Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases
Abstract
:1. Introduction
2. Sources of Marine Functional Food Ingredients
2.1. Macroalgae
2.1.1. Proteins, Peptides and Amino Acids
2.1.2. Fatty Acids
2.1.3. Polysaccharides
2.1.4. Vitamins, Minerals and Antioxidants
2.2. Microalgae
2.2.1. Proteins, Peptides and Amino Acids
2.2.2. Fatty Acids
2.2.3. Polysaccharides
2.2.4. Antioxidants
2.3. Byproducts of Processing
2.3.1. Proteins, Peptides and Amino Acids
2.3.2. Fatty Acids
2.3.3. Polysaccharides
2.3.4. Calcium and Astaxanthin
2.4. Other Benthic Species
3. Potential to Reduce Prevalence of Chronic Diseases
3.1. Cancer
3.1.1. Algal Polysaccharides
3.1.2. n-3 Polyunsaturated Fatty Acids
3.1.3. Carotenoids and Chlorophylls
3.2. Cardiovascular Disease
3.2.1. Polysaccharides
3.2.2. n-3 Polyunsaturated Fatty Acids
3.2.3. ACE-Inhibitory Peptides
3.2.4. Astaxanthin
3.3. Inflammatory Conditions
3.3.1. Arthritis
3.3.2. Asthma
3.3.3. Neuroinflammation
3.4. Cognitive Decline and Depression
3.5. Diabetes
4. Conclusions
Acknowledgments
- Samples Availability: Available from the authors.
References
- Biesalski, H-K; Dragsted, LO; Elmadfa, I; Grossklaus, R; Müller, M; Schrenk, D; Walter, P; Weber, P. Bioactive compounds: Definition and assessment of activity. Nutrition 2009, 25, 1202–1205. [Google Scholar]
- Honkanen, P. Consumer acceptance of (marine) functional food. In Marine Functional Food, 1st ed; Luten, J, Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2009; Volume 1, pp. 141–154. [Google Scholar]
- Siró, I; Kápolna, E; Kápolna, B; Lugasi, A. Functional food. Product development, marketing and consumer acceptance-a review. Appetite 2008, 51, 456–467. [Google Scholar]
- Rasmussen, RS; Morrissey, MT. Marine biotechnology for production of food ingredients. Adv Food Nutr Res 2007, 52, 237–292. [Google Scholar]
- Plaza, M; Cifuentes, A; Ibáñez, E. In the search of new functional food ingredients from algae. Trends Food Sci Technol 2008, 19, 31–39. [Google Scholar]
- Bocanegra, A; Bastida, S; Benedí, J; Ródenas, S; Sánchez-Muniz, FJ. Characteristics and nutritional and cardiovascular-health properties of seaweeds. J Med Food 2009, 12, 236–258. [Google Scholar]
- El Gamal, AA. Biological importance of marine algae. Saudi Pharm J 2010, 18, 1–25. [Google Scholar]
- Kadam, S; Prabhasankar, P. Marine foods as functional ingredients in bakery and pasta products. Food Res Int 2010, 43, 1975–1980. [Google Scholar]
- Mabeau, S; Fleurence, J. Seaweed in food products: Biochemical and nutritional aspects. Trends Food Sci Technol 1993, 4, 103–107. [Google Scholar]
- Fleurence, J. Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 1999, 10, 25–28. [Google Scholar]
- Dawczynski, C; Schubert, R; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 2007, 103, 891–899. [Google Scholar]
- Galland-Irmouli, A-V; Fleurence, J; Lamghari, R; Luçon, M; Rouxel, C; Barbaroux, O; Bronowicki, J-P; Villaume, C; Guéant, J-L. Nutritional value of proteins from edible seaweed palmaria palmata (dulse). J Nutr Biochem 1999, 10, 353–359. [Google Scholar]
- Taboada, C; Millán, R; Míguez, I. Composition, nutritional aspects and effect on serum parameters of marine algae ulva rigida. J Sci Food Agric 2010, 90, 445–449. [Google Scholar]
- Pihlanto-Leppälä, A. Bioactive peptides derived from bovine whey proteins: Opioid and ace-inhibitory peptides. Trends Food Sci Technol 2000, 11, 347–356. [Google Scholar]
- Kim, S-K; Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. J Funct Foods 2010, 2, 1–9. [Google Scholar]
- Elias, RJ; Kellerby, SS; Decker, EA. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr 2008, 48, 430–441. [Google Scholar]
- Burtin, P. Nutritional value of seaweeds. EJEAFChe 2003, 2, 498–503. [Google Scholar]
- Aneiros, A; Garateix, A. Bioactive peptides from marine sources: Pharmacological properties and isolation procedures. J Chromatogr B 2004, 803, 41–53. [Google Scholar]
- MacArtain, P; Gill, CIR; Brooks, M; Campbell, R; Rowland, IR. Nutritional value of edible seaweeds. Nutr Rev 2007, 65, 535–543. [Google Scholar]
- Wall, R; Ross, RP; Fitzgerald, GF; Stanton, C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev 2010, 68, 280–289. [Google Scholar]
- Calder, PC. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 2006, 83, 1505–1519. [Google Scholar]
- Lunn, J; Theobald, H. The health effects of dietary unsaturated fatty acids. Nutr Bull 2006, 31, 178–224. [Google Scholar]
- Dembitsky, VM; Pechenkina-Shubina, EE; Rozentsvet, OA. Glycolipids and fatty acids of some seaweeds and marine grasses from the black sea. Phytochemistry 1991, 30, 2279–2283. [Google Scholar]
- Sánchez-Machado, D; López-Cervantes, J; López-Hernández, J; Paseiro-Losada, P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 2004, 85, 439–444. [Google Scholar]
- Piovetti, L; Deffo, P; Valls, R; Peiffer, G. Determination of sterols and diterpenoids from brown algae (cystoseiraceae). J Chromatogr A 1991, 588, 99–105. [Google Scholar]
- Haugan, JA; Liaaen-Jensen, S. Algal carotenoids 54. Carotenoids of brown algae (phaeophyceae). Biochem Syst Ecol 1994, 22, 31–41. [Google Scholar]
- Yan, X; Chuda, Y; Suzuki, M; Nagata, T. Fucoxanthin as the major antioxidant in hijikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem 1999, 63, 605–607. [Google Scholar]
- Dembitsky, VM; Maoka, T. Allenic and cumulenic lipids. Prog Lipid Res 2007, 46, 328–375. [Google Scholar]
- Gómez-Ordóñez, E; Jiménez-Escrig, A; Rupérez, P. Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern spanish coast. Food Res Int 2010, 43, 2289–2294. [Google Scholar]
- Jiménez-Escrig, A; Sánchez-Muniz, F. Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr Res 2000, 20, 585–598. [Google Scholar]
- Wijesekara, I; Kim, SK. Angiotension-i-converting enzyme (ace) inhibitors from marine resources: Prospects in the pharmaceutical industry. Mar Drugs 2010, 8, 1080–1093. [Google Scholar]
- Berteau, O; Mulloy, B. Sulfated fucans, fresh perspectives: Structures, functions, and biological properties of sulfated fucans and an overview of enzymes active towards this class of polysaccharide. Glycobiology 2003, 13, 29R–40R. [Google Scholar]
- Pomin, VH; Mourão, PAS. Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology 2008, 18, 1016–1027. [Google Scholar]
- O’Sullivan, L; Murphy, B; McLoughlin, P; Duggan, P; Lawlor, PG; Hughes, H; Gardiner, GE. Prebiotics from marine macroalgae for human and animal health applications. Mar Drugs 2010, 8, 2038–2064. [Google Scholar]
- Devillé, C; Damas, J; Forget, P; Dandrifosse, G; Peulen, O. Laminarin in the dietary fibre concept. J Sci Food Agric 2004, 84, 1030–1038. [Google Scholar]
- Devillé, C; Gharbi, M; Dandrifosse, G; Peulen, O. Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J Sci Food Agric 2007, 87, 1717–1725. [Google Scholar]
- Courtois, J. Oligosaccharides from land plants and algae: Production and applications in therapeutics and biotechnology. Curr Opin Microbiol 2009, 12, 261–273. [Google Scholar]
- Mussatto, SI; Mancilha, IM. Non-digestible oligosaccharides: A review. Carbohydr Polym 2007, 68, 587–597. [Google Scholar]
- Wang, Y. Prebiotics: Present and future in food science and technology. Food Res Int 2009, 42, 8–12. [Google Scholar]
- Rodríguez-Bernaldo de Quirós, A; Castro de Ron, C; López-Hernández, J; Lage-Yusty, M. Determination of folates in seaweeds by high-performance liquid chromatography. J Chromatogr A 2004, 1032, 135–139. [Google Scholar]
- Sánchez-Machado, D; López-Hernández, J; Paseiro-Losada, P. High-performance liquid chromatographic determination of [alpha]-tocopherol in macroalgae. J Chromatogr A 2002, 976, 277–284. [Google Scholar]
- Brown, MR; Jeffrey, SW; Volkman, JK; Dunstan, GA. Nutritional properties of microalgae for mariculture. Aquaculture 1997, 151, 315–331. [Google Scholar]
- Norziah, MH; Ching, CY. Nutritional composition of edible seaweed gracilaria changgi. Food Chem 2000, 68, 69–76. [Google Scholar]
