Medicinal Properties of Honey and Cordyceps Mushrooms
Abstract
:1. Introduction
2. The Cordyceps Mushrooms
2.1. General Aspects
2.2. Composition
2.3. Beneficial Effects, Pharmacological Properties and Bioactive Compounds
2.4. Effects on the Microbiota
2.5. Side Effects
3. Honey
3.1. General Aspects
3.2. Composition
3.3. Beneficial Effects and Pharmacological Properties
3.4. Effects on the Microbiota
3.5. Secondary Effects
4. Conclusions
5. Further Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stefanis, C.; Stavropoulou, E.; Giorgi, E.; Voidarou, C.; Constantinidis, T.C.; Vrioni, G.; Tsakris, A. Honey’s Antioxidant and Antimicrobial Properties: A Bibliometric Study. Antioxidants 2023, 12, 414. [Google Scholar] [CrossRef] [PubMed]
- Zawawi, N.; Chong, P.J.; Mohd Tom, N.N.; Saiful Anuar, N.S.; Mohammad, S.M.; Ismail, N.; Jusoh, A.Z. Establishing Relationship between Vitamins, Total Phenolic and Total Flavonoid Content and Antioxidant Activities in Various Honey Types. Molecules 2021, 26, 4399. [Google Scholar] [CrossRef] [PubMed]
- Kwakman, P.H.; Zaat, S.A. Antibacterial Components of Honey. IUBMB Life 2012, 64, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Hossain, K.S.; Hossain, M.G.; Moni, A.; Rahman, M.M.; Rahman, U.H.; Alam, M.; Kundu, S.; Rahman, M.M.; Hannan, M.A.; Uddin, M.J. Prospects of Honey in Fighting against COVID-19: Pharmacological Insights and Therapeutic Promises. Heliyon 2020, 6, e05798. [Google Scholar] [CrossRef] [PubMed]
- Fadzil, M.A.M.; Mustar, S.; Rashed, A.A. The Potential Use of Honey as a Neuroprotective Agent for the Management of Neurodegenerative Diseases. Nutrients 2023, 15, 1558. [Google Scholar] [CrossRef] [PubMed]
- Al-Waili, N.; Salom, K.; Al-Ghamdi, A.A. Honey for Wound Healing, Ulcers, and Burns; Data Supporting Its Use in Clinical Practice. Sci. World J. 2011, 11, 766–787. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Dun, M.; Jian, T.; Sun, Y.; Wang, M.; Zhang, G.; Ling, J. Cordyceps militaris Extracts and Cordycepin Ameliorate Type 2 Diabetes Mellitus by Modulating the Gut Microbiota and Metabolites. Front. Pharmacol. 2023, 14, 1134429. [Google Scholar] [CrossRef]
- Shashidhar, M.G.; Giridhar, P.; Udaya Sankar, K.; Manohar, B. Bioactive Principles from Cordyceps Sinensis: A Potent Food Supplement—A Review. J. Funct. Foods 2013, 5, 1013–1030. [Google Scholar] [CrossRef]
- Nguyen, Q.-V.; Vu, T.-T.; Tran, M.-T.; Ho Thi, P.T.; Thu, H.; Le Thi, T.H.; Chuyen, H.V.; Dinh, M.-H. Antioxidant Activity and Hepatoprotective Effect of Exopolysaccharides from Cultivated Ophiocordyceps Sinensis against CCl4-Induced Liver Damages. Nat. Prod. Commun. 2021, 16, 1934578X21997670. [Google Scholar] [CrossRef]
- Kang, J.Y.; Lee, B.; Kim, C.H.; Choi, J.H.; Kim, M.-S. Enhancing the Prebiotic and Antioxidant Effects of Exopolysaccharides Derived from Cordyceps militaris by Enzyme-Digestion. LWT 2022, 167, 113830. [Google Scholar] [CrossRef]
