Chitosan in Plant Protection
Abstract
:1. Introduction
2. Antimicrobial Properties of Chitosan
2.1. Against viruses
2.2. Against bacteria
2.3. Against fungi and oomycetes
2.4. Against insects
3. Applications of Chitosan in Plant Disease Control
3.1. Applied as seed coating agents
3.2. Applied as foliar treatment agents
3.3. Applied as soil amendment
4. Mechanisms of Action of Chitosan in Reducing Plant Diseases
4.1. Direct activity against pathogens
4.2. Physical barrier around pathogen penetration sites
4.3. Chelation of nutrients and minerals
4.4. Effect on H+-ATPase and depolarization of biological membranes
4.5. Modulation of plant responses and signaling
4.6. Chitosan–A general pathogen-associated molecular pattern
4.7. Effect on nuclear distortion and cell death
4.8. Activated oxygen species -scavenging and antioxidant activity
4.9. Wound-healing accelerators
4.10. Chitosan and the octadecanoic pathway
4.11. Chitin as a stimulator of pathogens’ effectors
4.12. Physiology and degradation of chitosan by pathogens
5. Concluding Remarks
Acknowledgments
References
- Barber, MS; Bertram, RE; Ride, JP. Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol Mol Plant Pathol 1989, 34, 3–12. [Google Scholar]
- Felix, G; Regenass, M; Boller, T. Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J 1993, 4, 307–316. [Google Scholar]
- Felix, G; Baureithel, K; Boller, T. Desensitization of the perception system for chitin fragments in tomato cells. Plant Physiol 1998, 117, 643–650. [Google Scholar]
- Kikuyama, M; Kuchitsu, K; Shibuya, N. Membrane depolarization induced by N-acetylchitooligosaccharide elicitor in suspension-cultured rice cells. Plant Cell Physiol 1997, 38, 902–909. [Google Scholar]
- Kuchitsu, K; Yazaki, Y; Sakano, K; Shibuya, N. Transient cytoplasmic pH change and ion fluxes through the plasma membrane in suspension cultured rice cells triggered by N-acetylchitooligosaccharide elicitor. Plant Cell Physiol 1997, 38, 1012–1018. [Google Scholar]
- Roby, D; Gadelle, A; Toppan, A. Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochem Biophys Res Comm 1987, 143, 885–892. [Google Scholar]
- Kaku, H; Shibuya, N; Xu, P; Aryan, AP; Fincher, GB. N-acetylchitooligosaccharide elicitor expression of a single 1,3-β-glucanase gene in suspension-cultured cells from barley (Hordeum vulgare). Physiol Plant 1997, 100, 111–118. [Google Scholar]
- Ren, YY; West, CA. Elicitation of diterpene biosynthesis in rice (Oyza sativa L.) by chitin. Plant Physiol 1992, 99, 1169–1178. [Google Scholar]
- Yamada, A; Shibuya, N; Kodama, O; Akatsuka, T. Induction of phytoalexin formation in suspension cultured rice cells by N-acetylchitooligosaccharides. Biosci Biotechnol Biochem 1993, 57, 405–409. [Google Scholar]
- Kuchitsu, K; Kosaka, H; Shiga, T; Shibuya, N. EPR evidence for generation of hydroxyl radical triggered by N-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor in suspension-cultured rice cells. Protoplasma 1995, 188, 138–142. [Google Scholar]
- Nojiri, H; Sugimori, M; Yamane, H; Nishimura, Y; Yamada, A; Shibuya, N; Kodama, O; Murofushi, N; Ohmori, T. Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol 1996, 110, 387–392. [Google Scholar]
- Minami, E; Kuchitsu, K; He, DY; Kouchi, H; Midoh, N; Ohtsuki, Y; Shibuya, N. Two novel genes rapidly and transiently activated in suspension-cultured rice cells by treatment with N-acetylchitoheptaose, a biotic elicitor for phytoalexin production. Plant Cell Physiol 1996, 37, 563–567. [Google Scholar]
