, X.; Riaz, N.; Liu, X.; Li, J.; Wang, G. Salinity Modulates Carbon Flux to Promote Squalene and PUFA Biosynthesis in the Marine Protist Thraustochytrium. Mar. Drugs 2025, 23, 354. https://doi.org/10.3390/md23090354
Zhao Y, Zhu X, Riaz N, Liu X, Li J, Wang G. Salinity Modulates Carbon Flux to Promote Squalene and PUFA Biosynthesis in the Marine Protist Thraustochytrium. Marine Drugs. 2025; 23(9):354. https://doi.org/10.3390/md23090354
Chicago/Turabian StyleZhao, Yuetong, Xingyu Zhu, Nimra Riaz, Xiuping Liu, Jiaqian Li, and Guangyi Wang. 2025. "Salinity Modulates Carbon Flux to Promote Squalene and PUFA Biosynthesis in the Marine Protist Thraustochytrium" Marine Drugs 23, no. 9: 354. https://doi.org/10.3390/md23090354
APA StyleZhao, Y., Zhu, X., Riaz, N., Liu, X., Li, J., & Wang, G. (2025). Salinity Modulates Carbon Flux to Promote Squalene and PUFA Biosynthesis in the Marine Protist Thraustochytrium. Marine Drugs, 23(9), 354. https://doi.org/10.3390/md23090354