- Carballo-Cárdenas, EC; Tuan, PM; Janssen, M; Wijffels, RH. Vitamin e (α-tocopherol) production by the marine microalgae dunaliella tertiolecta and tetraselmis suecica in batch cultivation. Biomol Eng 2003, 20, 139–147. [Google Scholar]
- Durmaz, Y; Monteiro, M; Bandarra, N; Gökpinar, Ş; Işik, O. The effect of low temperature on fatty acid composition and tocopherols of the red microalga porphyridium cruentum. J Appl Phycol 2007, 19, 223–227. [Google Scholar]
- Rebolloso Fuentes, MM; Acién Fernández, G; Sánchez Pérez, J; Guil Guerrero, J. Biomass nutrient profiles of the microalga porphyridium cruentum. Food Chem 2000, 70, 345–353. [Google Scholar]
- Inbaraj, BS; Chien, JT; Chen, BH. Improved high performance liquid chromatographic method for determination of carotenoids in the microalga chlorella pyrenoidosa. J Chromatogr A 2006, 1102, 193–199. [Google Scholar]
- Hu, C-C; Lin, J-T; Lu, F-J; Chou, F-P; Yang, D-J. Determination of carotenoids in dunaliella salina cultivated in taiwan and antioxidant capacity of the algal carotenoid extract. Food Chem 2008, 109, 439–446. [Google Scholar]
- Cha, KH; Lee, HJ; Koo, SY; Song, DG; Lee, DU; Pan, CH. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from chlorella vulgaris. J Agric Food Chem 2010, 58, 793–797. [Google Scholar]
- Cha, KH; Kang, SW; Kim, CY; Um, BH; Na, YR; Pan, CH. Effect of pressurized liquids on extraction of antioxidants from chlorella vulgaris. J Agric Food Chem 2010, 58, 4756–4761. [Google Scholar]
- Yuan, J-P; Chen, F; Liu, X; Li, X-Z. Carotenoid composition in the green microalga chlorococcum. Food Chem 2002, 76, 319–325. [Google Scholar]
- Plaza, M; Herrero, M; Cifuentes, A; Ibáñez, E. Innovative natural functional ingredients from microalgae. J Agric Food Chem 2009, 57, 7159–7170. [Google Scholar]
- Yokthongwattana, K; Savchenko, T; Polle, JEW; Melis, A. Isolation and characterization of a xanthophyll-rich fraction from the thylakoid membrane of dunaliella salina (green algae). Photochem Photobiol Sci 2005, 4, 1028–1034. [Google Scholar]
- Herrero, M; Jaime, L; Martín-Alvarez, PJ; Cifuentes, A; Ibáñez, E. Optimization of the extraction of antioxidants from dunaliella salina microalga by pressurized liquids. J Agric Food Chem 2006, 54, 5597–5603. [Google Scholar]
- Grewe, C; Griehl, C. Time- and media-dependent secondary carotenoid accumulation in haematococcus pluvialis. Biotechnol J 2008, 3, 1232–1244. [Google Scholar]
- Jaime, L; Rodríguez-Meizoso, I; Cifuentes, A; Santoyo, S; Suarez, S; Ibáñez, E; Señorans, FJ. Pressurized liquids as an alternative process to antioxidant carotenoids' extraction from haematococcus pluvialis microalgae. LWT-Food Sci Technol 2010, 43, 105–112. [Google Scholar]
- Rodríguez-Meizoso, I; Jaime, L; Santoyo, S; Cifuentes, A; Garcia-Blairsy Reina, G; Señoráns, F; Ibáñez, E. Pressurized fluid extraction of bioactive compounds from phormidium species. J Agric Food Chem 2008, 56, 3517–3523. [Google Scholar]
- Okai, Y; Higashi-Okai, K; Yano, Y; Otani, S. Identification of antimutagenic substances in an extract of edible red alga, porphyra tenera (asadusa-nori). Cancer Lett 1996, 100, 235–240. [Google Scholar]
- Plaza, M; Santoyo, S; Jaime, L; García-Blairsy Reina, G; Herrero, M; Señoráns, FJ; Ibáñez, E. Screening for bioactive compounds from algae. J Pharm Biomed Anal 2010, 51, 450–455. [Google Scholar]
- Mendes, RL; Fernandes, HL; Coelho, JP; Reis, EC; Cabral, JM; Novais, JM; Palavra, AF. Supercritical co2 extraction of carotenoids and other lipids from chlorella vulgaris. Food Chem 1995, 53, 99–103. [Google Scholar]
- Li, H-B; Chen, F. Preparative isolation and purification of astaxanthin from the microalga chlorococcum sp. by high-speed counter-current chromatography. J Chromatogr A 2001, 925, 133–137. [Google Scholar]
- Tripathi, U; Sarada, R; Rao, SR; Ravishankar, GA. Production of astaxanthin in haematococcus pluvialis cultured in various media. Bioresour Technol 1999, 68, 197–199. [Google Scholar]
- Wu, Z; Wu, S; Shi, X. Supercritical fluid extraction and determination of lutein in heterotrophically cultivated chlorella pyrenoidosa. J Food Process Eng 2007, 30, 174–185. [Google Scholar]
- Del Campo, JA; García-González, M; Guerrero, MG. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Appl Microbiol Biotechnol 2007, 74, 1163–1174. [Google Scholar]
- Macías-Sánchez, MD; Mantell, C; Rodríguez, M; Martínez de la Ossa, E; Lubián, LM; Montero, O. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from dunaliella salina. Talanta 2009, 77, 948–952. [Google Scholar]
- Rodríguez-Meizoso, I; Jaime, L; Santoyo, S; Señoráns, F; Cifuentes, A; Ibáñez, E. Subcritical water extraction and characterization of bioactive compounds from haematococcus pluvialis microalga. J Pharm Biomed Anal 2010, 51, 456–463. [Google Scholar]
- Klejdus, B; Kopecký, J; Benesová, L; Vacek, J. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J Chromatogr A 2009, 1216, 763–771. [Google Scholar]
- Rupérez, P. Mineral content of edible marine seaweeds. Food Chem 2002, 79, 23–26. [Google Scholar]
- García-Casal, MN; Pereira, AC; Leets, I; Ramírez, J; Quiroga, MF. High iron content and bioavailability in humans from four species of marine algae. J Nutr 2007, 137, 2691–2695. [Google Scholar]
- Maeda, H; Hosokawa, M; Sashima, T; Funayama, K; Miyashita, K. Fucoxanthin from edible seaweed, undaria pinnatifida, shows antiobesity effect through ucp1 expression in white adipose tissues. Biochem Biophys Res Commun 2005, 332, 392–397. [Google Scholar]
- Chernomorsky, S; Segelman, A; Poretz, RD. Effect of dietary chlorophyll derivatives on mutagenesis and tumor cell growth. Teratog Carcinog Mutagen 1999, 19, 313–322. [Google Scholar]
- Donaldson, MS. Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutr J 2004, 3, 19. [Google Scholar]
- Li, Y; Qian, Z-J; Ryu, B; Lee, S-H; Kim, M-M; Kim, S-K. Chemical components and its antioxidant properties in vitro: An edible marine brown alga ecklonia cava. Bioorg Med Chem 2009, 17, 1963–1973. [Google Scholar]
- Wang, T; Jónsdóttir, R; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from icelandic seaweeds. Food Chem 2009, 116, 240–248. [Google Scholar]
- Bhakuni, DS; Rawat, DS. Bioactive Marine Natural Products, 1st ed; Anamaya Publishers: New Delhi, India, 2005. [Google Scholar]
- Mata, TM; Martins, AA; Caetano, NS. Microalgae for biodiesel production and other applications: A review. Renew Sust Energ Rev 2010, 14, 217–232. [Google Scholar]
- Guil-Guerrero, J; Navarro-Juárez, R; López-Martínez, J; Campra-Madrid, P; Rebolloso-Fuentes, M. Functional properties of the biomass of three microalgal species. J Food Eng 2004, 65, 511–517. [Google Scholar]
- Spolaore, P; Joannis-Cassan, C; Duran, E; Isambert, A. Commercial applications of microalgae. J Biosci Bioeng 2006, 101, 87–96. [Google Scholar] [Green Version]
- Sheih, IC; Wu, T-K; Fang, TJ. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour Technol 2009, 100, 3419–3425. [Google Scholar]
- Metting, FB. Biodiversity and application of microalgae. J Ind Microbiol 1996, 17, 477–489. [Google Scholar]
- Herrero, M; Ibáñez, E; Cifuentes, A; Reglero, G; Santoyo, S. Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. J Food Prot 2006, 69, 2471–2477. [Google Scholar]
- Mendiola, JA; Jaime, L; Santoyo, S; Reglero, G; Cifuentes, A; Ibañez, E; Señoráns, F. Screening of functional compounds in supercritical fluid extracts from spirulina platensis. Food Chem 2007, 102, 1357–1367. [Google Scholar]
- Huheihel, M; Ishanu, V; Tal, J; Arad, S. Activity of porphyridium sp. Polysaccharide against herpes simplex viruses in vitro and in vivo. J Biochem Biophys Methods 2002, 50, 189–200. [Google Scholar]
- Kanekiyo, K; Lee, J-B; Hayashi, K; Takenaka, H; Hayakawa, Y; Endo, S; Hayashi, T. Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium nostoc flagelliforme. J Nat Prod 2005, 68, 1037–1041. [Google Scholar]
- Yeum, K-J; Russell, RM. Carotenoid bioavailability and bioconversion. Annu Rev Nutr 2002, 22, 483–504. [Google Scholar]