- Nishizawa, Y; Kawakami, A; Hibi, T; He, DY; Shibuya, N; Minami, E. Regulation of the chitinase gene expression in suspension-cultured rice cells by N-acetylchitooligosaccharides: differences in the signal transduction pathways leading to the activation of elicitor-responsive genes. Plant Mol Biol 1999, 39, 907–914. [Google Scholar]
- Takai, R; Hasegawa, K; Kaku, K; Shibuya, N; Minami, E. Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to ATL family from Arabidopsis, in response to N-acetylchitooligosaccharide elicitor. Plant Sci 2001, 160, 577–583. [Google Scholar]
- Conrath, U; Domard, A; Kauss, H. Chitosan-elicited synthesis of callose and of coumarin derivatives in parsley cell suspension cultures. Plant Cell Rep 1989, 8, 152–155. [Google Scholar]
- Köhle, H; Jeblick, W; Poten, F; Blaschek, W; Kauss, H. Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol 1985, 77, 544–551. [Google Scholar]
- Walker-Simmons, M; Ryan, CA. Proteinase inhibitor synthesis in tomato leaves. Plant Physiol 1984, 76, 787–790. [Google Scholar]
- Hadwiger, LA; Beckman, J. Chitosan as a component of pea-Fusarium solani interactions. Plant Physiol 1980, 66, 205–211. [Google Scholar]
- Pospieszny, H; Chirkov, S; Atabekov, J. Induction of antiviral resistance in plants by chitosan. Plant Sci 1991, 79, 63–68. [Google Scholar]
- Rabea, EI; El Badawy, MT; Stevens, CV; Smagghe, G; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar]
- Kulikov, SN; Chirkov, SN; Il’ina, AV; Lopatin, SA; Varlamov, VP. Effect of the molecular weight of chitosan on its antiviral activity in plants. Prik Biokhim Mikrobiol 2006, 42(2), 224–228. [Google Scholar]
- Savard, T; Beaulieu, C; Boucher, I; Champagne, CP. Antimicrobial action of hydrolyzed chitosan against spoilage yeasts and lactic acid bacteria of fermented vegetables. J Food Prot 2002, 65, 828–833. [Google Scholar]
- Faoro, F; Sant, S; Iriti, M; Appiano, A. Muzzarelli, RAA, Ed.; Chitosan-elicited resitance to plant viruses: a histochemical and cytochemical study. In Chitin Enzymology; Atec: Grottammare, Italy, 2001; pp. 57–62. [Google Scholar]
- Chirkov, SN. The antiviral activity of chitosan (review). Appl Biochem Microbiol 2002, 38, 1–8. [Google Scholar]
- Pospieszny, H; Struszczyk, H; Cajza, M. Muzzarelli, RAA, Ed.; Chitin Enzymology; Atec: Grottammare, Italy, 1996; Volume 2, pp. 385–389. [Google Scholar]
- Pospieszny, H. Antiviroid activity of chitosan. Crop Prot 1997, 16, 105–106. [Google Scholar]
- Struszczyk, MH. Chitin and chitosan - Part II. Applications of chitosan. Polimery 2002, 47, 396–403. [Google Scholar]
- Muzzarelli, RAA; Tarsi, R; Filippini, O; Giovanetti, E; Biagini, G; Varaldo, PE. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother 1990, 34, 2019–2023. [Google Scholar]
- Jia, Z; Shen, D; Xu, W. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res 2001, 333, 1–6. [Google Scholar]
- Kim, JH; Shin, JH; Lee, HJ; Chung, IS; Lee, HJ. Effect of chitosan on indirubin production from suspension culture of Polygonum tinctorium. J Ferm Bioeng 1997, 83, 206–208. [Google Scholar]
- Vasyukova, NI; Chalenko, GI; Gerasimova, NG; Perekhod, EA; Ozeretskovskaya, OL; Irina, AV; Varlamov, VP; Albulov, AI. Chitin and chitosan derivatives as elicitors of potato resistance to late blight. Appl Biochem Microbiol 2005, 36, 372–376, (translated from Prik. Biokhim. Mikrobiol. 2000, 36, 433–438). [Google Scholar]
- Stössel, P; Leuba, JL. Effect of chitosan, chitin and some aminosugars on growth of various soilborne phytopathogenic fungi. Phytopathol Z 1984, 111, 82–90. [Google Scholar]
- Sudarshan, NR; Hoover, DG; Knorr, D. Antibacterial action of chitosan. Food Biotechnol 1992, 6, 257–272. [Google Scholar]