- Zheng, H.; Cao, H.; Zhang, D.; Huang, J.; Li, J.; Wang, S.; Lu, J.; Li, X.; Yang, G.; Shi, X. Cordyceps militaris Modulates Intestinal Barrier Function and Gut Microbiota in a Pig Model. Front. Microbiol. 2022, 13, 810230. [Google Scholar] [CrossRef]
- Zhao, H.; Li, M.; Liu, L.; Li, D.; Zhao, L.; Wu, Z.; Zhou, M.; Jia, L.; Yang, F. Cordyceps militaris Polysaccharide Alleviates Diabetic Symptoms by Regulating Gut Microbiota against TLR4/NF-ΚB Pathway. Int. J. Biol. Macromol. 2023, 230, 123241. [Google Scholar] [CrossRef]
- Ying, M.; Yu, Q.; Zheng, B.; Wang, H.; Wang, J.; Chen, S.; Nie, S.; Xie, M. Cultured Cordyceps Sinensis Polysaccharides Modulate Intestinal Mucosal Immunity and Gut Microbiota in Cyclophosphamide-Treated Mice. Carbohydr. Polym. 2020, 235, 115957. [Google Scholar] [CrossRef] [PubMed]
- Prasain, J.K. Pharmacological Effects of Cordyceps and Its Bioactive Compounds. Stud. Nat. Prod. Chem. 2013, 40, 453–468. [Google Scholar]
- Lo, H.C.; Hsieh, C.; Lin, F.Y.; Hsu, T.H. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in Dong-ChongXiaCao (Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients. J. Tradit. Complement. Med. 2013, 3, 16–32. [Google Scholar] [CrossRef]
- Dworecka-Kaszak, B. Cordyceps Fungi as Natural Killers, New Hopes for Medicine and Biological Control Factors. Ann. Parasitol. 2014, 60, 151–158. [Google Scholar] [PubMed]
- Baral, B. Entomopathogenicity and Biological Attributes of Himalayan Treasured Fungus Ophiocordyceps sinensis (Yarsagumba). J. Fungi 2017, 3, 4. [Google Scholar] [CrossRef]
- Paterson, R.R. Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry. 2008, 69, 1469–1495. [Google Scholar] [CrossRef]
- Das, G.; Shin, H.S.; Leyva-Gómez, G.; Prado-Audelo, M.L.D.; Cortes, H.; Singh, Y.D.; Panda, M.K.; Mishra, A.P.; Nigam, M.; Saklani, S.; et al. Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials. Front. Pharmacol. 2021, 11, 602364. [Google Scholar] [CrossRef]
- Liang, Y.-L.; Liu, Y.; Yang, J.-W.; Liu, C.-X. Studies on Pharmacological Activities of Cultivated Cordyceps Sinensis. Phytother. Res. Int. J. Devoted Med. Sci. Res. Plants Plant Prod. 1997, 11, 237–239. [Google Scholar]
- Yuan, Q.; Xie, F.; Tan, J.; Yuan, Y.; Mei, H.; Zheng, Y.; Sheng, R. Extraction, Structure and Pharmacological Effects of the Polysaccharides from Cordyceps Sinensis: A Review. J. Funct. Foods 2022, 89, 104909. [Google Scholar] [CrossRef]
- Friedman, M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 2016, 5, 80. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Yu, W.Q.; Li, Y.; Sun, Y.L.; Guo, S.D. Structural Elucidation and Activities of Cordyceps militaris-Derived Polysaccharides: A Review. Front. Nutr. 2022, 9, 898674. [Google Scholar] [CrossRef] [PubMed]
- Tuli, H.S.; Sandhu, S.S.; Sharma, A.K. Pharmacological and Therapeutic Potential of Cordyceps with Special Reference to Cordycepin. 3 Biotech 2014, 4, 1–12. [Google Scholar] [CrossRef]
- Mulcahy, L. Cordyceps: Benefits, Side Effects and Dosage. Available online: https://www.goodhousekeeping.com/health/diet-nutrition/a43236254/cordyceps-benefits/ (accessed on 13 May 2023).