- Miyashita, K. Function of marine carotenoids. Forum Nutr 2009, 61, 136–146. [Google Scholar]
- Dufossé, L; Galaup, P; Yaron, A; Arad, SM; Blanc, P; Chidambara Murthy, KN; Ravishankar, GA. Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality. Trends Food Sci Technol 2005, 16, 389–406. [Google Scholar]
- Olson, JA; Krinsky, NI. Introduction: The colourful, fascinating world of the carotenoids: Important physiologic modulators. FASEB J 1995, 9, 1547–1550. [Google Scholar]
- Guerin, M; Huntley, ME; Olaizola, M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol 2003, 21, 210–216. [Google Scholar]
- Undeland, I; Lindqvust, H; Chen-Yun, Y; Falch, E; Ramel, A; Cooper, M; Gildberg, A; Luten, J; Stenberg, E; Nielsen, HH; Elvevoll, E. Seafood and health: What is the full story? In Marine Functional Food, 1st ed; Luten, J, Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2009; Volume 1, pp. 17–87. [Google Scholar]
- Kelleher, K. Discards in the World’s Marine Fisheries An Update; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Rustad, T. Utilisation of marine by-products. EJEAFChe 2003, 2, 458–463. [Google Scholar]
- Ferraro, V; Cruz, IB; Jorge, RF; Malcata, FX; Pintado, ME; Castro, PML. Valorisation of natural extracts from marine source focused on marine by-products: A review. Food Res Int 2010, 43, 2221–2233. [Google Scholar]
- Jeon, Y-J; Kim, S-K. Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J Microbiol Biotechnol 2002, 12, 503–507. [Google Scholar]
- Je, J-Y; Park, P-J; Kim, S-K. Antioxidant activity of a peptide isolated from alaska pollack (theragra chalcogramma) frame protein hydrolysate. Food Res Int 2005, 38, 45–50. [Google Scholar]
- Kim, S-K; Mendis, E. Bioactive compounds from marine processing byproducts-a review. Food Res Int 2006, 39, 383–393. [Google Scholar]
- Fujita, H; Yoshikawa, M. Lkpnm: A prodrug-type ace-inhibitory peptide derived from fish protein. Immunopharmacology 1999, 44, 123–127. [Google Scholar]
- Je, J-Y; Park, P-J; Kwon, JY; Kim, S-K. A novel angiotensin I converting enzyme inhibitory peptide from alaska pollack (theragra chalcogramma) frame protein hydrolysate. J Agric Food Chem 2004, 52, 7842–7845. [Google Scholar]
- Rajapakse, N; Jung, W-K; Mendis, E; Moon, S-H; Kim, S-K. A novel anticoagulant purified from fish protein hydrolysate inhibits factor xiia and platelet aggregation. Life Sci 2005, 76, 2607–2619. [Google Scholar]
- Jun, S-Y; Park, P-J; Jung, W-K; Kim, S-K. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (limanda aspera) frame protein. Eur Food Res Technol 2004, 219, 20–26. [Google Scholar]
- Jung, W-K; Park, P-J; Byun, H-G; Moon, S-H; Kim, S-K. Preparation of hoki (johnius belengerii) bone oligophosphopeptide with a high affinity to calcium by carnivorous intestine crude proteinase. Food Chem 2005, 91, 333–340. [Google Scholar]
- Choi, SS; Regenstein, JM. Physicochemical and sensory characteristics of fish gelatin. J Food Sci 2000, 65, 194–199. [Google Scholar]
- Gómez-Guillén, MC; Turnay, J; Fernández-Diaz, MD; Ulmo, N; Lizarbe, MA; Montero, P. Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocolloids 2002, 16, 25–34. [Google Scholar]
- Nicholson, J; Wolmarans, M; Park, G. The role of albumin in critical illness. Br J Anaesth 2000, 85, 599–610. [Google Scholar]
- Falch, E; Rustad, T; Aursand, M. By-products from gadiform species as raw material for production of marine lipids as ingredients in food or feed. Process Biochem 2006, 41, 666–674. [Google Scholar]
- Meyers, MA; Chen, P-Y; Lin, AY-M; Seki, Y. Biological materials: Structure and mechanical properties. Prog Mater Sci 2008, 53, 1–206. [Google Scholar]
- Shahidi, F; Arachchi, JKV; Jeon, Y-J. Food applications of chitin and chitosans. Trends Food Sci Technol 1999, 10, 37–51. [Google Scholar]
- Martínez-Valverde, I; Jesús Periago, M; Santaella, M; Ros, G. The content and nutritional significance of minerals on fish flesh in the presence and absence of bone. Food Chem 2000, 71, 503–509. [Google Scholar]
- Lloret, J. Human health benefits supplied by mediterranean marine biodiversity. Mar Pollut Bull 2010, 60, 1640–1646. [Google Scholar]
- Leary, D; Vierros, M; Hamon, G; Arico, S; Monagle, C. Marine genetic resources: A review of scientific and commercial interest. Mar Policy 2009, 33, 183–194. [Google Scholar]
- Penesyan, A; Kjelleberg, S; Egan, S. Development of novel drugs from marine surface associated microorganisms. Mar Drugs 2010, 8, 438–459. [Google Scholar]
- Bajpai, P; Bajpai, PK. Eicosapentaenoic acid (epa) production from microorganisms: A review. J Biotechnol 1993, 30, 161–183. [Google Scholar]
- Guezennec, J. Deep-sea hydrothermal vents: A new source of innovative bacterial exopolysaccharides of biotechnological interest. J Ind Microbiol Biotechnol 2002, 29, 204–208. [Google Scholar]
- Dharmaraj, S; Ashokkumar, B; Dhevendaran, K. Food-grade pigments from streptomyces sp. Isolated from the marine sponge callyspongia diffusa. Food Res Int 2009, 42, 487–492. [Google Scholar]
- Luiten, EEM; Akkerman, I; Koulman, A; Kamermans, P; Reith, H; Barbosa, MJ; Sipkema, D; Wijffels, RH. Realizing the promises of marine biotechnology. Biomol Eng 2003, 20, 429–439. [Google Scholar]
- Schwager, J; Mohajeri, MH; Fowler, A; Weber, P. Challenges in discovering bioactives for the food industry. Curr Opin Biotechnol 2008, 19, 66–72. [Google Scholar]
- Zhu, C-F; Li, G-Z; Peng, H-B; Zhang, F; Chen, Y; Li, Y. Effect of marine collagen peptides on markers of metabolic nuclear receptors in type 2 diabetic patients with/without hypertension. Biomed Environ Sci 2010, 23, 113–120. [Google Scholar]
- Rajanbabu, V; Chen, J-Y. Applications of antimicrobial peptides from fish and perspectives for the future. Peptides 2011, 32, 415–420. [Google Scholar]
- Manna, S; Janarthan, M; Ghosh, B; Rana, B; Rana, A; Chatterjee, M. Fish oil regulates cell proliferation, protect DNA damages and decrease her-2/neu and c-myc protein expression in rat mammary carcinogenesis. Clin Nutr 2010, 29, 531–537. [Google Scholar]
- Mandal, CC; Ghosh-Choudhury, T; Yoneda, T; Choudhury, GG; Ghosh-Choudhury, N. Fish oil prevents breast cancer cell metastasis to bone. Biochem Biophys Res Commun 2010, 402, 602–607. [Google Scholar]
- Hubbard, NE; Lim, D; Erickson, KL. Alteration of murine mammary tumorigenesis by dietary enrichment with n-3 fatty acids in fish oil. Cancer Lett 1998, 124, 1–7. [Google Scholar]
- Karmali, RA; Adams, L; Trout, JR. Plant and marine n-3 fatty acids inhibit experimental metastasis of rat mammary adenocarcinoma cells. Prostaglandins Leukot Essent Fatty Acids 1993, 48, 309–314. [Google Scholar]
- Emelyanov, A; Fedoseev, G; Krasnoschekova, O; Abulimity, A; Trendeleva, T; Barnes, P. Treatment of asthma with lipid extract of new zealand green-lipped mussel: A randomised clinical trial. Eur Respir J 2002, 20, 596–600. [Google Scholar]
- Judé, S; Roger, S; Martel, E; Besson, P; Richard, S; Bougnoux, P; Champeroux, P; Le Guennec, J-Y. Dietary long-chain omega-3 fatty acids of marine origin: A comparison of their protective effects on coronary heart disease and breast cancers. Prog Biophys Mol Biol 2006, 90, 299–325. [Google Scholar] [Green Version]
- He, K. Fish, long-chain omega-3 polyunsaturated fatty acids and prevention of cardiovascular disease--eat fish or take fish oil supplement. Prog Cardiovasc Dis 2009, 52, 95–114. [Google Scholar]
- Bouldrault, C; Bazinet, RP; Ma, DWL. Experimental models and mechanisms underlying the protective effects of n-3 polyunsaturated fatty acids in alzheimer's disease. J Nutr Biochem 2009, 20, 1–10. [Google Scholar]
- Cunnane, SC; Plourde, M; Pifferi, F; Bégin, M; Féart, C; Barberger-Gateau, P. Fish, docosahexaenoic acid and alzheimer's disease. Prog Lipid Res 2009, 48, 239–256. [Google Scholar]
- Itoh, H; Noda, H; Amano, H; Zhuaug, C; Mizuno, T; Ito, H. Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from sargassum thunbergii of phaeophyceae. Anticancer Res 1993, 13, 2045–2052. [Google Scholar]