- Wang, GH. Inhibition and inactivation of five species of foodborne pathogens by chitosan. J Food Prot 1992, 55, 916–919. [Google Scholar]
- Tsai, GJ; Su, WH. Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot 1999, 62, 239–243. [Google Scholar]
- Rhoades, J; Roller, S. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl Environ Microbiol 2000, 66, 80–86. [Google Scholar]
- Rabea, EI; El Badawy, MT; Rogge, TM; Stevens, CV; Höfte, M; Steurbaut, W; Smagghe, G. Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Manag Sci 2005, 61, 951–960. [Google Scholar]
- Badawy, MEI; Rabea, EI; Rogge, TM; Stevens, CV; Steurbaut, W; Höfte, M; Smagghe, G. Fungicidal and insecticidal activity of O-acyl chitosan derivatives. Polymer Bull 2005, 54, 279–289. [Google Scholar]
- Palma-Guerrero, J; Huang, IC; Jansson, HB; Salinas, J; Lopez-Llorca, LV; Read, ND. Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner. Fungal Gen Biol 2009, 46, 585–594. [Google Scholar]
- Allan, C; Hadwiger, LA. The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp Mycol 1979, 3, 285–287. [Google Scholar]
- Palma-Guerrero, J; Jansson, HB; Salinas, J; Lopez-Llorca, LV. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. J Appl Microbiol 2008, 104, 541–553. [Google Scholar]
- Muzzarelli, RAA; Muzzarelli, C; Tarsi, R; Miliani, M; Gabbanelli, F; Cartolari, M. Fungistatic activity of modified chitosans against Saprolegnia parasitica. Biomacromol 2001, 2, 165–169. [Google Scholar]
- Lafontaine, JP; Benhamou, N. Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol Sci. Technol 1996, 6, 111–124. [Google Scholar]
- Benhamou, N. Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit against Penicillium digitatum, the causal agent of green mold: A comparison with the effect of chitosan. Phytopathology 2004, 94, 693–705. [Google Scholar]
- El Ghaouth, A; Arul, J; Asselin, A; Benhamou, N. Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycol Res 1992, 96, 769–779. [Google Scholar]
- El Ghaouth, A; Smilanick, JL; Wilson, CL. Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Biol Technol 2000, 19, 103–110. [Google Scholar]
- Guan, YJ; Hu, J; Wang, XJ; Shao, CX. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 2009, 10, 427–433. [Google Scholar]
- Shao, CX; Hu, J; Song, WJ; Hu, WM. Effects of seed priming with chitosan solutions of different acidity on seed germination and physiological characteristics of maize seedling. J Zhejiang Univ Agric Life Sci 2005, 1, 705–708. [Google Scholar]
- Reddy, MV; Arul, J; Angers, P; Couture, L. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearun and improves seed quality. J Agric Food Chem 1999, 47, 1208–1216. [Google Scholar]
- Zhou, YG; Yang, YD; Qi, YG; Zhang, ZM; Wang, XJ; Hu, XJ. Effects of chitosan on some physiological activity in germinating seed of peanut. J Peanut Sci 2002, 31, 22–25. [Google Scholar]
- Ruan, SL; Xue, QZ. Effects of chitosan coating on seed germination and salt-tolerance of seedlings in hybrid rice (Oryza sativa L.). Acta Agron Sinica 2002, 28, 803–808. [Google Scholar]
- Cheah, LH; Page, BBC. Trichoderma spp. for potential biocontrol of clubroot of vegetable brassicas. Crop Food Res 1997, 150–153. [Google Scholar]
- Khan, W; Prithiviraj, B; Smith, DL. Effect of foliar application of chitin and chitosan oligosaccharides on photosynthesis of maize and soybean. Photosynth Res 2002, 40, 621–624. [Google Scholar]
- Bittelli, M; Flury, M; Campbell, GS; Nichols, EJ. Reduction of transpiration through foliar application of chitosan. Agric Forest Meteorol 2001, 107, 167–175. [Google Scholar]
