Mushrooms as a Resource for Mibyou-Care Functional Food; The Role of Basidiomycetes-X (Shirayukidake) and Its Major Components
Abstract
:1. Introduction
1.1. Mibyou-Care Functional Foods and Their Targets
1.2. Mushrooms as a Typical Resource for Mibyou-Care Functional Food
1.3. Basidiomycetes-X as a Mibyou-Care Functional Food Resource
1.4. Metabolome Analysis of BDM-X
1.5. Selective Isolation and Quantification of Major Ingredients
1.6. Role of the Major Components in Mibyou-Care Function of BDM-X
1.6.1. FPA
1.6.2. DDMP
1.6.3. Ergosterol
1.6.4. CLA
1.6.5. Adenosine and Uridine
1.6.6. β-Glucan
1.7. Medicinal and Pharmacological Functions of BDM-X Contributing to Mibyou-Care
1.7.1. Protection against Oxidative Stress and Inflammation
1.7.2. Anti-Obesity and Anti-Metabolic Syndromes Function of BDM-X
1.7.3. Hepatoprotective Function of BDM-X
1.7.4. Immune Modulating Function
1.7.5. Cancer Preventive Function
1.7.6. Other Prospective Functions
1.8. Characteristic Feature of BDM-X as Mibyou-Care Functional Food
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CT | Computed Tomography |
HPLC | High-Performance Liquid Chromatography |
GC | Gas Chromatography |
GC-MS | Gas Chromatography-Mass Spectroscopy |
EC-MS | Electrochemical Mass Spectroscopy |
LC-MS | Liquid Chromatography Mass Spectroscopy |
NMR | Nuclear Magnetic Resonance |
UV | Ultraviolet |
DPPH | 2,2-Diphenyl-1-Dipicryl Hydrazyl Radical |
References
- Yellow Emperor’s Classic of Internal Medicine; Veithy, L., Translator; 1975, Foreword by Barnes L.L.; University of California Press: Orkland, CA, USA, 2016.
- Fukuo, Y. Destructive creation in the Reiwa Era Utilization of “The concept of Modern Mibyou” as Presymptomatic Medicine. J. Int. Soc. Inf. Sci. 2020, 38, 15. [Google Scholar]
- Konishi, T. Mibyou Care is A Key for Healthy Life Elongation: The Role of Mibyou-Care Functional Foods. In Complementary Therapies; Bernardo-Filho, M., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Hussain, N. Implications of using HBA1c as a diagnostic marker for diabetes. Diabetol. Int. 2016, 7, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Choromanska, M.; Klimiuk, A.; Kostecka-Sochon, P.; Wilczynska, K.; Kwiatkowski, M.; Okuniewska, N.; Waszkiewicz, N.; Zalewska, A.; Maciejczyk, M. Antioxidant Defense, Oxidative Stress and Oxidative Damage in Saliva, Plasma and Erythrocytes of Dementia Patients. Can Salivary AGE be a Marker of Dementia? Int. J. Mol. Sci. 2017, 18, 2205. [Google Scholar] [CrossRef] [Green Version]
- Targum, S.D.; Schappi, J.; Koutsouris, A.; Bhaumik, R.; Rapaport, M.H.; Rasgon, N.; Rasenick, M.M. A novel peripheral biomarker for depression and antidepressant response. Mol. Psych. 2022, 27, 1640–1646. [Google Scholar] [CrossRef]
- Mattila, P.; Suonpää, K.; Piironen, V. Functional properties of edible mushrooms. Nutrition 2000, 16, 694–696. [Google Scholar] [CrossRef]
- Rathore, H.; Prasad, S.; Sharma, S. Mushroom nutraceuticals for improved nutrition and better human health: A review. Pharma Nutr. 2017, 5, 35–46. [Google Scholar] [CrossRef]
- Lindequist, U.; Niedermeyer, T.H.J.; Jülich, W.-D. The Pharmacological Potential of Mushrooms. Evid. Based Complement. Altern. Med. 2005, 2, 285–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anusiya, G.; Prabu, U.G.; Yamini, N.V.; Sivarajasekar, N.; Rambabu, K.; Bhaeraath, G.; Fawzi, B. A review of the therapeutic and biological effects of edible and wild mushrooms. Bioengineered 2021, 12, 11239–11268. [Google Scholar] [CrossRef]