- Wijesekara, I; Pangestuti, R; Kim, S-K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 2011, 84, 14–21. [Google Scholar]
- Mendis, E; Kim, M-M; Rajapakse, N; Kim, S-K. An in vitro cellular analysis of the radical scavenging efficacy of chitooligosaccharides. Life Sci 2007, 80, 2118–2127. [Google Scholar]
- Godard, M; Décordé, K; Ventura, E; Soteras, G; Baccou, J-C; Cristol, J-P; Rouanet, J-M. Polysaccharides from the green alga ulva rigida improve the antioxidant status and prevent fatty streak lesions in the high cholesterol fed hamster, an animal model of nutritionally-induced atherosclerosis. Food Chem 2009, 115, 176–180. [Google Scholar]
- Thomes, P; Rajendran, M; Pasanban, B; Rengasamy, R. Cardioprotective activity of cladosiphon okamuranus fucoidan against isoproterenol induced myocardial infarction in rats. Phytomedicine 2010, 18, 52–57. [Google Scholar]
- Huang, L; Wen, K; Gao, X; Liu, Y. Hypolipidemic effect of fucoidan from laminaria japonica in hyperlipidemic rats. Pharm Biol 2010, 48, 422–426. [Google Scholar]
- Cha, KH; Koo, SY; Lee, D-U. Antiproliferative effects of carotenoids extracted from chlorella ellipsoidea and chlorella vulgaris on human colon cancer cells. J Agric Food Chem 2008, 56, 10521–10526. [Google Scholar]
- Sun, Z; Peng, X; Liu, J; Fan, K-W; Wang, M; Chen, F. Inhibitory effects of microalgal extracts on the formation of advanced glycation endproducts (ages). Food Chem 2010, 120, 261–267. [Google Scholar]
- Nwosu, F; Morris, J; Lund, VA; Stewart, D; Ross, HA; McDougall, GJ. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 2011, 126, 1006–1012. [Google Scholar]
- Celikler, S; Tas, S; Vatan, O; Ziyanok-Ayvalik, S; Yildiz, G; Bilaloglu, R. Anti-hyperglycemic and antigenotoxic potential of ulva rigida ethanolic extract in the experimental diabetes mellitus. Food Chem Toxicol 2009, 47, 1837–1840. [Google Scholar]
- Kang, C; Jin, YB; Lee, H; Cha, M; Sohn, E-t; Moon, J; Park, C; Chun, S; Jung, E-S; Hong, J-S; Kim, SB; Kim, J-S; Kim, E. Brown alga ecklonia cava attenuates type 1 diabetes by activating ampk and akt signaling pathways. Food Chem Toxicol 2010, 48, 509–516. [Google Scholar]
- Newman, D; Cragg, G. Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr Med Chem 2004, 11, 1693–1713. [Google Scholar]
- Mayer, AMS; Gustafson, KR. Marine pharmacology in 2005–2006: Antitumour and cytotoxic compounds. Eur J Cancer 2008, 44, 2357–2387. [Google Scholar]
- Carter, N; Keam, S. Trabectedin: A review of its use in the management of soft tissue sarcoma and ovarian cancer. Drugs 2007, 67, 2257–2276. [Google Scholar]
- Villa, FA; Gerwick, L. Marine natural product drug discovery: Leads for treatment of inflammation, cancer, infections, and neurological disorders. Immunopharmacol Immunotoxicol 2010, 32, 228–237. [Google Scholar]
- Rinehart, K. Antitumor compounds from tunicates. Med Res Rev 2000, 20, 1–27. [Google Scholar]
- Russo, A; Piovano, M; Lombardo, L; Garbarino, J; Cardile, V. Lichen metabolites prevent uv light and nitric oxide-mediated plasmid DNA damage and induce apoptosis in human melanoma cells. Life Sci 2008, 83, 468–474. [Google Scholar]
- Sipkema, D; Franssen, MCR; Osinga, R; Tramper, J; Wijffels, RH. Marine sponges as pharmacy. Mar Biotechnol 2005, 7, 142–162. [Google Scholar]
- Sakowicz, R; Beredelis, M; Ray, K; Blackburn, C; Hopmann, C; Faulkner, D; Goldstein, L. A marine natural product inhibitor of kinesin motors. Science 1998, 280, 292–295. [Google Scholar]
- Prado, MP; Torres, YR; Berlinck, RGS; Desiderá, C; Sanchez, MA; Craveiro, MV; Hajdu, E; da Rocha, RM; Machado-Santelli, GM. Effects of marine organisms extracts on microtubule integrity and cell cycle progression in cultured cells. J Exp Mar Biol Ecol 2004, 313, 125–137. [Google Scholar]
- Coué, M; Brenner, SL; Spector, I; Korn, ED. Inhibition of actin polymerization by latrunculin a. FEBS Lett 1987, 213, 316–318. [Google Scholar]
- Bubb, M; Spector, I; Bershadsky, A; Korn, ED. Swinholide a is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments. J Biol Chem 1995, 270, 3463–3466. [Google Scholar]
- Inaba, K; Sato, H; Tsuda, M; Kobayashi, J. Spongiacidins a-d, new bromopyrrole alkaloids from hymeniacidon sponge. J Nat Prod 1998, 61, 693–695. [Google Scholar]
- Soni, R; Muller, L; Furet, P; Schoepfer, J; Stephan, C; Zumstein-Mecker, S; Fretz, H; Chaudhuri, B. Inhibition of cyclin-dependent kinase 4 (cdk4) by fascaplysin, a marine natural product. Biochem Biophys Res Commun 2000, 275, 877–884. [Google Scholar]
- Burres, N; Clement, J. Antitumor activity and mechanism of action of the novel marine natural products mycalamide-a and -b and onnamide. Cancer Res 1989, 49, 2935–2940. [Google Scholar]
- Fukuoka, K; Yamagishi, T; Ichihara, T; Nakaike, S; Iguchi, K; Yamada, Y; Fukumoto, H; Yoneda, T; Samata, K; Ikeya, H; Nanaumi, K; Hirayama, N; Narita, N; Saijo, N; Nishio, K. Mechanism of action of aragusterol a (yta0040), a potent anti-tumor marine steroid targeting the g(1) phase of the cell cycle. Int J Cancer 2000, 88, 810–819. [Google Scholar]
- Marshall, KM; Matsumoto, SS; Holden, JA; Concepción, GP; Tasdemir, D; Ireland, CM; Barrows, LR. The anti-neoplastic and novel topoisomerase ii-mediated cytotoxicity of neoamphimedine, a marine pyridoacridine. Biochem Pharmacol 2003, 66, 447–458. [Google Scholar]
- Juagdan, EG; Kalidindi, RS; Scheuer, PJ; Kelly-Borges, M. Elenic acid, an inhibitor of topoisomerase ii, from a sponge, plakinastrella sp. Tetrahedron Lett 1995, 36, 2905–2908. [Google Scholar]
- Fung, FMY; Ding, JL. A novel antitumour compound from the mucus of a coral, galaxea fascicularis, inhibits topoisomerase i and ii. Toxicon 1998, 36, 1053–1058. [Google Scholar]
- Chen, A; Liu, L. DNA topoisomerases: Essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 1994, 34, 191–218. [Google Scholar]
- Pardo, B; Paz-Ares, L; Tabernero, J; Ciruelos, E; García, M; Salazar, R; López, A; Blanco, M; Nieto, A; Jimeno, J; Izquierdo, M; Trigo, J. Phase i clinical and pharmacokinetic study of kahalalide f administered weekly as a 1-hour infusion to patients with advanced solid tumors. Clin Cancer Res 2008, 14, 1116–1123. [Google Scholar]
- Provencio, M; Sánchez, A; Gasent, J; Gómez, P; Rosell, R. Cancer treatments: Can we find treasures at the bottom of the sea. Clin Lung Cancer 2009, 10, 295–300. [Google Scholar]
- Haijin, M; Xiaolu, J; Huashi, G. A k-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J Appl Phycol 2003, 15, 297–303. [Google Scholar]
- Yuan, H; Song, J; Li, X; Li, N; Dai, J. Immunomodulation and antitumor activity of [kappa]-carrageenan oligosaccharides. Cancer Lett 2006, 243, 228–234. [Google Scholar]
- Hiroishi, S; Sugie, K; Yoshida, T; Morimoto, J; Taniguchi, Y; Imai, S; Kurebayashi, J. Antitumor effects of marginisporum crassissimum (rhodophyceae), a marine red alga. Cancer Lett 2001, 167, 145–150. [Google Scholar]
- Zhou, G; Sun, Y; Xin, H; Zhang, Y; Li, Z; Xu, Z. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from chondrus ocellatus. Pharmacol Res 2004, 50, 47–53. [Google Scholar]
- de Sousa, APA; Torres, MR; Pessoa, C; deMoraes, MO; Filho, FDR; Alves, APNN; Costa-Lotufo, LV. In vivo growth-inhibition of sarcoma 180 tumor by alginates from brown seaweed sargassum vulgare. Carbohydr Polym 2007, 69, 7–13. [Google Scholar]
- Bougnoux, P. n-3 polyunsaturated fatty acids and cancer. Curr Opin Clin Nutr Metab Care 1999, 2, 121–126. [Google Scholar]
- Rose, DP; Connolly, JM. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 1999, 83, 217–244. [Google Scholar]
- Senzaki, H; Iwamoto, S; Ogura, E; Kiyozuka, Y; Arita, S; Kurebayashi, J; Takada, H; Hioki, K; Tsubura, A. Dietary effects of fatty acids on growth and metastasis of kpl-1 human breast cancer cells in vivo and in vitro. Anticancer Res 1998, 18, 1621–1627. [Google Scholar]
- Brown, M; Hart, C; Gazi, E; Bagley, S; Clarke, N. Promotion of prostatic metastatic migration towards human bone marrow stoma by omega 6 and its inhibition by omega 3 pufas. Br J Cancer 2006, 94, 842–853. [Google Scholar]