- Iriti, M; Picchi, V; Rossoni, M; Gomarasca, S; Ludwig, N; Garganoand, M; Faoro, F. Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Env Exp Bot 2009, 66, 493–500. [Google Scholar]
- Kowalski, B; Jimenez Terry, F; Herrera, L; Agramonte Peñalver, D. Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Res 2006, 49, 167–176. [Google Scholar]
- Faoro, F; Maffi, D; Cantu, D; Iriti, M. Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. BioControl 2008, 53, 387–401. [Google Scholar]
- Benhamou, N; Lafontaine, PJ; Nicole, M. Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology 1994, 84, 1432–1444. [Google Scholar]
- Laflamme, P; Benhamou, N; Bussiéres, G; Dessureault, M. Differential effect of chitosan on root rot fungal pathogens in forest nurseries. Can J Bot 1999, 77, 1460–1468. [Google Scholar]
- Bell, AA; Hubbard, JC; Liu, L; Davis, RM; Subbarao, KV. Effects of chitin and chitosan on the incidence and severity of Fusarium yellows in celery. Plant Dis 1998, 82, 322–328. [Google Scholar]
- Murphy, JG; Rafferty, SM; Cassells, AC. Stimulation of wild strawberry (Fragaria vesca) arbuscular mycorrhizas by addition of shellfish waste to the growth substrate: interaction between mycorrhization, substrate amendment and susceptibility to red core (Phytophthora fragariae). Appl Soil Ecol 2000, 15, 153–158. [Google Scholar]
- Daayf, F; El Bellaj, M; El Hassni, M; J’aiti, F; El Hadrami, I. Elicitation of soluble phenolics in date palm (Phoenix dactylifera L.) callus by Fusarium oxysporum f. sp. albedinis culture medium. Env Exp Bot 2003, 49, 41–47. [Google Scholar]
- El Hassni, M; El Hadrami, A; Daayf, F; Chérif, M; Ait Barka, E; El Hadrami, I. Chitosan, antifungal product against Fusarium oxysporum f. sp. albedinis and elicitor of defence reactions in date palm roots. Phytopathol Mediterr 2004, 43, 195–204. [Google Scholar]
- Pal, KK; McSpadden Gardener, B. Biological Control of Plant Pathogens. Plant Health Instr 2006. [Google Scholar] [CrossRef]
- Uppal, AK; El Hadrami, A; Adam, LR; Tenuta, M; Daayf, F. Biological control of potato Verticillium wilt under controlled and field conditions using selected bacterial antagonists and plant extracts. Biol Control 2008, 44, 90–100. [Google Scholar]
- Vruggink, H. The effect of chitin amendment on actinomycetes in soil and on the infection of potato tubers by Streptomyces scabies. Neth J Plant Pathol 1970, 76, 293–295. [Google Scholar]
- Mansouri, S; Lavigne, P; Corsi, K; Benderdour, M; Beaumont, E; Fernandes, JC. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy strategies to improve transfection efficacy. Eur J Pharm Biopharm 2004, 57, 1–8. [Google Scholar]
- Kendra, DF; Hadwiger, LA. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp Mycol 1984, 8, 276–281. [Google Scholar]
- Sekiguchi, S; Miura, Y; Kaneko, H; Nishimura, SI; Nishi, N; Iwase, M; Tokura, S. Nishinari, K, Doi, E, Eds.; Molecular weight dependency of antimicrobial activity by chitosan oligomers. In Food Hydrocolloids: Structures, Properties and Functions; Plenum: New York, NY, USA, 1994; pp. 71–76. [Google Scholar]
- Leuba, JL; Stössel, P. Muzzarelli, RAA, Jeuniaux, C, Gooday, GW, Eds.; Chitosan and other polyamines: Anti-fungal activity and interaction with biological membranes. In Chitin in Nature and Technology; Plenum Press: New York, NY, USA, 1986; pp. 215–222. [Google Scholar]
- Benhamou, N. Ultrastructural detection of β-1,3-glucans in tobacco root tissues infected by Phytophthora parasitica var. nicotianae using a gold-complexed tobacco β-1,3-glucanase. Physiol Mol Plant Pathol 1992, 41, 351–357. [Google Scholar]