- Uddin, N.; Hasan, M.R.; Hossain, M.M.; Sarker, A.; Hasan, A.H.; Islam, A.F.; Chowdhury, M.M.; Rana, M.S. In vitro α-amylase inhibitory activity and in vivo hypoglycemic effect of methanol extract of Citrus macroptera Montr. fruit. Asian Pac. J. Trop. Biomed. 2014, 4, 473–479. [Google Scholar] [CrossRef]
- Al-Aboudi, A.; Afifi, F.U. Plants used for the treatment of diabetes in Jordan: A review of scientific evidence. Pharm. Biol. 2011, 49, 221–239. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Wachtel-Galor, S. (Eds.) Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011. [Google Scholar]
- Hong, T.; Zhang, M.; Fan, J. Cordyceps sinensis (a Traditional Chinese Medicine) for Kidney Transplant Recipients. Cochrane Database Syst. Rev. 2015, 2015. [Google Scholar] [CrossRef]
- Kim, S.B.; Ahn, B.; Kim, M.; Ji, H.-J.; Shin, S.-K.; Hong, I.P.; Kim, C.Y.; Hwang, B.Y.; Lee, M.K. Effect of Cordyceps militaris Extract and Active Constituents on Metabolic Parameters of Obesity Induced by High-Fat Diet in C58BL/6J Mice. J. Ethnopharmacol. 2014, 151, 478–484. [Google Scholar] [CrossRef]
- Kiho, T.; YAMANE, A.; HUI, J.; USUI, S.; UKAI, S. Polysaccharides in Fungi. XXXVI. Hypoglycemic Activity of a Polysaccharide (CS-F30) from the Cultural Mycelium of Cordyceps Sinensis and Its Effect on Glucose Metabolism in Mouse Liver. Biol. Pharm. Bull. 1996, 19, 294–296. [Google Scholar] [CrossRef]
- Li, Z.; Noriaki, S.; Sun, S. TOF-SIMS Study of Mannitol and Cordycepin in Cordyceps Sinensis. Guang Pu Xue Yu Guang Pu Fen Xi 2016, 36, 1230–1234. [Google Scholar]
- Reis, F.S.; Barros, L.; Calhelha, R.C.; Ćirić, A.; Van Griensven, L.J.; Soković, M.; Ferreira, I.C. The Methanolic Extract of Cordyceps militaris (L.) Link Fruiting Body Shows Antioxidant, Antibacterial, Antifungal and Antihuman Tumor Cell Lines Properties. Food Chem. Toxicol. 2013, 62, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, M.; Zhang, H.; Huang, Z.; Ma, J. Comparative Study of the Composition of Cultivated, Naturally Grown Cordyceps Sinensis, and Stiff Worms across Different Sampling Years. PLoS ONE 2019, 14, e0225750. [Google Scholar] [CrossRef] [PubMed]
- Jędrejko, K.; Kała, K.; Sułkowska-Ziaja, K.; Krakowska, A.; Zięba, P.; Marzec, K.; Szewczyk, A.; Sękara, A.; Pytko-Polończyk, J.; Muszyńska, B. Cordyceps Militaris—Fruiting Bodies, Mycelium, and Supplements: Valuable Component of Daily Diet. Antioxidants 2022, 11, 1861. [Google Scholar] [CrossRef]
- Cho, J.; Kang, J.S.; Long, P.H.; Jing, J.; Back, Y.; Chung, K.-S. Antioxidant and Memory Enhancing Effects of Purple Sweet Potato Anthocyanin and Cordyceps Mushroom Extract. Arch. Pharm. Res. 2003, 26, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Maľučká, L.U.; Uhrinová, A.; Lysinová, P. Medicinal Mushrooms Ophiocordyceps Sinensis and Cordyceps Militaris. Ceska Slov. Farm. 2022, 71, 259–265. [Google Scholar] [CrossRef]
- Kuo, C.-F.; Chen, C.-C.; Luo, Y.-H.; Huang, R.Y.; Chuang, W.-J.; Sheu, C.-C.; Lin, Y.-S. Cordyceps Sinensis Mycelium Protects Mice from Group A Streptococcal Infection. J. Med. Microbiol. 2005, 54, 795–802. [Google Scholar] [CrossRef]
- Song, Q.; Zhu, Z. Using Cordyceps militaris Extracellular Polysaccharides to Prevent Pb2+-Induced Liver and Kidney Toxicity by Activating Nrf2 Signals and Modulating Gut Microbiota. Food Funct. 2020, 11, 9226–9239. [Google Scholar] [CrossRef]