- Raghuveer, C; Tandon, R. Consumption of functional foods and our health concerns. Pak J Physiol 2009, 5, 76–83. [Google Scholar]
- Das, SK; Hashimoto, T; Kanazawa, K. Growth inhibition of human hepatic carcinoma hepg2 cells by fucoxanthin is associated with down-regulation of cyclin d. Biochim Biophys Acta 2008, 1780, 743–749. [Google Scholar]
- Gunasekera, R; Sewgobind, K; Desai, S; Dunn, L; Black, H; McKeehan, W; Patil, B. Lycopene and lutein inhibit proliferation in rat prostate carcinoma cells. Nutr Cancer 2007, 58, 171–177. [Google Scholar]
- Liu, C-L; Huang, Y-S; Hosokawa, M; Miyashita, K; Hu, M-L. Inhibition of proliferation of a hepatoma cell line by fucoxanthin in relation to cell cycle arrest and enhanced gap junctional intercellular communication. Chem Biol Interact 2009, 182, 165–172. [Google Scholar]
- Narisawa, T; Fukaura, Y; Hasebe, M; Ito, M; Aizawa, R; Murakoshi, M; Uemura, S; Khachik, F; Nishino, H. Inhibitory effects of natural carotenoids, [alpha]-carotene, [beta]-carotene, lycopene and lutein, on colonic aberrant crypt foci formation in rats. Cancer Lett 1996, 107, 137–142. [Google Scholar]
- Kim, J; Araki, S; Kim, D; Park, C; Takasuka, N; Baba-Toriyama, H; Ota, T; Nir, Z; Khachik, F; Shimidzu, N; Tanaka, Y; Osawa, T; Uraji, T; Murakoshi, M; Nishino, H; Tsuda, H. Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine initiation. Carcinogenesis 1998, 19, 81–85. [Google Scholar]
- van Poppel, G. Carotenoids and cancer: An update with emphasis on human intervention studies. Eur J Cancer 1993, 29, 1335–1344. [Google Scholar]
- Tapiero, H; Townsend, DM; Tew, KD. The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother 2004, 58, 100–110. [Google Scholar]
- Tanaka, T; Morishita, Y; Suzui, M; Kojima, T; Okumura, A; Mori, H. Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin. Carcinogenesis 1994, 15, 15–19. [Google Scholar]
- Tanaka, T; Makita, H; Ohnishi, M; Mori, H; Satoh, K; Hara, A. Chemoprevention of rat oral carcinogenesis by naturally occurring xanthophylls, astaxanthin and canthaxanthin. Cancer Res 1995, 55, 4059–4064. [Google Scholar]
- Tanaka, T; Kawamori, T; Ohnishi, M; Makita, H; Mori, H; Satoh, K; Hara, A. Suppression of azoxymethane-induced rat colon carcinogenesis by dietary administration of naturally occurring xanthophylls astaxanthin and canthaxanthin during the postinitiation phase. Carcinogenesis 1995, 16, 2957–2963. [Google Scholar]
- Olvera, O; Zimmering, S; Arceo, C; Cruces, M. The protective effects of chlorophyllin in treatment with chromium(vi) oxide in somatic cells of drosophila. Mutat Res Lett 1993, 301, 201–204. [Google Scholar]
- Chung, W-Y; Lee, J-M; Park, M-Y; Yook, J-I; Kim, J; Chung, A-S; Surh, Y-J; Park, K-K. Inhibitory effects of chlorophyllin on 7,12-dimethylbenz[a]anthracene-induced bacterial mutagenesis and mouse skin carcinogenesis. Cancer Lett 1999, 145, 57–64. [Google Scholar]
- Lai, C-N; Butler, MA; Matney, TS. Antimutagenic activities of common vegetables and their chlorophyll content. Mutat Res 1980, 77, 245–250. [Google Scholar]
- Negishi, T; Rai, H; Hayatsu, H. Antigenotoxic activity of natural chlorophylls. Mutat Res 1997, 376, 97–100. [Google Scholar]
- Negishi, T; Arimoto, S; Nishizaki, C; Hayatsu, H. Inhibitory effect of chlorophyll on the genotoxicity of 3-amino-1-methyl-5h-pyrido[4,3-b]indole (trp-p-2). Carcinogenesis 1989, 10, 145–149. [Google Scholar]
- Balder, H; Vogel, J; Jansen, M; Weijenberg, M; van den Brandt, P; Westenbrink, S; van der Meer, R; Goldbohm, R. Heme and chlorophyll intake and risk of colorectal cancer in the netherlands cohort study. Cancer Epidemiol Biomarkers Prev 2006, 15, 717–725. [Google Scholar]
- Ferruzzi, MG; Blakeslee, J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res 2007, 27, 1–12. [Google Scholar]
- Schoefs, B. Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends Food Sci Technol 2002, 13, 361–371. [Google Scholar]
- Oben, J; Enonchong, E; Kuate, D; Mbanya, D; Thomas, T; Hildreth, D; Ingolia, T; Tempesta, M. The effects of proalgazyme novel algae infusion on metabolic syndrome and markers of cardiovascular health. Lipids Health Dis 2007, 6, 20. [Google Scholar]
- Erkkilä, AT; Herrington, DM; Mozaffarian, D; Lichtenstein, AH. Cereal fiber and whole-grain intake are associated with reduced progression of coronary-artery atherosclerosis in postmenopausal women with coronary artery disease. Am Heart J 2005, 150, 94–101. [Google Scholar]
- Mozaffarian, D; Kumanyika, S; Lemaitre, R; Olson, J; Burke, G; Siscovick, D. Cereal, fruit, and vegetable fiber intake and the risk of cardiovascular disease in elderly individuals. J Am Med Assoc 2003, 289, 1659–1666. [Google Scholar]
- Bazzano, L; He, J; Ogden, L; Loria, C; Whelton, P. Dietary fiber intake and reduced risk of coronary heart disease in us men and women: The national health and nutrition examination survey i epidemiologic follow-up study. Arch Intern Med 2002, 1897–1904. [Google Scholar]
- Liu, S; Buring, JE; Sesso, HD; Rimm, EB; Willett, WC; Manson, JE. A prospective study of dietary fiber intake and risk of cardiovascular disease among women. J Am Coll Cardiol 2002, 39, 49–56. [Google Scholar]
- Wolk, A; Manson, J; Stampfer, M; Colditz, G; Hu, F; Speizer, F; Hennekens, C; Willett, W. Long-term intake of dietary fiber and decreased risk of coronary heart disease among women. J Am Med Assoc 1999, 281, 1998–2004. [Google Scholar]
- Venugopal, V. Marine Products for Healthcare Functional and Bioactive Nutraceutical Compounds from the Ocean, 1st ed; CRC Press: Boca Raton, FL, USA, 2009; Volume 1. [Google Scholar]
- Cherng, J-Y; Shih, M-F. Preventing dyslipidemia by chlorella pyrenoidosa in rats and hamsters after chronic high fat diet treatment. Life Sci 2005, 76, 3001–3013. [Google Scholar]
- Wong, KH; Sam, SW; Cheung, PCK; Ang, PO. Changes in lipid profiles of rats fed with seaweed-based diets. Nutr Res 1999, 19, 1519–1527. [Google Scholar]
- Kimura, Y; Watanabe, K; Okuda, H. Effects of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J Ethnopharmacol 1996, 54, 47–54. [Google Scholar]
- Bang, H; Dyerberg, J. Plasma lipids and lipoproteins in greenlandic west coast eskimos. Acta Med Scand 1972, 192, 85–94. [Google Scholar]
- Kromhout, D; Bosschieter, E; de Lezenne Coulander, C. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N Engl J Med 1985, 312, 1205–1209. [Google Scholar]
- William, H. Omega-3 fatty acids: The “Japanese” Factor. J Am Coll Cardiol 2008, 52, 425–427. [Google Scholar]
- Lee, J; O'Keefe, J; Lavie, C; Marchioli, R; Harris, W. Omega-3 fatty acids for cardioprotection. Mayo Clin Proc 2008, 83, 324–332. [Google Scholar]
- Burr, ML; Gilbert, JF; Holliday, RM; Elwood, PC; Fehily, AM; Rogers, S; Sweetnam, PM; Deadman, NM. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: Diet and reinfarction trial (dart). Lancet 1989, 334, 757–761. [Google Scholar]
- Oomen, C; Feskens, E; Räsänen, L; Fidanza, F; Nissinen, A; Menotti, A; Kok, F; Kromhout, D. Fish consumption and coronary heart disease mortality in finland, italy, and the netherlands. Am J Epidemiol 2000, 151, 999–1006. [Google Scholar]
- Lavie, CJ; Milani, RV; Mehra, MR; Ventura, HO. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol 2009, 54, 585–594. [Google Scholar]
- Lee, J; O'Keefe, J; Lavie, CJ; Harris, W. Omega-3 fatty acids: Cardiovascular benefits, sources and sustainability. Nat Rev Cardiol 2009, 6, 753–758. [Google Scholar]
- Psota, TL; Gebauer, SK; Kris-Etherton, P. Dietary omega-3 fatty acid intake and cardiovascular risk. Am J Cardiol 2006, 98, 3–18. [Google Scholar]
- Singh, R; Niaz, M; Sharma, J; Kumar, R; Rastogi, V; Moshiri, M. Randomized, double-blind, placebo-controlled trial of fish oil and mustard oil in patients with suspected acute myocardial infarction: The indian experiment of infarct survival--4. Cardiovasc Drugs Ther 1997, 11, 485–491. [Google Scholar]
- GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin e after myocardial infarction: Results of the gissi-prevenzione trial. Lancet 1999, 354, 447–455.