- Benhamou, N; Kloepper, JW; Tuzun, S. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 1998, 204, 153–168. [Google Scholar]
- El Ghaouth, A; Arul, J; Wilson, C; Benhamou, N. Ultrastructural and cytochemical aspects of the effect of chitosan on decay of bell pepper fruit. Physiol Mol Plant Pathol 1994, 44, 417–432. [Google Scholar]
- Romanazzi, G; Nigro, F; Ippolito, A; Di Venere, D; Salerno, M. Effects of pre-and postharvest chitosan treatments to control storage grey mold of table grapes. J Food Sci 2002, 67, 1862–1867. [Google Scholar]
- Ait Barka, E; Eullaffroy, P; Clément, C; Vernet, G. Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Rep 2004, 22, 608–614. [Google Scholar]
- El Hassni, M. Interaction Palmier dattier-Fusarium oxysporum albedinis: Elicitation des réactions de défense et développement de nouvelles stratégies pour le biocontrôle de la maladie du bayoud. PhD Thesis, Faculté des Sciences Semlalia, Marrakech, Morocco, 2005. [Google Scholar]
- No, HK; Young, PN; Ho, LS; Meyers, SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int Food Microbiol 2002, 74, 65–72. [Google Scholar]
- Chung, YC; Wang, HL; Chen, YM; Li, SL. Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresour Technol 2003, 88, 179–184. [Google Scholar]
- El Hadrami, A; El Hadrami, I; Daayf, F. Bouarab, K, Brisson, N, Daayf, F, Eds.; Suppression of induced plant defense responses by fungal pathogens. In Molecular-Plant Microbe Interactions; CABI: Wallingford, UK, 2009; Volume Chapter 10, pp. 231–268. [Google Scholar]
- Hirano, S; Nakahira, T; Nakagawa, M; Kim, SK. The preparation and applications of functional fibres from crab shell chitin. J Biotechnol 1999, 70, 373–377. [Google Scholar]
- Bornet, A; Teissedre, PL. Chitosan, chitin-glucan and chitin effects on minerals (iron, lead, cadmium) and organic (ochratoxin A) contaminants in wines. Eur Food Res Technol 2007, 226(4), 681–689. [Google Scholar]
- Amborabé, B-E; Bonmort, J; Fleurat-Lessard, P; Roblin, G. Early events induced by chitosan on plant cells. J Exp Bot 2008, 59, 2317–2324. [Google Scholar]
- Benhamou, N; Nicole, M. Cell biology of plant immunization against microbial infection: the potential of induced resistance in controlling plant diseases. Plant Physiol Biochem 1999, 37, 703–719. [Google Scholar]
- Hammerschmidt, R. Phytoalexins: what have we learned after 60 years. Ann Rev Phytopathol 1999, 37, 285–306. [Google Scholar]
- Vander, P; Vaêrum, KM; Domard, A; El Gueddari, NE; Moerschbacher, BM. Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol 1998, 118, 1353–1359. [Google Scholar]
- Wang, X; El Hadrami, A; Adam, LR; Daayf, F. Differential activation and suppression of potato defence responses by Phytophthora infestans isolates representing US-1 and US-8 genotypes. Plant Pathol 2008, 57, 1026–1037. [Google Scholar]
- Benhamou, N; Thériault, G. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. Physiol. Mol. Plant Pathol 1992, 41, 33–52. [Google Scholar]
- Pena-Cortes, H; Sanchez-Serrano, J; Rocha-Sosa, M; Willmitzer, L. Systemic induction of proteinase-inhibitor-II gene expression in potato plants by wounding. Planta 1988, 174, 84–89. [Google Scholar]
- Köhle, H; Young, DH; Kauss, H. Physiological changes in suspension-cultured soybean cells elicited by treatment with chitosan. Plant Sci Lett 1984, 33, 221–230. [Google Scholar]
- Dornenburg, H; Knorr, D. Evaluation of elicitor- and high pressure induced enzymatic browning utilizing potato (Solanum tuberosum) suspension cultures as a model system for plant tissues. J Agric Food Chem 1997, 45, 4173–4177. [Google Scholar]