- Yu, M.; Yue, J.; Hui, N.; Zhi, Y.; Hayat, K.; Yang, X.; Zhang, D.; Chu, S.; Zhou, P. Anti-Hyperlipidemia and Gut Microbiota Community Regulation Effects of Selenium-Rich Cordyceps militaris Polysaccharides on the High-Fat Diet-Fed Mice Model. Foods 2021, 10, 2252. [Google Scholar] [CrossRef]
- Yu, W.-Q.; Wang, X.-L.; Ji, H.-H.; Miao, M.; Zhang, B.-H.; Li, H.; Zhang, Z.-Y.; Ji, C.-F.; Guo, S.-D. CM3-SII Polysaccharide Obtained from Cordyceps militaris Ameliorates Hyperlipidemia in Heterozygous LDLR-Deficient Hamsters by Modulating Gut Microbiota and NPC1L1 and PPARα Levels. Int. J. Biol. Macromol. 2023, 239, 124293. [Google Scholar] [CrossRef]
- Lee, B.-H.; Chen, C.-H.; Hsu, Y.-Y.; Chuang, P.-T.; Shih, M.-K.; Hsu, W.-H. Polysaccharides Obtained from Cordyceps militaris Alleviate Hyperglycemia by Regulating Gut Microbiota in Mice Fed a High-Fat/Sucrose Diet. Foods 2021, 10, 1870. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Fang, Q.; Dong, N.; Fang, Q.; Cui, S.W.; Nie, S. A Polysaccharide from Natural Cordyceps Sinensis Regulates the Intestinal Immunity and Gut Microbiota in Mice with Cyclophosphamide-Induced Intestinal Injury. Food Funct. 2021, 12, 6271–6282. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zou, Y.; Tang, H.; Zhuang, J.; Ye, Z.; Wei, T.; Lin, J.; Zheng, Q. Cordyceps militaris Polysaccharides Modulate Gut Microbiota and Improve Metabolic Disorders in Mice with Diet-Induced Obesity. J. Sci. Food Agric. 2023, 103, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Dong, H.; Wang, Y.; Jiang, Y.; Zhang, W.; Lu, Y.; Chen, Y.; Chen, L. Cordyceps Cicadae Polysaccharides Ameliorated Renal Interstitial Fibrosis in Diabetic Nephropathy Rats by Repressing Inflammation and Modulating Gut Microbiota Dysbiosis. Int. J. Biol. Macromol. 2020, 163, 442–456. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, T.; Li, H.; Wang, Y.; Wang, J.; Yuan, H. Structural Characterization and Hypoglycemic Function of Polysaccharides from Cordyceps Cicadae. Molecules 2023, 28, 526. [Google Scholar] [CrossRef]
- Wu, G.-D.; Pan, A.; Zhang, X.; Cai, Y.-Y.; Wang, Q.; Huang, F.-Q.; Alolga, R.N.; Li, J.; Qi, L.-W.; Liu, Q. Cordyceps Improves Obesity and Its Related Inflammation via Modulation of Enterococcus Cecorum Abundance and Bile Acid Metabolism. Am. J. Chin. Med. 2022, 50, 817–838. [Google Scholar] [CrossRef]
- Pessôa, M.T.C.; Valadares, J.M.M.; Rocha, S.C.; Silva, S.C.; McDermott, J.P.; Sánchez, G.; Varotti, F.P.; Scavone, C.; Ribeiro, R.I.M.A.; Villar, J.A.F.P.; et al. 21-Benzylidene Digoxin Decreases Proliferation by Inhibiting the EGFR/ERK Signaling Pathway and Induces Apoptosis in HeLa Cells. Steroids 2020, 155, 108551. [Google Scholar] [CrossRef]
- Chang, M.-M.; Hong, S.-Y.; Yang, S.-H.; Wu, C.-C.; Wang, C.-Y.; Huang, B.-M. Anti-Cancer Effect of Cordycepin on FGF9-Induced Testicular Tumorigenesis. IJMS 2020, 21, 8336. [Google Scholar] [CrossRef]
- Xu, J.; Tan, Z.-C.; Shen, Z.-Y.; Shen, X.-J.; Tang, S.-M. Cordyceps Cicadae Polysaccharides Inhibit Human Cervical Cancer Hela Cells Proliferation via Apoptosis and Cell Cycle Arrest. Food Chem. Toxicol. 2021, 148, 111971. [Google Scholar] [CrossRef]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer Acceptance toward Functional Foods: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef]
- Alimentarius, C. Standard for Honey CXS 12-1981. Adopted in 1981. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B12-1981%252FCXS_012e.pdf (accessed on 9 October 2023).