- McLennan, P; Howe, P; Abeywardena, M; Muggli, R; Raederstorff, D; Mano, M; Rayner, T; Head, R. The cardiovascular protective role of docosahexaenoic acid. Eur J Pharmacol 1996, 300, 83–89. [Google Scholar]
- McLennan, PL; Abeywardena, MY; Charnock, JS. Dietary fish oil prevents ventricular fibrillation following coronary artery occlusion and reperfusion. Am Heart J 1988, 116, 709–717. [Google Scholar]
- Charnock, JS; McLennan, PL; Sundram, K; Abeywardena, MY. Omega-3 pufa's reduce the vulnerability of the rat heart to ischaemic arrhythmia in the presence of a high intake of saturated animal fat. Nutr Res 1991, 11, 1025–1034. [Google Scholar]
- Harris, WS; von Schacky, C. The omega-3 index: A new risk factor for death from coronary heart disease. Prev Med 2004, 39, 212–220. [Google Scholar]
- Lerman, RH; Kaskel, L; McIntosh, M; Najm, W; Fernandez, ML; Baruffi, E; Harris, W. Correction of the omega-3 index in women with metabolic syndrome by adding omega-3 supplements to a mediterranean style diet. J Clin Lipidol 2011, 5, 224–224. [Google Scholar]
- Knapp, HR; Fitzgerald, GA. The antihypertensive effects of fish oil. A controlled study of polyunsaturated fatty acid supplements in essential hypertension. N Engl J Med 1989, 320, 1037–1043. [Google Scholar]
- Bønaa, KH; Bjerve, KS; Straume, B; Gram, IT; Thelle, D. Effect of eicosapentaenoic and docosahexaenoic acids on blood pressure in hypertension. A population-based intervention trial from the tromsø study. N Engl J Med 1990, 322, 795–801. [Google Scholar]
- Toft, I; Bønaa, KH; Ingebretsen, OC; Nordøy, A; Jenssen, T. Effects of n-3 polyunsaturated fatty acids on glucose homeostasis and blood pressure in essential hypertension. A randomized, controlled trial. Ann Intern Med 1995, 123, 911–918. [Google Scholar]
- WHO; ISH. World health organization (who)/international society of hypertension (ish) statement on management of hypertension. J Hypertens 2003, 21, 1983–1992. [Google Scholar]
- Zhao, Y; Li, B; Dong, S; Liu, Z; Zhao, X; Wang, J; Zeng, M. A novel ace inhibitory peptide isolated from acaudina molpadioidea hydrolysate. Peptides 2009, 30, 1028–1033. [Google Scholar]
- Wang, J; Hu, J; Cui, J; Bai, X; Du, Y; Miyaguchi, Y; Lin, B. Purification and identification of a ace inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chem 2008, 111, 302–308. [Google Scholar]
- Je, J-Y; Park, P-J; Byun, H-G; Jung, W-K; Kim, S-K. Angiotensin i converting enzyme (ace) inhibitory peptide derived from the sauce of fermented blue mussel, mytilus edulis. Bioresour Technol 2005, 96, 1624–1629. [Google Scholar]
- Jung, W-K; Mendis, E; Je, J-Y; Park, P-J; Son, BW; Kim, HC; Choi, YK; Kim, S-K. Angiotensin i-converting enzyme inhibitory peptide from yellowfin sole (limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 2006, 94, 26–32. [Google Scholar]
- Lee, S-H; Qian, Z-J; Kim, S-K. A novel angiotensin i converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 2010, 118, 96–102. [Google Scholar]
- McNulty, H; Jacob, RF; Mason, RP. Biologic activity of carotenoids related to distinct membrane physicochemical interactions. Am J Cardiol 2008, 101, S20–S29. [Google Scholar]
- Yuan, JP; Peng, J; Yin, K; Wang, JH. Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Mol Nutr Food Res 2010, 54, 1–16. [Google Scholar]
- Li, W; Hellsten, A; Jacobsson, LS; Blomqvist, HM; Olsson, AG; Yuan, X-M. Alpha-tocopherol and astaxanthin decrease macrophage infiltration, apoptosis and vulnerability in atheroma of hyperlipidaemic rabbits. J Mol Cell Cardiol 2004, 37, 969–978. [Google Scholar]
- Iwamoto, T; Hosoda, K; Hirano, R; Kurata, H; Matsumoto, A; Miki, W; Kamiyama, M; Itakura, H; Yamamoto, S; Kondo, K. Inhibition of low-density lipoprotein oxidation by astaxanthin. J Atheroscler Thromb 2000, 7, 216–222. [Google Scholar]
- Yoshida, H; Yanai, H; Ito, K; Tomono, Y; Koikeda, T; Tsukahara, H; Tada, N. Administration of natural astaxanthin increases serum hdl-cholesterol and adiponectin in subjects with mild hyperlipidemia. Atherosclerosis 2010, 209, 520–523. [Google Scholar]
- Hussein, G; Nakamura, M; Zhao, Q; Iguchi, T; Goto, H; Sankawa, U; Watanabe, H. Antihypertensive and neuroprotective effects of astaxanthin in experimental animals. Biol Pharm Bull 2005, 28, 47–52. [Google Scholar]
- Hussein, G; Goto, H; Oda, S; Sankawa, U; Matsumoto, K; Watanabe, H. Antihypertensive potential and mechanism of action of astaxanthin: Iii. Antioxidant and histopathological effects in spontaneously hypertensive rats. Biol Pharm Bull 2006, 29, 684–688. [Google Scholar]
- Mayer, AMS; Rodríguez, AD; Berlinck, RGS; Hamann, MT. Marine pharmacology in 2003–4: Marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2007, 145, 553–581. [Google Scholar]
- Mayer, AMS; Rodríguez, AD; Berlinck, RGS; Hamann, MT. Marine pharmacology in 2005–6: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochim Biophys Acta 2009, 1790, 283–308. [Google Scholar]
- Schubert, R; Kitz, R; Beermann, C; Rose, MA; Baer, PC; Zielen, S; Boehles, H. Influence of low-dose polyunsaturated fatty acids supplementation on the inflammatory response of healthy adults. Nutrition 2007, 23, 724–730. [Google Scholar]
- Goldberg, RJ; Katz, J. A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain 2007, 129, 210–223. [Google Scholar]
- Belluzzi, A; Brignola, C; Campieri, M; Pera, A; Boschi, S; Miglioli, M. Effect of an enteric-coated fish-oil preparation on relapses in crohn's disease. N Engl J Med 1996, 334, 1557–1560. [Google Scholar]
- Bennedsen, M; Wang, X; Willén, R; Wadström, T; Andersen, LP. Treatment of h. Pylori infected mice with antioxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes. Immunol Lett 1999, 70, 185–189. [Google Scholar]
- Lee, S; Bai, S; Lee, K; Namkoong, S; Na, H; Ha, K; Han, J; Yim, S; Chang, K; Kwon, Y; Lee, S; Kim, Y. Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing i(kappa)b kinase-dependent nf-kappab activation. Mol Cells 2003, 16, 97–105. [Google Scholar]
- Macedo, RC; Bolin, AP; Marin, DP; Otton, R. Astaxanthin addition improves human neutrophils function: In vitro study. Eur J Nutr 2010, 49, 447–457. [Google Scholar]
- Mahmoud, FF; Haines, DD; Abul, HT; Abal, AT; Onadeko, BO; Wise, JA. In vitro effects of astaxanthin combined with ginkgolide b on t lymphocyte activation in peripheral blood mononuclear cells from asthmatic subjects. J Pharmacol Sci 2004, 94, 129–136. [Google Scholar]
- James, MJ; Cleland, LG. Dietary n-3 fatty acids and therapy for rheumatoid arthritis. Semin Arthritis Rheum 1997, 27, 85–97. [Google Scholar]
- Hurst, S; Zainal, Z; Caterson, B; Hughes, CE; Harwood, JL. Dietary fatty acids and arthritis. Prostaglandins Leukot Essent Fatty Acids 2010, 82, 315–318. [Google Scholar]
- Stamp, LK; James, MJ; Cleland, LG. Diet and rheumatoid arthritis: A review of the literature. Semin Arthritis Rheum 2005, 35, 77–94. [Google Scholar]
- Moskowitz, RW. Role of collagen hydrolysate in bone and joint disease. Semin Arthritis Rheum 2000, 30, 87–99. [Google Scholar]
- Hodge, L; Salome, CM; Peat, JK; Haby, MM; Xuan, W; Woolcock, AJ. Consumption of oily fish and childhood asthma risk. Med J Aust 1996, 164, 137–140. [Google Scholar]
- Oddy, WH; de Klerk, NH; Kendall, GE; Mihrshahi, S; Peat, JK. Ratio of omega-6 to omega-3 fatty acids and childhood asthma. J Asthma 2004, 41, 319–326. [Google Scholar]
- Masuev, KA. The effect of polyunsaturated fatty acids of the omega-3 class on the late phase of the allergic reaction in bronchial asthma patients. Ter Arkh 1997, 69, 31–33. [Google Scholar]
- Masuev, KA. The effect of polyunsaturated fatty acids on the biochemical indices of bronchial asthma patients. Ter Arkh 1997, 69, 33–35. [Google Scholar]
- Nagakura, T; Matsuda, S; Shichijyo, K; Sugimoto, H; Hata, K. Dietary supplementation with fish oil rich in omega-3 polyunsaturated fatty acids in children with bronchial asthma. Eur Respir J 2000, 16, 861–865. [Google Scholar]
- Broughton, KS; Johnson, CS; Pace, BK; Liebman, M; Kleppinger, KM. Reduced asthma symptoms with n-3 fatty acid ingestion are related to 5-series leukotriene production. Am J Clin Nutr 1997, 65, 1011–1017. [Google Scholar]
- Villani, F; Comazzi, R; De Maria, P; Galimberti, M. Effect of dietary supplementation with polyunsaturated fatty acids on bronchial hyperreactivity in subjects with seasonal asthma. Respiration 1998, 65, 265–269. [Google Scholar]