- Ramonell, KM; Zhang, B; Ewing, RM; Chen, Y; Xu, D; Stacey, G; Somerville, S. Microarray analysis of chitin elicitation in Arabidopsis thaliana. Mol Plant Pathol 2002, 3, 301–311. [Google Scholar]
- Akimoto-Tomiyama, C; Sakata, K; Yazaki, J; Nakamura, K; Fujii, F; Shimbo, K; Yamamoto, K; Sasaki, T; Kishimoto, N; Kikuchi, S; Shibuya, N; Minami, E. Rice gene expression in response to N-acetylchitooligosaccharide elicitor: comprehensive analysis by DNA microarray with randomly selected ESTs. Plant Mol Biol 2003, 52, 537–551. [Google Scholar]
- Dangl, JL; Jones, JDG. Plant pathogens and integrated defence responses to infection. Nature 2001, 411, 826–833. [Google Scholar]
- Iriti, M; Faoro, F. Chitosan as a MAMP, searching for a PRR. Plant Signal Behav 2009, 4(1), 66–68. [Google Scholar]
- Kauss, H; Jeblick, W; Domard, A. The degree of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Cathalanthus roseus. Planta 1989, 178, 385–392. [Google Scholar]
- Day, RB; Tanabe, S; Koshioka, M; Mitsui, T; Itoh, H; Ueguchi-Tanaka, M; Matsuoka, M; Kaku, H; Shibuya, N; Minami, E. Two rice GRAS family genes responsive to N-acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: Evidence for cross-talk between elicitor and gibberellin signaling in rice cells. Plant Mol Biol 2004, 54, 261–272. [Google Scholar]
- Shibuya, N; Ebisu, N; Kamada, Y; Kaku, H; Cohn, J; Ito, Y. Localization and binding characteristics of a high-affinity binding site for N-acetylchitooligosaccharide elicitor in the plasma membrane from suspension-cultured rice cells suggest a role as a receptor for the elicitor signal at the cell surface. Plant Cell Physiol 1996, 37, 894–898. [Google Scholar]
- Stacey, G; Shibuya, N. Chitin recognition in rice and legumes. Plant Soil 1997, 194, 161–169. [Google Scholar]
- Chen, HP; Xu, LL. Isolation and characterization of a novel chitosan-binding protein from non-heading chinese cabbage leaves. J Integr Plant Biol 2005, 47, 452–456. [Google Scholar]
- Vasil’ev, LA; Dzyubinskaya, EV; Zinovkin, RA; Kiselevsky, DB; Lobysheva, NV; Samuilov, VD. Chitosan-induced programmed cell death in plants. Biochem-Moscow 2009, 74, 1035–1043. [Google Scholar]
- Zuppini, A; Baldan, B; Millioni, R; Favaron, F; Navazio, L; Mariani, P. Chitosan induces Ca2+-mediated programmed cell death in soybean cells. New Phytol 2003, 161, 557–568. [Google Scholar]
- Choi, BK; Kim, KY; Yoo, YJ; Oh, SJ; Choi, JH; Kim, CY. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int J Antimicrob Agents 2001, 18, 553–557. [Google Scholar]
- Iriti, M; Sironib, M; Gomarasca, S; Casazza, AP; Soave, C; Faoro, F. Cell death-mediated antiviral effect of chitosan in tobacco. Plant Physiol Biochem 2006, 44, 893–900. [Google Scholar]
- Cabrera, JC; Messiaen, J; Cambier, P; van Cutsem, P. Size, acetylation and concentration of chitooligosaccharide elicitors determine the switch from defense involving PAL activation to cell death and water peroxide production in Arabidopsis cell suspensions. Physiol Plant 2006, 127, 44–56. [Google Scholar]
- Xie, W; Xu, P; Liu, Q. Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett 2001, 11, 1699–1701. [Google Scholar]
- Sun, T; Zhou, D; Xie, J; Mao, F. Preparation of chitosan oligomers and their antioxidant activity. Chem Mater Sci 2006, 225 . [Google Scholar]
- Sun, T; Yao, Q; Zhou, D; Mao, F. Antioxidant activity of N-carboxymethyl chitosan oligosaccharides. Bioorg Med Chem Lett 2008, 18, 5774–5776. [Google Scholar]
- Chen, WG; Liu, X; Chen, HX. Preparation of modified chitosan with quaternary ammonium salt. Textile Bioeng Infor Symp Proc 2009, 1, 226–230. [Google Scholar]