- How Bees Make Honey Is Complex Process. Available online: https://www.dispatch.com/story/news/technology/2014/08/31/how-bees-make-honey-is/23975471007/ (accessed on 27 July 2023).
- Sortimente de miere—Proprietăți și recomandări terapeutice. Fagurele Cu Miere, 10 August 2019.
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant Activity as Biomarker of Honey Variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef]
- Eick, S.; Schäfer, G.; Kwieciński, J.; Atrott, J.; Henle, T.; Pfister, W. Honey—A Potential Agent against Porphyromonas Gingivalis: An in Vitro Study. BMC Oral Health 2014, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Gheldof, N.; Wang, X.-H.; Engeseth, N.J. Identification and Quantification of Antioxidant Components of Honeys from Various Floral Sources. J. Agric. Food Chem. 2002, 50, 5870–5877. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Escudero, J.; Mármol-Rojas, C.; Escribano-Pintor, S.; Galán-Madruga, D.; Caceres, J.O. Honey Polyphenols: Regulators of Human Microbiota and Health. Food Funct. 2023, 14, 602–620. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Ndip, R.N.; Clarke, A.M. Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities. Int. J. Mol. Sci. 2011, 12, 9514–9532. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.D.; Mandal, S. Honey: Its Medicinal Property and Antibacterial Activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Hbibi, A.; Sikkou, K.; Khedid, K.; El Hamzaoui, S.; Bouziane, A.; Benazza, D. Antimicrobial Activity of Honey in Periodontal Disease: A Systematic Review. J. Antimicrob. Chemother. 2020, 75, 807–826. [Google Scholar] [CrossRef]
- Kwakman, P.H.; Van den Akker, J.P.; Güçlü, A.; Aslami, H.; Binnekade, J.M.; de Boer, L.; Boszhard, L.; Paulus, F.; Middelhoek, P.; te Velde, A.A. Medical-Grade Honey Kills Antibiotic-Resistant Bacteria in Vitro and Eradicates Skin Colonization. Clin. Infect. Dis. 2008, 46, 1677–1682. [Google Scholar] [CrossRef]
- Vázquez-Quiñones, C.R.; Moreno-Terrazas, R.; Natividad-Bonifacio, I.; Quiñones-Ramírez, E.I.; Vázquez-Salinas, C. Microbiological Assessment of Honey in México. Rev. Argent. Microbiol. 2018, 50, 75–80. [Google Scholar] [CrossRef]
- Schell, K.R.; Fernandes, K.E.; Shanahan, E.; Wilson, I.; Blair, S.E.; Carter, D.A.; Cokcetin, N.N. The Potential of Honey as a Prebiotic Food to Re-Engineer the Gut Microbiome Toward a Healthy State. Front. Nutr. 2022, 9, 957932. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Zhang, Z.; Lang, H.; Zheng, H. Honey Bee as a Model Organism to Study Gut Microbiota and Diseases. Drug Discov. Today Dis. Models 2018, 28, 35–42. [Google Scholar] [CrossRef]
- Jiang, L.; Xie, M.; Chen, G.; Qiao, J.; Zhang, H.; Zeng, X. Phenolics and Carbohydrates in Buckwheat Honey Regulate the Human Intestinal Microbiota. Evid.-Based Complement. Altern. Med. 2020, 2020, 6432942. [Google Scholar] [CrossRef] [PubMed]
- Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Zakaria, Z.A.; Albujja, M.; Bakar, M.F.A. Honey and Its Nutritional and Anti-Inflammatory Value. BMC Complement. Med. Ther. 2021, 21, 30. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhou, S.; Fan, S.; Ma, Y.; Li, D.; Tao, Y.; Han, Y. Encapsulation of Bioactive Polyphenols by Starch and Their Impacts on Gut Microbiota. Curr. Opin. Food Sci. 2021, 38, 102–111. [Google Scholar] [CrossRef]
- Ngo, T.V.; Kusumawardani, S.; Kunyanee, K.; Luangsakul, N. Polyphenol-Modified Starches and Their Applications in the Food Industry: Recent Updates and Future Directions. Foods 2022, 11, 3384. [Google Scholar] [CrossRef] [PubMed]