- Lull, C.; Wichers, H.J.; Savelkoul, H.F.J. Anitiinflammatory and Immunomodulating Properties of Fungal Metabolites. Mediat. Inflamm. 2005, 2, 63–80. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.E.; Rowan, N.J.; Sullivan, R. Medicinal mushrooms: A rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol. Lett. 2002, 24, 1839–1845. [Google Scholar] [CrossRef]
- Ferreira, J.C.F.R.; Vaz, J.A.; Vasconcelos, M.H.; Martins, A. Compounds from Wild Mushrooms with Antitumor Potential. Anticancer. Agents Med. Chem. 2010, 10, 424–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Tomata, Y.; Sugiyama, K.; Tsuji, I. Mushroom consumption and Incident Dementia in Elderly Japanese: The Ohsaki Cohort 2006 Study. J. Am. Geriatr. Soc. 2017, 65, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- Ba, D.M.; Gao, X.; Muscat, J.; Al-Shaar, L.; Chinchilli, V.; Zhang, X.; Ssentongo, P.; Beelman, R.B.; Richie, J.P., Jr. Association of mushroom consumption with all-cause and cause-specific mortality among American adults: Prospective cohort study findings from NHANES III. Nutr. J. 2021, 20, 38. [Google Scholar] [CrossRef]
- Ba, D.M.; Gao, X.; Al-Shaar, L.; Muscat, J.E.; Chinchilli, V.M.; Beelman, R.B.; Richie, J.P. Mushroom intake and depression: A population-based study using data from the US National Health and Nutrition Examination Survey (NHANES), 2005–2016. J. Affect. Disord. 2021, 294, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Guggenheim, A.G.; Wright, K.M.; Zwickey, H.L. Immune modulation From five Major Mushrooms: Application to Integrative Oncology. Intgr. Med. 2014, 13, 32–44. [Google Scholar]
- Nakajima, Y.; Sato, Y.; Konishi, T. Antioxidant small phenolic ingredients in Inonotus obliquus (Persoon) pilat (Chaga). Chem. Pharm. Bull. 2007, 55, 1222–1226. [Google Scholar] [CrossRef] [Green Version]
- Venturella, G.; Ferraro, V.; Cierlincione, F.; Gargano, M.L. Medicinal Mushrooms: Bioactive Compounds, Use, and Clinical Trials. Int. J. Mol. Sci. 2021, 11, 634. [Google Scholar] [CrossRef]
- Kumar, K.; Mehra, R.; Guine, R.P.F.; Lima, M.J.; Kumar, N.; Kaushik, R.; Ahmed, N.; Yadav, A.N.; Kumar, H. Edible Mushrooms: A Comprehensive Reciew on Bioactive Compounds with Health Benefits and Processing Aspects. Foods 2021, 10, 2996. [Google Scholar] [CrossRef]
- Rahi, D.K.; Malik, D. Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. J. Mycol. 2016, 2016, 7654123. [Google Scholar] [CrossRef]
- Shama, D.; Singh, V.P.; Singh, N.K. A Review on Phytochemistry and Pharmacology of Medicinal as well as Poisonous Mushrooms. Mini Rev. Med. Chem. 2018, 18, 1095–1109. [Google Scholar] [CrossRef]
- Ragucci, S.; Landi, N.; Russo, R.; Valletta, M.; Pedone, P.V.; Chambery, A.; Maro, A.D. Ageritin from Pioppino Mushroom: The Prototype of Ribotoxin-Like Proteins, a Novel Family of Specific Ribonucleases in Edible Mushrooms. Toxins 2021, 13, 263. [Google Scholar] [CrossRef]
- Landi, N.; Clemente, A.; Pedone, P.V.; Ragucci, S.; Maro, A.D. An Updated Review of Bioactive Peptides from Mushrooms in a Well-Defined Molecular Weight Range. Toxins 2022, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C. Bioactives from Mushroom and Their Application. In Food Bioactive; Puri, M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; Chapter 2; pp. 23–57. [Google Scholar]