- Yazdani-Pedram, M; Lagos, A; Retuert, J; Guerrero, R; Riquelme, P. On the modification of chitosan through grafting. J Macromol Sci 1995, 32, 1037–1047. [Google Scholar]
- Doares, SH; Syrovets, T; Weiler, EW; Ryan, CA. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci USA 1995, 92, 4095–4098. [Google Scholar]
- Rakwal, R; Tamogami, S; Agrawal, GK; Iwahashi, H. Octadecanoid signaling component “burst” in rice (Oryza sativa L.) seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochem Biophys Res Comm 2002, 295, 1041–1045. [Google Scholar]
- Fajardo, JE; McCollum, TG; McDonald, RE; Mayer, RT. Differential induction of proteins in orange flavedo by biologically based elicitors and challenged by Penicillium digitatum Sacc. Biol Control 1998, 13, 143–151. [Google Scholar]
- Zhang, Q; Zhang, DL; Quantick, PC. Antifungal effects of chitosan coating on fresh strawberries and raspberries during storage. J Hort Sci Biotechnol 1998, 73, 763–767. [Google Scholar]
- Bohland, C; Balkenhoh, T; Loers, C; Feussner, I; Crambow, HJ. Differential induction of lipoxygenase isoforms in wheat upon treatment with rust -fungus elicitor, chitin oligosaccharides, chitosan, and methyl jasmonate. Plant Physiol 1997, 11, 679–685. [Google Scholar]
- Wolski, EA; Henriquez, MA; Adam, LR; Badawi, M; Andreu, AB; El Hadrami, A; Daayf, F. Induction of defense genes and secondary metabolites in saskatoons (Amelanchier alnifolia Nutt.) in response to Entomosporium mespili using jasmonic acid and Canada milkvetch extracts. Env Exp Bot 2010, in press. [Google Scholar]
- El Hadrami, I; Ramos, T; El Bellaj, M; El Idrissi-Tourane, A; Macheïx, JJ. A sinapic derivative as an induced defense compound of date palm against Fusarium oxysporum f. sp. albedinis, the agent causing bayoud disease. J Phytopathol 1997, 145, 329–333. [Google Scholar]
- Stergiopoulos, I; de Wit, PJGM. Fungal Effector Proteins. Ann Rev Phytopathol 2009, 47, 233–263. [Google Scholar]
- de Jonge, R; Thomma, BPHJ. Fungal LysM effectors: extinguishers of host immunity. Trends Microbiol 2009, 17, 151–157. [Google Scholar]
- Knogge, W; Scheel, D. LysM receptors recognize friend and foe. Proc Natl Acad Sci USA 2006, 103, 10829–10830. [Google Scholar]
- Gooday, GW. Physiology of microbial degradation of chitin and chitosan. Biodegr 1990, 1, 177–190. [Google Scholar]
- Davis, B; Eveleigh, DE. Zikakis, JP, Ed.; Chitosanases: occurrence, production and immobilization. In Chitin, Chitosan and Related Enzymes; Academic Press: New York, NY, USA, 1984; pp. 161–179. [Google Scholar]
- Gooday, GW; Prosser, JI; Hillman, K; Cross, MG. Mineralization of chitin in an estuarine sediment: The importance of the chitosan pathway. Biochem Syst Ecol 1991, 19, 395–400. [Google Scholar]
- Sivan, A; Chet, I. Degradation of fungal cell walls by lytic enzymes of Trichoderma haryianam. J Gen Microbiol 1989, 135, 675–682. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
El Hadrami, A.; Adam, L.R.; El Hadrami, I.; Daayf, F. Chitosan in Plant Protection. Mar. Drugs 2010, 8, 968-987. https://doi.org/10.3390/md8040968
El Hadrami A, Adam LR, El Hadrami I, Daayf F. Chitosan in Plant Protection. Marine Drugs. 2010; 8(4):968-987. https://doi.org/10.3390/md8040968
Chicago/Turabian StyleEl Hadrami, Abdelbasset, Lorne R. Adam, Ismail El Hadrami, and Fouad Daayf. 2010. "Chitosan in Plant Protection" Marine Drugs 8, no. 4: 968-987. https://doi.org/10.3390/md8040968
APA StyleEl Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in Plant Protection. Marine Drugs, 8(4), 968-987. https://doi.org/10.3390/md8040968