- Esiri, MM. The interplay between inflammation and neurodegeneration in cns disease. J Neuroimmunol 2007, 184, 4–16. [Google Scholar]
- Layé, S. Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukot Essent Fatty Acids 2010, 82, 295–303. [Google Scholar]
- Barberger-Gateau, P; Letenneur, L; Deschamps, V; Pérès, K; Dartigues, J; Renaud, S. Fish, meat, and risk of dementia: Cohort study. BMJ 2002, 325, 932–933. [Google Scholar]
- Kalmijn, S; Launer, LJ; Ott, A; Witteman, JC; Hofman, A; Breteler, MM. Dietary fat intake and the risk of incident dementia in the rotterdam study. Ann Neurol 1997, 42, 776–782. [Google Scholar]
- Jin, D-Q; Lim, CS; Sung, J-Y; Choi, HG; Ha, I; Han, J-S. Ulva conglobata, a marine algae, has neuroprotective and anti-inflammatory effects in murine hippocampal and microglial cells. Neurosci Lett 2006, 402, 154–158. [Google Scholar]
- Jung, W-K; Ahn, Y-W; Lee, S-H; Choi, YH; Kim, S-K; Yea, SS; Choi, I; Park, S-G; Seo, S-K; Lee, S-W; Choi, I-W. Ecklonia cava ethanolic extracts inhibit lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in bv2 microglia via the map kinase and nf-[kappa]b pathways. Food Chem Toxicol 2009, 47, 410–417. [Google Scholar]
- Lim, CS; Jin, D-Q; Sung, J-Y; Lee, JH; Choi, HG; Ha, I; Han, J-S. Antioxidant and anti-inflammatory activities of the methanolic extract of neorhodomela aculeate in hippocampal and microglial cells. Biol Pharm Bull 2006, 29, 1212–1216. [Google Scholar]
- Mayer, AMS; Rodríguez, AD; Berlinck, RGS; Fusetani, N. Marine pharmacology in 2007–8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2011, 153, 191–222. [Google Scholar]
- McCarty, MF; Barroso-Aranda, J; Contreras, F. Oral phycocyanobilin may diminish the pathogenicity of activated brain microglia in neurodegenerative disorders. Med Hypotheses 2010, 74, 601–605. [Google Scholar]
- Solfrizzi, V; D'Introno, A; Colacicco, AM; Capurso, C; Del Parigi, A; Capurso, S; Gadaleta, A; Capurso, A; Panza, F. Dietary fatty acids intake: Possible role in cognitive decline and dementia. Exp Gerontol 2005, 40, 257–270. [Google Scholar]
- Solfrizzi, V; Frisardi, V; Capurso, C; D'Introno, A; Colacicco, AM; Vendemiale, G; Capurso, A; Panza, F. Dietary fatty acids in dementia and predementia syndromes: Epidemiological evidence and possible underlying mechanisms. Ageing Res Rev 2010, 9, 184–199. [Google Scholar]
- van Gelder, BM; Tijhuis, M; Kalmijn, S; Kromhout, D. Fish consumption, n-3 fatty acids, and subsequent 5-y cognitive decline in elderly men: The zutphen elderly study. Am J Clin Nutr 2007, 85, 1142–1147. [Google Scholar]
- Dangour, AD; Allen, E; Elbourne, D; Fletcher, A; Richards, M; Uauy, R. Fish consumption and cognitive function among older people in the uk: Baseline data from the opal study. J Nutr Health Aging 2009, 13, 198–202. [Google Scholar]
- Nurk, E; Drevon, CA; Refsum, H; Solvoll, K; Vollset, SE; Nygård, O; Nygaard, HA; Engedal, K; Tell, GS; Smith, AD. Cognitive performance among the elderly and dietary fish intake: The hordaland health study. Am J Clin Nutr 2007, 86, 1470–1478. [Google Scholar]
- Kalmijn, S; van Boxtel, M; Ocké, M; Verschuren, W; Kromhout, D; Launer, L. Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 2004, 27, 275–280. [Google Scholar]
- Nakashima, Y; Ohsawa, I; Konishi, F; Hasegawa, T; Kumamoto, S; Suzuki, Y; Ohta, S. Preventive effects of chlorella on cognitive decline in age-dependent dementia model mice. Neurosci Lett 2009, 464, 193–198. [Google Scholar]
- Uauy, R; Dangour, AD. Nutrition in brain development and aging: Role of essential fatty acids. Nutr Rev 2006, 64, S24–S33. [Google Scholar]
- Dalton, A; Wolmarans, P; Witthuhn, RC; van Stuijvenberg, ME; Swanevelder, SA; Smuts, CM. A randomised control trial in schoolchildren showed improvement in cognitive function after consuming a bread spread, containing fish flour from a marine source. Prostaglandins Leukot Essent Fatty Acids 2009, 80, 143–149. [Google Scholar]
- Pei, X; Yang, R; Zhang, Z; Gao, L; Wang, J; Xu, Y; Zhao, M; Han, X; Liu, Z; Li, Y. Marine collagen peptide isolated from chum salmon (oncorhynchus keta) skin facilitates learning and memory in aged c57bl/6j mice. Food Chem 2010, 118, 333–340. [Google Scholar]
- Montgomery, P; Richardson, AJ. Omega-3 fatty acids for bipolar disorder. Cochrane Database Syst Rev 2008, 16, CD005169. [Google Scholar]
- Freeman, MP; Hibbeln, JR; Wisner, KL; Davis, JM; Mischoulon, D; Peet, M; Keck, PEJ; Marangell, LB; Richardson, AJ; Lake, J; Stoll, AL. Omega-3 fatty acids: Evidence basis for treatment and future research in psychiatry. J Clin Psychiatry 2006, 67, 1954–1967. [Google Scholar]
- Nemets, B; Stahl, Z; Belmaker, RH. Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. Am J Psychiatry 2002, 159, 477–479. [Google Scholar]
- Peet, M; Horrobin, DF. A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch Gen Psychiatry 2002, 59, 913–919. [Google Scholar]
- Stoll, AL; Severus, WE; Freeman, MP; Rueter, S; Zboyan, HA; Diamond, E; Cress, KK; Marangell, LB. Omega 3 fatty acids in bipolar disorder: A preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry 1999, 56, 407–412. [Google Scholar]
- Su, K-P; Huang, S-Y; Chiu, C-C; Shen, WW. Omega-3 fatty acids in major depressive disorder: A preliminary double-blind, placebo-controlled trial. Eur Neuropsychopharmacol 2003, 13, 267–271. [Google Scholar]
- Venna, VR; Deplanque, D; Allet, C; Belarbi, K; Hamdane, M; Bordet, R. Pufa induce antidepressant-like effects in parallel to structural and molecular changes in the hippocampus. Psychoneuroendocrinology 2009, 34, 199–211. [Google Scholar]
- Diers, JA; Ivey, KD; El-Alfy, A; Shaikh, J; Wang, J; Kochanowska, AJ; Stoker, JF; Hamann, MT; Matsumoto, RR. Identification of antidepressant drug leads through the evaluation of marine natural products with neuropsychiatric pharmacophores. Pharmacol Biochem Behav 2008, 89, 46–53. [Google Scholar]
- Hong, S; Wilson, MT; Serizawa, I; Wu, L; Singh, N; Naidenko, OV; Miura, T; Haba, T; Scherer, DC; Wei, J; Kronenberg, M; Koezuka, Y; Van Kaer, L. The natural killer t-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 2001, 7, 1052–1056. [Google Scholar]
- Sharif, S; Arreaza, GA; Zucker, P; Mi, QS; Sondhi, J; Naidenko, OV; Kronenberg, M; Koezuka, Y; Delovitch, TL; Gombert, JM; Leite-De-Moraes, M; Gouarin, C; Zhu, R; Hameg, A; Nakayama, T; Taniguchi, M; Lepault, F; Lehuen, A; Bach, JF; Herbelin, A. Activation of natural killer t cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nat Med 2001, 7, 1057–1062. [Google Scholar]
- Pascual, I; Lopéz, A; Gómez, H; Chappé, M; Saroyán, A; González, Y; Cisneros, M; Charli, JL; Chávez, M. Screening of inhibitors of porcine dipeptidyl peptidase iv activity in aqueous extracts from marine organisms. Enzyme Microb Technol 2007, 40, 414–419. [Google Scholar]
- Gokce, G; Haznedaroglu, MZ. Evaluation of antidiabetic, antioxidant and vasoprotective effects of posidonia oceanica extract. J Ethnopharmacol 2008, 115, 122–130. [Google Scholar]
- Lee, YS; Shin, KH; Kim, BK; Lee, S. Anti-diabetic activities of fucosterol from pelvetia siliquosa. Arch Pharm Res 2004, 27, 1120–1122. [Google Scholar]
- Taouis, M; Dagou, C; Ster, C; Durand, G; Pinault, M; Delarue, J. N-3 polyunsaturated fatty acids prevent the defect of insulin receptor signaling in muscle. Am J Physiol Endocrinol Metab 2002, 282, E664–E671. [Google Scholar]
- Delarue, J; Couet, C; Cohen, R; Bréchot, JF; Antoine, JM; Lamisse, F. Effects of fish oil on metabolic responses to oral fructose and glucose loads in healthy humans. Am J Physiol 1996, 270, E353–E362. [Google Scholar]
- Khanfar, MA; Asal, BA; Mudit, M; Kaddoumi, A; El Sayed, KA. The marine natural-derived inhibitors of glycogen synthase kinase-3[beta] phenylmethylene hydantoins: In vitro and in vivo activities and pharmacophore modeling. Bioorg Med Chem 2009, 17, 6032–6039. [Google Scholar]
Antioxidant | Algal species | Reported levels (μg/g dry wt) | Reference |
---|---|---|---|
Vitamin C | Ulva sp. | 94.20–1250 | [13,19] |
Monostroma undulatum | 1590–4550 | [6] | |
Undaria pinnatifida | 1847.38 | [19] | |
Ascophyllum nodosum | 81.75 | [19] | |
Laminaria digitata | 355.25 | [19] | |
Porphyra umbilicalis | 1610.63 | [19] | |
Palmaria palmata | 690 | [19] | |
Thalassiosira pseudonana | 1100 | [42] | |
Chaetoceros muelleri | 16000 | [42] | |
Gracilaria changgi | 285 | [43] | |
Vitamin E | Ulva rigida | 19.70 | [13] |
Ascophyllum nodosum | 3.63 | [19] | |