- Feeney, M.J.; Miller, A.M.; Roupas, P. Mushrooms-biologically distinct and nutritionally unique: Exploring a “third food kingdom”. Nutr. Today 2014, 49, 301–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konishi, T.; Watanabe, K.; Arummugam, S.; Sakurai, M.; Sato, S.; Matsugo, S.; Watanabe, T.; Wakame, K. Nutraceutical and therapeutic significance of Echigoshirayukidake (Bashikiomycetes-X), a novel mushroom found in Niigata, Japan. Glycative Stress Res. 2019, 6, 248–257. [Google Scholar]
- Sakamoto, T.; Nishida, A.; Wada, N.; Nakamura, Y.; Sato, S.; Konishi, T.; Matsugo, S. Identification of a novel alkaloid from the Edible Mushroom Basidiomycetes-X (Echigoshirayukidake). Molecules 2020, 25, 4879. [Google Scholar] [CrossRef]
- Sakamoto, T.; Li, Z.; Nishida, A.; Kadokawa, A.; Yoshida, T.; Wada, N.; Matsugo, S.; Nakamura, Y.; Sato, S.; Konishi, T. Identification of Major antioxidant Compounds from the Edible Mushroom Basidiomycetes-X (Echigoshirayukidake). Front. Biosci. 2022, 14, 10. [Google Scholar] [CrossRef]
- Soga, T.; Ueno, Y.; Naraoka, H.; Ohashi, Y.; Tomita, M.; Nishioka, T. Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal. Chem. 2002, 74, 2233–2239. [Google Scholar] [CrossRef]
- Wakame, K. Shirayuki-Dake Mushroom (BDM-X) Powder and Extract Metabolomic Analysis by CE-TOFMS and LC-TOFMS. Mendeley Data, V1. 2021. Available online: https://doi.org/10.17632/sdx9g4dwmp.1 (accessed on 6 June 2022).
- Topmás-Barberán, F.A.; Andrés-Lacueva, C. Polyphenols and Health: Current State and Progress. J. Agric. Food Chem. 2012, 36, 8773–9775. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Jaqkovljevic, D.; Todorovic, N.; Vunduk, J.; Petrovic, P.; Niksic, M.; Vrvic, M.M.; Griensven, L.V. Antioxidant s of Edible Mushrooms. Molecules 2015, 20, 19489–19525. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, I.C.F.R.; Borros, L.; Abreu, R.M.V. Antioxidants in wild mushrooms. Curr. Med. Chem. 2014, 68, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Medina, G.A.; Chávez-González, M.L.; Verma, D.K.; Prado-Barragagán, L.A.; Martínez-Hernández, J.L.; Flores-Gallegos, A.C.; Thakur, M.; Srivastav, P.P.; Aguilar, C.N. Bio-functional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J. Funct. Foods 2021, 77, 104326. [Google Scholar] [CrossRef]
- Wood, J.M.; Furkert, D.P.; Brimble, M.A. 2-Formylpyrrole natural products: Origin, structural diversity, bioactivity and synthesis. Nat. Prod. Rep. 2019, 36, 289–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.B.; Chang, B.Y.; Jo, Y.H.; Lee, S.H.; Han, S.-B.; Hwang, B.Y.; Kim, S.Y.; Lee, M.K. Macrophage activating activity of pyrrole alkaloids from Morus alba fruits. J. Ethnopharmacol. 2013, 145, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.G.; Wang, Y.; Ma, L.-F.; Zhan, Z.-J. A New pyrrole alkaloid form mycelium of Inonotus obliquus. J. Chem. Res. 2017, 41, 392–393. [Google Scholar] [CrossRef]
- Chin, Y.-W.; Lim, S.-W.; Kim, S.-H.; Shin, D.-Y.; Suh, Y.-G.; Kim, Y.-B.; Kim, Y.C.; Kim, J. Hepatoprotective pyrrole derivatives of Lycium chinense fruits. Bioorg. Med. Chem. Lett. 2003, 13, 79–81. [Google Scholar] [CrossRef]
- Li, J.; Pan, L.; Naman, C.B.; Deng, Y.; Chai, H.; Keller, W.J.; Kinghorn, A.D. Pyrrole Alkaloids with Potential Cancer Chemopreventive Activity Isolated from a Goji Berry-contaminated Commercial Sample of African Mango. J. Agric. Food Chem. 2014, 62, 5054–5060. [Google Scholar] [CrossRef]