- DeMartino, P.; Cockburn, D.W. Resistant starch: Impact on the gut microbiome and health. Curr. Opin. Biotechnol. 2020, 61, 66–71. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Singh, H. Biophysical insights into modulating lipid digestion in food emulsions. Prog. Lipid Res. 2022, 85, 101129. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, N.; Zhou, W.; Chen, S.; Wang, Q.; Gao, H.; Xue, X.; Wu, L.; Cao, W. Honey Polyphenols Ameliorate DSS-Induced Ulcerative Colitis via Modulating Gut Microbiota in Rats. Mol. Nutr. Food Res. 2019, 63, 1900638. [Google Scholar] [CrossRef]
- Wu, D.; Chen, L.; Teh, J.; Sim, E.; Schlundt, J.; Conway, P.L. Honeys with Anti-Inflammatory Capacity Can Alter the Elderly Gut Microbiota in an Ex Vivo Gut Model. Food Chem. 2022, 392, 133229. [Google Scholar] [CrossRef]
- Li, Y.; Long, S.; Liu, Q.; Ma, H.; Li, J.; Xiaoqing, W.; Yuan, J.; Li, M.; Hou, B. Gut Microbiota Is Involved in the Alleviation of Loperamide-induced Constipation by Honey Supplementation in Mice. Food Sci. Nutr. 2020, 8, 4388–4398. [Google Scholar] [CrossRef]
- Pasolini, G.; Semenza, D.; Capezzera, R.; Sala, R.; Zane, C.; Rodella, R.; Calzavara-Pinton, P. Allergic Contact Cheilitis Induced by Repeated Contact with Propolis-Enriched Honey. Contact Dermat. 2004, 50, 322–323. [Google Scholar] [CrossRef]
- Matos, D.; Serrano, P. A Case of Allergic Contact Dermatitis Caused by Propolis-Enriched Honey. Contact Dermat. 2015, 72, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S. Honey—A novel antidiabetic agent. Int. J. Biol. Sci. 2012, 8, 913–934. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, T.; Hagiwara, A.; Nagashima, A.; Kimura, A. Case of Honey Intoxication in Japan. Chudoku Kenkyu Chudoku Kenkyukai Jun Kikanshi Jpn. J. Toxicol. 2013, 26, 310–313. [Google Scholar]
- Nicewicz, A.W.; Nicewicz, Ł.; Pawłowska, P. Antioxidant capacity of honey from the urban apiary: A comparison with honey from the rural apiary. Sci. Rep. 2021, 11, 9695. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://premiumbeautynews.xyz/benefits-of-using-vegan-beauty-products.html (accessed on 5 October 2023).
Effect | Works that Describe the Effect |
---|---|
Antioxidant | D’zugan et al., 2018 [55] |
Gheldof et al., 2002 [57] | |
Stefanis et al., 2023 [1] | |
Zawawi et al., 2021 [2] | |
Antibacterial | Kwakman and Zaat, 2012 [3] |
Eick et al., 2014 [56] | |
Hbibi et al., 2020 [61] | |
Kwakman et al., 2008 [62] | |
Stefanis et al., 2023 [1] | |
Vázquez-Quinones et al., 2018 [63] | |
Mandal and Mandal, 2011 [60] | |
Antiviral | Hossain et al., 2020 [4] |
Neuroprotector | Fadzil et al., 2023 [5] |
Wound healing | Al-Waili et al., 2011 [6] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badea, T.-I.; Vamanu, E. Medicinal Properties of Honey and Cordyceps Mushrooms. Nutraceuticals 2023, 3, 499-512. https://doi.org/10.3390/nutraceuticals3040036
Badea T-I, Vamanu E. Medicinal Properties of Honey and Cordyceps Mushrooms. Nutraceuticals. 2023; 3(4):499-512. https://doi.org/10.3390/nutraceuticals3040036
Chicago/Turabian StyleBadea, Theodor-Ioan, and Emanuel Vamanu. 2023. "Medicinal Properties of Honey and Cordyceps Mushrooms" Nutraceuticals 3, no. 4: 499-512. https://doi.org/10.3390/nutraceuticals3040036
APA StyleBadea, T. -I., & Vamanu, E. (2023). Medicinal Properties of Honey and Cordyceps Mushrooms. Nutraceuticals, 3(4), 499-512. https://doi.org/10.3390/nutraceuticals3040036