Dunaliella tertiolecta | 200–500 | [44] | |
Undaria pinnatifida | 145–174 | [19] | |
Laminaria digitata | 34.38 | [19] | |
Porphyra umbilicalis | 14.25 | [19] | |
Palmaria palmata | 162 | [19] | |
α-tocopherol | Porphyridium cruentum | 55.2 | [45] |
Laminaria ochroleuca | 8.9 ± 2.1 | [41] | |
Saccorhiza polychides | 5.7 ± 1.3 | [41] | |
Himanthalia elongata | 12.0–33.3 | [41] | |
Tetraselmis suecica | 190–1080 | [44] | |
γ-tocopherol | Porphyridium cruentum | 51.3 | [45] |
Carotenoids | Porphyridium cruentum | 1020 ± 140 | [46] |
α-carotene | Chlorella pyrenoidosa | 4232.50 | [47] |
Dunaliella salina | 2410–2690 | [48] | |
β-carotene | Ascophyllum nodosum | [26] | |
Chlorella pyrenoidosa | 4314.3 | [47] | |
Chlorella vulgaris | 80–500 | [49,50] | |
Chlorococcum | [51] | ||
Dunaliella salina | 4950–138250 | [48,52–54] | |
Fucus serratus | [26] | ||
Fucus vesiculosus | [26] | ||
Gracilaria changgi | 52 ± 4 | [43] | |
Haematococcus pluvialis | 80 ± 30 | [55,56] | |
Laminaria digitata | [26] | ||
Laminaria saccharina | [26] | ||
Pelvetia canaliculata | [26] | ||
Phormidium sp. | [57] | ||
Porphyra tenera | [58] | ||
Synechocystis sp. | 2040 | [59] | |
antheraxanthin | Dunaliella salina | [53] | |
Laminaria digitata | [26] | ||
Laminaria saccharina | [26] | ||
astaxanthin | Chlorella vulgaris | [60] | |
Chlorococcum sp. | [51,61] | ||
Haematococcus pluvialis | up to 3% | [52,56,62] | |
β-cryptoxanthin | Chlorella pyrenoidosa | 334.9 | [47] |
cantaxanthin | Chlorella vulgaris | [60] | |
Chlorococcum | [51] | ||
echinenone | Phormidium sp. | [57] | |
Synechocystis sp. | 240 | [59] | |
fucoxanthin | Ascophyllum nodosum | [26] | |
Fucus serratus | [26] | ||
Fucus vesiculosus | [26] | ||
Hijikia fusiformis | [27] | ||
Himanthalia elongata | 820 | [59] | |
Laminaria digitata | [26] | ||
Laminaria saccharina | [26] | ||
Pelvetia canaliculata | [26] | ||
loroxanthin | Chlorella pyrenoidosa | [63] | |
lutein | Chlorella protothecoides | 4600 | [64] |
Chlorella pyrenoidosa | 1153009.70 | [47,63] | |
Chlorella vulgaris | 2970–3830 | [49,50] | |
Chlorella zofingiensis | 3400 | [64] | |
Chlorococcum | [51] | ||
Dunaliella salina | 6550 ± 920 | [48,53] | |
Haematococcus pluvialis | 270 ± 60 | [55,56] | |
Muriellopsis sp. | 4300 | [64] | |
Phormidium sp. | [57] | ||
Porphyra tenera | [58] | ||
Scenedesmus almeriensis | 4500 | [64] | |
myxoxanthophyll | Synechocystis sp. | 580 | [59] |
neoxanthin | Ascophyllum nodosum | [26] | |
Chlorella pyrenoidosa | 199.7 | [47] | |
Dunaliella salina | [53] | ||
Fucus serratus | [26] | ||
Fucus vesiculosus | [26] | ||
Haematococcus pluvialis | 60 ± 20 | [55,56] | |
Laminaria digitata | [26] | ||
Laminaria saccharina | [26] | ||
Pelvetia canaliculata | [26] | ||
Phormidium sp. | [57] | ||
violaxanthin | Ascophyllum nodosum | [26] | |
Chlorella pyrenoidosa | 38.1 | [47,63] | |
Fucus serratus | [26] | ||
Fucus vesiculosus | [26] | ||
Haematococcus pluvialis | 40 ± 20 | [55] | |
Himanthalia elongata | 50 | [59] | |
Laminaria digitata | [26] | ||
Laminaria saccharina | [26] | ||
Pelvetia canaliculata | [26] | ||
Phormidium sp. | [57] | ||
zeaxanthin | Ascophyllum nodosum | [26] | |
Chlorella pyrenoidosa | 2170.3 | [47] | |
Dunaliella salina | 11270 ± 1580 | [48,53] | |
Fucus serratus | [26] | ||
Fucus vesiculosus | [26] | ||
Haematococcus pluvialis | 30 ± 10 | [55] | |
Himanthalia elongata | 130 | [59] | |
Laminaria digitata | [26] | ||
Laminaria saccharina | [26] | ||
Pelvetia canaliculata | [26] | ||
Synechocystis sp. | 1640 | [59] | |
Chlorophylls | Dunaliella salina | 26–3100 | [53,65] |
Himanthalia elongata | [59] | ||
chlorophyll a | Chlorella pyrenoidosa | [63] | |
Chlorella vulgaris | 3320–9630 | [49,50] | |
Chlorococcum | [51] | ||
Phormidium sp. | [57] | ||
Porphyra tenera | [58] | ||
Porphyridium cruentum | 2130 ± 1200 | [46] | |
Tetraselmis suecica | 6040–27530 | [44] | |
chlorophyll b | Chlorella pyrenoidosa | [63] | |
Chlorella vulgaris | 2580–5770 | [49,50] | |
Chlorococcum | [51] | ||
Haematococcus pluvialis | [56] | ||
Porphyridium cruentum | 380 ± 340 | [46] | |
pheophytin a | Chlorella vulgaris | [50] | |
Porphyridium cruentum | 3310 ± 1110 | [46] | |
pheophytin b | Chlorella vulgaris | 2310–5640 | [49,50] |
Porphyridium cruentum | 30 ± 90 | [46] | |
Polyphenols | Fucus sp. | 41400 ± 400 | [6] |
Haematococcus pluvialis | [66] | ||
Laminaria sp. | 7300 ± 100 | [6] | |
Porphyra sp. | 5700 ± 100 | [6] | |
Spongiochloris spongiosa | 5.65 | [67] | |
Undaria sp. | 6600 ± 100 | [6] |
Functional food ingredient | Health benefit | Marine source | Reference |
---|---|---|---|
Peptides | ACE inhibition | Fish frame, algae | [15,31,97,98] |
Anticoagulative | Fish frame | [15,99] | |
Antidiabetic | Fish frame | [117] | |
Antimicrobial | Marine invertebrates, fish | [15,118] | |
Antioxidative | Algae protein waste, fish frame | [15,79,95] | |
n-3 fatty acids | Anticarcinogenic | Fish | [119–122] |
Anti-inflammatory | Fish, mussels | [20,123] | |
Cardioprotective | Fish | [124,125] | |
Cognitive function | Fish | [126,127] | |
Polysaccharides | Anticarcinogenic | Algae, crustaceans (chito-oligosaccharides) | [94,128,129] |
Antioxidative | Algae, crustaceans (chito-oligosaccharides) | [129,130] | |
Antiviral | Algae | [83,129] | |
Cardioprotective | Algae | [131–133] | |
Carotenoids | Anticarcinogenic | Algae | [58,134] |
Antioxidative | Algae | [27,48] | |
Anti-obesity | Algae | [70] | |
Antidiabetic | Algae | [135] | |
Chlorophyll | Anticarcinogenic | Algae | [58,71] |
Polyphenols | Antidiabetic | Algae | [136–138] |
Antioxidative | Brown algae | [73] |
Compound | Source | Experimental model | Effect/Mechanism of action | Reference |
---|---|---|---|---|
α-galactosylceramide | Agelas mauritianus sponge | Non-obese diabetic mice | Suppression of IFN-γ, increase of serum Ig E levels, and promotion of islet autoantigen specific Th2 cells Suppression of T- and B-cell autoimmunity to islet beta cells | [277,278] |
Aqueous extracts | Xetospongia muta sponge, Bunodosoma granulifera and Bartholomea annulata sea anemones | In vitro models | Inhibition of dipeptidyl peptidase IV activity | [279] |
Ethanolic extract | Ulva rigida alga | Wistar diabetic rats | Decreased blood glucose concentrations | [137] |
Extract | Posidonia oceanica phanerogam | Wistar diabetic rats | Decreased blood glucose concentrations | [280] |
Fucosterol | Pelvetia siliquosa alga | Sprague-Dawley diabetic rats | Reduction in serum glucose concentration and inhibition of sorbitol accumulation in the lenses | [281] |
Marine collagen peptides | Wild fish | Human diabetic subjects | Decreased free fatty acids, cytochrome P450 and hs-CRP Regulation on metabolic nuclear receptors | [117] |
Methanolic extract | Ecklonia cava alga | Sprague-Dawley diabetic rats | Reduction in plasma glucose levels and increased insulin concentration Activation of AMPK/ACC and PI3/Akt signalling pathways | [138] |
Microalgal extracts | Chlorella sp. alga, Nitzschia laevis diatom | In vitro models | Inhibition of advanced glycation endproducts (AGEs) formation | [135] |
n-3 PUFAs | Fish oil | Wistar rats | Restoration of insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation Maintenance of phosphatidylinositol-3’ kinase activity and GLUT-4 content in muscle | [282] |
Fish oil | Healthy human subjects | Reduction in glucose oxidation, increased fat oxidation and glycogen storage | [283] | |
Phenylmethylene hydantoins | Hemimycale arabica sponge | In vitro model Sprague-Dawley rats | Inhibition of glycogen synthase kinase-3β activity Increased liver glycogen | [284] |
Phlorotannin components | Ascophyllum nodosum alga | In vitro models | Inhibition of α-amylase and α-glucosidase activities | [136] |
Sodium alginate | Laminaria angustata alga | Wistar rats | Inhibition of rising blood glucose and insulin levels | [197] |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lordan, S.; Ross, R.P.; Stanton, C. Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases. Mar. Drugs 2011, 9, 1056-1100. https://doi.org/10.3390/md9061056
Lordan S, Ross RP, Stanton C. Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases. Marine Drugs. 2011; 9(6):1056-1100. https://doi.org/10.3390/md9061056
Chicago/Turabian StyleLordan, Sinéad, R. Paul Ross, and Catherine Stanton. 2011. "Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases" Marine Drugs 9, no. 6: 1056-1100. https://doi.org/10.3390/md9061056