- Yang, N.-N.; Huang, S.-Z.; Ma, Q.-Y.; Dai, H.-F.; Guo, Z.-K.; Yu, Z.-F.; Zhao, Y.-X. A New Pyrrole Alkaloid from Leccinum Extremiorientale. Chem. Nat. Compd. 2015, 51, 730–732. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.-J. Review of pentosidine and pyrraline in food and chemical models: Formation, potential risks and determination. J. Sci. Food Agric. 2018, 98, 3225–3233. [Google Scholar] [CrossRef]
- Beppu, Y.; Komura, H.; Izumo, T.; Horii, Y.; Shen, J.; Tanida, M.; Nakashima, T.; Tsuruoka, N.; Nagai, K. Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one isolated from Lactobacillus pentosus strain S-PT84 culture supernatants as a compound that stimulates autonomic nerve activities in rats. J. Agric. Food Chem. 2012, 60, 11044–11049. [Google Scholar] [CrossRef]
- Ban, J.O.; Hwang, I.G.; Kim, T.M.; Hwang, B.Y.; Lee, U.S.; Jeong, H.S.; Yoon, Y.W.; Kimz, D.J.; Hong, J.T. Anti-proliferate and pro-apoptotic effects of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-4H-pyranone through inactivation of NF-κB in human colon cancer cells. Arch. Pharm. Res. 2007, 30, 1455–1463. [Google Scholar] [CrossRef]
- Takara, K.; Otsuka, K.; Wada, K.; Iwasaki, H.; Yamashita, M. 1,1-Diphenyl-2-picrylhydrazyl Radical Scavenging Activity and Tyrosinase Inhibitory Effects of Constituents of Sugarcane Molasses. Biosci. Biotechnol. Biochem. 2007, 71, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xi, G.; Fu, Y.; Wang, Q.; Cai, L.; Zhao, Z.; Liu, Q.; Bai, B.; Ma, Y. Synthesis of 2,3- dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one from maltol and its taste identification. Food Chem. 2021, 361, 130052. [Google Scholar] [CrossRef] [PubMed]
- Hiramoto, K.; Nasuhara, A.; Michikoshi, K.; Kikugawa, K. DNA strand-breaking activity and mutagenicity of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP), a Maillard reaction product of glucose and glycine. Mutat. Res. 1997, 395, 47–56. [Google Scholar] [CrossRef]
- Villares, A.; Mateo-Vivaracho, L.; García-Lafuente, A.; Guillamón, E. Storage temperature and UV-irradiation influence on the ergosterol content in edible mushrooms. Food Chem. 2014, 147, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J. Non-musculoskeletal benefits of vitamin D. J. Steroid Biochem. Mol. Biol. 2018, 175, 60–81. [Google Scholar] [CrossRef] [PubMed]
- Baeke, F.; Takiishi, T.; Korf, H.; Gysemans, C.; Mathieu, C. Vitaminn D: Modulator of the immune system. Curr. Opin. Pharmacol. 2010, 10, 482–496. [Google Scholar] [CrossRef] [PubMed]
- Guillot., X.; Semerano, L.; Saidenberg-Kermanac’h, N.; Falgarone, G.; Boissier, M.-C. Vitamin D and inflammation. Joint Bone Spine 2010, 77, 552–557. [Google Scholar] [CrossRef]
- Danik, J.S.; Manson, J.E. Vitamin D and Cardiovascular Disease. Curr. Treat. Options Cardiovasc. Med. 2012, 14, 414–424. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.M.; Shin, E.A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med. 2018, 50, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, M.; Hossain, S. Fatty Acids: From Membrane Ingredients to Signaling Molecules. In Biochemistry and Health Benefits of Fatty Acids; Waisundara, V., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Whigham, L.D.; Cook, M.E.; Atkinson, R.L. Conjugated linoleic acid: Implications for human health. Pharmacol. Res. 2000, 42, 503–510. [Google Scholar] [CrossRef]
- den Hartigh, L.J. Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019, 11, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siolveira, M.B.; Carraro, R.; Monereo, S.; Tébar, J. Conjugated linoleic acid (CLA) and obesity. Public Health Nutr. 2007, 10, 1181–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, T.; Hosokawa, M.; Yaui, Y.; Ishigamori, R.; Miyashita, K. Cancer chemopreventive ability of conjugated linoleic acids. Int. J. Mol. Sci. 2011, 12, 7495–7509. [Google Scholar] [CrossRef] [PubMed]
- Viladomiu, M.; Hontecillas, R.; Bassaganya-Riera, J. Modulation of inflammation and immunity by dietary conjugated linoleic acid. Eur. J. Pharmacol. 2016, 785, 87–95. [Google Scholar] [CrossRef]
- Masso-Welch, P.A.; Zangani, D.; Ip, C.; Vaughan, M.M.; Shoemaker, S.F.; McGee, S.O.; Ip, M.M. Isomers of Conjugated Linoleic Acid Differ in Their Effects on Angiogenesis and Survival of Mouse Mammary Adipose Vasculature. J. Nutr. 2004, 134, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Hardie, D.G. AMP-activated protein kinase- an energy sensor that regulates all aspects of cell function. Genes Dev. 2011, 25, 1895–1908. [Google Scholar] [CrossRef] [Green Version]
- Borea, P.A.; Gessi, S.; Merighi, S.; Vincenzi, F.; Varani, K. Pharmacology of Adenosine Receptors; The State of the Art. Physiol. Rev. 2018, 98, 1591–1625. [Google Scholar] [CrossRef]
- Wurtman, R.J.; Cansev, M.; Sakamoto, T.; Ulus, I. Nutritional modifiers of aging brain function: Use of uridine and other phosphatide precursors to increase formation of brain synapses. Nutr. Rev. 2010, 68, S88–S101. [Google Scholar] [CrossRef] [Green Version]
- Zong, A.; Gao, H.; Wang, F. Anticancer polysaccharides from natural resources: A review of recent research. Carbohydr. Polym. 2012, 90, 1395–1410. [Google Scholar] [CrossRef]
- Zhang, J.; Tyler, H.L.; Haron, M.H.; Jackson, C.R.; Pasco, D.S.; Pugh, N.D. Macrophage activation by edible mushrooms is due to the collaborative interaction of toll-like receptor agonists and dectin-1b activating beta glucans derived from colonizing microorganisms. Food Funct. 2019, 10, 8208–8217. [Google Scholar] [CrossRef]
- Khatun, M.A.; Matsugo, S.; Konishi, T. Novel Edible Mushroom BDM-X as an Immune Modulator: Possible Role in Dietary Self-Protection Against COVID-19 Pandemic. Am. J. Biomed. Sci. Res. 2021, 12, 611–616. [Google Scholar]
- Khoury, E.D.; Cuda, C.; Luthovyy, B.L.; Anderson, G.H. Beta Glucan: Health Benefits in Obesity and Metabolic Syndrome. J. Nutr. Metab. 2012, 2012, 851362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, T.; Nakajima, K.; Konishi, T. In vitro and in vivo anti-oxidant activity of hot water extract of basidiomycetes-X, newly identified edible fungus. Biol. Pharm. Bull. 2008, 31, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S.; Sakurai, M.; Konishi, T.; Nishikawa, K.; Tsuno, Y. Anti-obesity effect of Echigoshirayukidake (Basidiomytetes-X) in rats. Glycative Stress Res. 2019, 6, 198–211. [Google Scholar]
- Khatun, M.A.; Sato, S.; Konishi, T. Obesity Preventive function of novel edible mushroom, Basidiomycetes-X (Echigoshirayukidake): Manipulations of insulin resistance and lipid metabolism. J. Traad. Compl. Med. 2020, 10, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Afrin, R.; Sreedhar, R.; Karuppagounder, V.; Harima, M.; Alexander, X.; Velayuthum, R.; Arumugam, S. Pharmacological Investigation of Ceraceomyces tessulatus (Agaricomycetes) in Mice with Nonalcoholic Steatohepatitis. Int. J. Med. Mushrooms 2020, 22, 683–692. [Google Scholar] [CrossRef]
- Suzuki, H.; Watababe, K.; Arumugum, S.; Yellurkar, M.L.; Sreedhar, R.; Afrin, R.; Sone, H. Meal Ingestion of Ceraceomyces tessulatus Strain BDM-X (Agaricomycetes) Protects against Nonalcoholic steatohepatitis in Mice. Int. J. Med. Mushrooms 2022, 24, 41–52. [Google Scholar] [CrossRef]
- Watanabe, K.; Karuppagounder, V.; Sreedhar, R.; Kandasamy, G.; Harima, M.; Velayutham, R.; Arumugam, S. Basidiomycetes-X, an edible mushroom, alleviates the development of atopic dermatitis in NC/Nga mouse model. Exp. Mol. Pathol. 2018, 105, 322–327. [Google Scholar] [CrossRef]
- Minami, K.; Watanabe, T.; Yukami, S.; Nomoto, K. Clinical trials of Basidiomycetes-X (FERMP-19241) on the patients with atopic dermatitis. Med. Biol. 2007, 151, 306–311, (In Japanese with Abstract in English). [Google Scholar]
- Yonei, Y.; Yagi, M.; Takabe, A.; Nishikawa, K.; Tsuno, Y. Effect and safety of Echigoshirayukidake (Basidiomycetes-X) on fatty liver: Stratified randomized, double-blind, parallel-group comparison study and safety evaluation study. Glycative Stress Res. 2019, 6, 258–269. [Google Scholar]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morta, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipinski, B. Hydroxyl Radical and Its Scavengers in Health and Disease. Oxid. Med. Cell. Longev. 2011, 2011, 809696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsugo, S.; Sakamoto, T.; Nishida, A.; Wada, N.; Konishi, T. Pyrrole Compound. JP Patent No. 6859566, 26 November 2021. [Google Scholar]
- Radzki, W.; Staswinska, A.; Jabtoriska-Rys, E. Antioxidant capacity and polyphenolic content of dried wild edible mushrooms from Poland. Int. J. Med. Mushrooms 2014, 16, 65–75. [Google Scholar] [CrossRef]
- Field, A.E.; Coakley, E.H.; Must, A.; Spadano, J.L.; Laird, N.; Dietz, W.H.; Rimm, E.; Colditz, G.A. Impact of Overweight on the Risk of Developing Common Chronic Diseases During a 10-Year Period. Arch. Intern. Med. 2001, 161, 1581–1586. [Google Scholar] [CrossRef]
- Li, F.; Gao, C.; Yan, P.; Zhang, M.; Wang, Y.; Hu, Y.; Wu, X.; Wang, X.; Sheng, J. EGCG Reduces Obnesity and White Adipose Tissue Gain Partly Through AMPK Activation in Mice. Front. Pharmacol. 2018, 9, 1366. [Google Scholar] [CrossRef] [Green Version]
- Martín, M.Á.; Ramos, S. Dietary Flavonoids and Insulin Signaling in Diabetes and Obesity. Cells 2021, 10, 1474. [Google Scholar] [CrossRef]
- Postic, C.; Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: Lessons from ge- netically engineered mice. J. Clin. Investig. 2008, 118, 829–838. [Google Scholar] [CrossRef] [Green Version]
- Tripoli, E.; Guardia, M.L.; Giammanco, S.; Di Majo, D.; Giammonco, M. Citrus flavonoids. Molecular structures, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Miltonprabu, S.; Tomczyk, M.; Skalicka-Woźniak, K.; Ractrelli, L.; Daglia, M.; Nabavi, F.; Alavian, S.M.; Nabavi, S.M. Hepatoprotective effect of quercetin: From chemistry to medicine. Food Chem. Toxicol. 2017, 108, 365–374. [Google Scholar] [CrossRef]
- Yadav, M.; Sehrawat, N.; Singh, M.; Upadhyay, S.K.; Aggarwal, D.; Sharma, A.K. Cardioprotective and Hepatoprotective Potential of Citrus Flavonoid Naringin: Current Status and Future Perspectives for Health Benefits. Asian J. Biol. Life Sci. 2020, 9, 1–5. [Google Scholar] [CrossRef]
- Maggini, S.; Fierre, A.; Calder, P.G. Immune Function ad Micronutrient Requirements Change over the Life Course. Nutrients 2018, 10, 1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayeka, P.A. Potential of Mushroom Compounds as Immunomodulators in Cancer Immunotherapy: A Review. Evid. Based Complement. Alternat. Med. 2018, 2018, 7271509. [Google Scholar] [CrossRef]
- Vetvicka, V.; Teplyakova, T.V.; Shintyapina, A.B.; Korolenko, T.A. Effects of Medicinal Fungi-Derived β-Glucan on Tumor Progression. J. Fungi 2021, 7, 250. [Google Scholar] [CrossRef] [PubMed]
- Tsukagoshi, S.; Hashimoto, Y.; Fujii, G.; Nomoto, K.; Orita, K. Krestin (PSK). Cancer Treat. Rev. 1984, 11, 131–155. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A. Adenosine: An endogenous modulator of innate immune system with therapeutic potential. Eur. J. Pharmacol. 2009, 616, 7–15. [Google Scholar] [CrossRef]
- Kim, K.-J.; Lee, J.; Park, Y.; Lee, S.H. ATF3 Mediates Anti-Cancer Activity of Trans-10, cis-12-Conjugated Linoleic Acid in human Colon Cancer Cells. Biomol. Ther. 2015, 23, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Samarakoon, K.W.; Gyawail, R.; Park, Y.-H.; Lee, S.-J.; Oh, S.J.; Lee, T.-H.; Jeong, D.K. Evaluation of the Antioxidant, Anti-Inflammatory, and Anticancer Activities of Euphorbia hirta Ethanolic Extract. Molecules 2014, 19, 14567–14581. [Google Scholar] [CrossRef] [Green Version]
- Murru, E.; Carta, G.; Manca, C.; Sogos, V.; Pistis, M.; Melis, M.; Banni, S. Conjugated Linoleic Acid and Brain Metabolism: A Possible Anti-Neuroinflammatory Role Mediated by PPARα Activation. Front. Pharmacol. 2020, 11, 587140. [Google Scholar] [CrossRef]
- Trøseid, M.; Andersen, G.Ø.; Broch, K.; Hov, J.R. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. eBioMedicine 2020, 52, 102649. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.D. The Gut Microbiome and Its Role in Obesity. Nutr. Today 2016, 51, 167–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, S.E.; Tuohy, C.; Dunford, M.; Grey, M.J.; De Luca, H.; Cawley, C.; Szabady, R.L.; Maldonado-Contreras, A.; Houghton, J.M.; Ward, D.V.; et al. Gut microbiota regulation of P-glycoprotein in the intestinal epithelium in maintenance of homeostasis. Microbiome 2021, 9, 183. [Google Scholar] [CrossRef] [PubMed]
- Golisch, B.; Lei, Z.; Tamura, K.; Brumer, H. Configured for the Human Gut Microbiota: Molecular Mechanisms of Dietary β-Glucan Utilization. ACS Chem. Biol. 2021, 16, 2087–2102. [Google Scholar] [CrossRef]
- Bhilwade, H.N.; Tatewaki, N.; Konishi, T.; Nishida, M.; Eitsuka, T.; Yasui, H.; Inanami, O.; Honda, O.; Naito, Y.; Ikekawa, N.; et al. The Adjuvant Effect of Squalene, an Active Ingredient of Functional Foods, on Doxorubicin-Treated Allograft Mice. Nutr. Cancer 2019, 71, 1153–1164. [Google Scholar] [CrossRef] [PubMed]
- Nicastro, H.; de Luz, C.R.; Chaves, D.F.S.; Bechara, L.R.G.; Voltarelli, V.A.; Rogero, M.M.; Lancha, A.H., Jr. Does Branched-chain Amino Acids Supplementation Modulate Skeletal Muscle Remodeling through Inflammation Modulation? Possible Mechanism. J. Nut. Metab. 2021, 2021, 136937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacobbe, J.; Benoiton, B.; Zuriszain, P.; Pariante, C.M.; Borsini, A. The Anti-Inflammatory Role of Omega-3 Polyunsaturated Fatty Acids Metabolites in Pre-Clinical Models of Psychiatoric, Neurodegenerative, and Neurological Disorders. Front. Psychiatry 2020, 11, 122. [Google Scholar] [CrossRef]
- Konishi, T. Weak direct and strong indirect interactions are the mode of action of food factors. Funct. Food. Health Dis. 2014, 4, 254–263. [Google Scholar] [CrossRef]
- Chen, Z.P.; Levy, A.; Lightman, S.L. Nucleotides as extracellular signalling molecules. J. Neuroendocr. 1995, 7, 83–96. [Google Scholar] [CrossRef]
- Kuroki, M.; Miyamoto, S.; Morisaki, T.; Yotsumoto, F.; Shirasu, N.; Taniguchi, Y.; Soma, G. Biological Response Modifiers Used in Cancer Biotherapy. Anticancer Res. 2012, 32, 2229–2233. [Google Scholar]
Compound Identified | Structure Symbol in Figure 4 | Contents (mg per 100 g BDM-X Dry Powder) | References |
---|---|---|---|
FPA-I | M | 82.5 | [28] |
FPA-II | N | 48.4 | [28] |
FPA-III | O | 1.2 | [28] |
adenosine | P | 42.4 | [29] |
uridine | Q | 76.9 | [29] |
DDMP | R | 350.0 | [29] |
ergosterol | S | 16.7 | [29] |
(10E,12Z)-CLA | T | 19.8 | [29] |
Medicinal Functions | Exp. System | Test Sample Form | Experimental and Results | Refs. | |
---|---|---|---|---|---|
1 | Antioxidant activity | in vitro, in situ | Aqueous extract | BDM-X prevented AAPH induced peroxidation in rat liver homogenate. Pre-administration of BDM-X to rat prevented nitrotyrosine formation followed LPS induced liver injury. | [68] |
2 | Anti-obesity, anti-diabetic and liver protective function | Male albino rat and OLETOF rat | BDM-X powder and extracts | BDM-X supplementation suppressed weight gain, visceral fat deposit and fatty liver injury caused by 15 weeks feeding on an HFHS diet, and ameliorated insulin sensitivity and adiponectin expression. | [69,70] |
3 | Amelioration of atopic dermatitis in humans | Human | BDM-X powder | Oral intake of BDM-X powder for two weeks ameliorated atopic dermatitis symptoms in volunteers. | [74] |
4 | Alleviation of atopic dermatitis in mice | Mouse | BDM-X powder | BDM-X administration to atopic dermatitis (AD) induced by house dust mite extract application in NC/Nga mouse attenuated ADlike clinical symptoms through modulating Th1/Th2 responses. | [73] |
5 | Prevention of nonalcoholic steatohepatitis (NASH) | Mouse | BDM-X powder | In NASH-HCC mice (C57BL/6J female pups) model produced by STZ-high fat diet treatment, BDM-X prevented pathogenesis of NASH by preventing inflammation and lipogenesis. | [71,72] |
6 | Hepatoprotective function | Human | BDM-X powder | The effect and safety of BDM-X on fatty liver were evaluated by a stratified randomized double-blind parallel group comparison. | [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsugo, S.; Sakamoto, T.; Wakame, K.; Nakamura, Y.; Watanabe, K.; Konishi, T. Mushrooms as a Resource for Mibyou-Care Functional Food; The Role of Basidiomycetes-X (Shirayukidake) and Its Major Components. Nutraceuticals 2022, 2, 132-149. https://doi.org/10.3390/nutraceuticals2030010
Matsugo S, Sakamoto T, Wakame K, Nakamura Y, Watanabe K, Konishi T. Mushrooms as a Resource for Mibyou-Care Functional Food; The Role of Basidiomycetes-X (Shirayukidake) and Its Major Components. Nutraceuticals. 2022; 2(3):132-149. https://doi.org/10.3390/nutraceuticals2030010
Chicago/Turabian StyleMatsugo, Seiichi, Toshio Sakamoto, Koji Wakame, Yutaka Nakamura, Kenichi Watanabe, and Tetsuya Konishi. 2022. "Mushrooms as a Resource for Mibyou-Care Functional Food; The Role of Basidiomycetes-X (Shirayukidake) and Its Major Components" Nutraceuticals 2, no. 3: 132-149. https://doi.org/10.3390/nutraceuticals2030010
APA StyleMatsugo, S., Sakamoto, T., Wakame, K., Nakamura, Y., Watanabe, K., & Konishi, T. (2022). Mushrooms as a Resource for Mibyou-Care Functional Food; The Role of Basidiomycetes-X (Shirayukidake) and Its Major Components. Nutraceuticals, 2(3), 132-149. https://doi.org/10.3390/nutraceuticals2030010