Antioxidant Capacity and Cardiovascular Benefits of Fruits and Vegetables: A Proposal for Comparative Scales
Abstract
:1. Introduction
2. Materials and Methods
Sample and Data Collection
3. Results
3.1. Antioxidant Potential of Fruits and Vegetables
3.2. Antioxidant Potential Scale
3.3. Potential Cardiovascular Benefit
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Healthy Diet. Available online: https://apps.who.int/iris/bitstream/handle/10665/325828/EMROPUB_2019_en_23536.pdf (accessed on 20 February 2023).
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAO/WHO International Workshop on Fruits and Vegetables in Preparation for the International Year of Fruits and Vegetables 2021; FAO: Rome, Italy, 2021; ISBN 9789251348246. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Han, H.; Hu, Y.; Zhu, L.; Rimm, E.B.; Hu, F.B.; Sun, Q. Associations between Plant-Based Dietary Patterns and Risks of Type 2 Diabetes, Cardiovascular Disease, Cancer, and Mortality—A Systematic Review and Meta-Analysis. Nutr. J. 2023, 22, 46. [Google Scholar] [CrossRef] [PubMed]
- Akbari, B.; Baghaei-yazdi, N.; Bahmaei, M.; Abhari, F.M. The Role of Plant-Derived Natural Antioxidants in Reduction of Oxidative Stress. BioFactors 2022, 48, 611–633. [Google Scholar] [CrossRef] [PubMed]
- Pruteanu, L.L.; Bailey, D.S.; Grădinaru, A.C.; Jäntschi, L. The Biochemistry and Effectiveness of Antioxidants in Food, Fruits, and Marine Algae. Antioxidants 2023, 12, 860. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The Total Antioxidant Content of More than 3100 Foods, Beverages, Spices, Herbs and Supplements Used Worldwide. Nutr. J. 2010, 9, 3. [Google Scholar] [CrossRef]
- Halvorsen, B.L.; Carlsen, M.H.; Phillips, K.M.; Bøhn, S.K.; Holte, K.; Jacobs, D.R., Jr.; Blomhoff, R. Content of Redox-Active Compounds (ie, Antioxidants) in Foods Consumed in the United States. Am. J. Clin. Nutr. 2006, 84, 95–135. [Google Scholar] [CrossRef]
- Arias, A.; Feijoo, G.; Moreira, M.T. Exploring the Potential of Antioxidants from Fruits and Vegetables and Strategies for Their Recovery. Innov. Food Sci. Emerg. Technol. 2022, 77, 102974. [Google Scholar] [CrossRef]
- Hu, W.; Guan, Y.; Feng, K.; Lin, L. Biosynthesis of Phenolic Compounds and Antioxidant Activity in Fresh-Cut Fruits and Vegetables. Front. Microbiol. 2022, 13, 906069. [Google Scholar] [CrossRef]
- Medina-Lozano, I.; Bertolín, J.R.; Díaz, A. Nutritional Value of Commercial and Traditional Lettuce (Lactuca sativa L.) and Wild Relatives: Vitamin C and Anthocyanin Content. Food Chem. 2021, 359, 129864. [Google Scholar] [CrossRef]
- Meitha, K.; Pramesti, Y.; Suhandono, S. Review Article Reactive Oxygen Species and Antioxidants in Postharvest Vegetables and Fruits. Int. J. Food Sci. 2020, 2020, 8817778. [Google Scholar] [CrossRef]
- Jideani, A.I.; Silungwe, H.; Takalani, T.; Omolola, A.O.; Udeh, H.O.; Anyasi, T.A. Antioxidant-Rich Natural Fruit and Vegetable Products and Human Health. J. Food Prop. 2021, 24, 41–67. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; Cerutti, A.K.; Beccaro, G.L. Nutraceuticals in Alternative and Underutilized Fruits as Functional Food Ingredients: Ancient Species for New Health Needs. Altern. Replace. Foods 2018, 17, 261–282. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Taha, M.M.E.; Mariod, A.A.; Al-Foraih, M.; Al-Asmari, H. Exploring Nutraceuticals: A Comprehensive Examination of Inception, Thematic Mapping, Evolution, Emerging Trends, and Gaps. Curr. Res. Nutr. Food Sci. 2024, 12, 41–57. [Google Scholar] [CrossRef]
- Jain, S.; Purohit, A.; Nema, P.; Vishwakarma, H.; Jain, P.K. A Brief Review on Nutraceuticals and Its Application. Asian J. Dent. Health Sci. 2022, 2, 7–13. [Google Scholar] [CrossRef]
- Ramya, V.; Patel, P. Health Benefits of Vegetables. Int. J. Chem. Stud. 2019, 7, 82–87. Available online: https://www.chemijournal.com/archives/2019/vol7issue2/PartB/7-1-215-320.pdf. (accessed on 20 November 2024).
- Salvatore, S.; Carlino, M.; Sestito, S.; Concolino, D.; Agosti, M.; Pensabene, L. Nutraceuticals and Pain Disorders of the Gut–Brain Interaction in Infants and Children: A Narrative Review and Practical Insights. Nutrients 2024, 16, 349. [Google Scholar] [CrossRef]
- Dama, A.; Shpati, K.; Daliu, P.; Dumur, S.; Gorica, E.; Santini, A. Targeting Metabolic Diseases: The Role of Nutraceuticals in Modulating Oxidative Stress and Inflammation. Nutrients 2024, 16, 507. [Google Scholar] [CrossRef]
- Oliveira, A.; Mendes, A.; Lameiras, J.; Mendes-Moreira, P.; Botelho, G. Consumption Profile of Organic Fruits and Vegetables by a Portuguese Consumer’s Sample. Available online: https://www.degruyter.com/document/doi/10.1515/opag-2022-0217/html (accessed on 21 September 2023).
- Carvalho, P.; Teixeira, V.H. 50 Super Alimentos Portugueses (+10), 2a ed.; Matéria-Prima Ed., 2017; ISBN 9789897690907. Available online: https://repositorio-aberto.up.pt/handle/10216/65701 (accessed on 2 December 2024).
- Ministério da Saúde/DGS INSA. Available online: https://portfir-insa.min-saude.pt/# (accessed on 31 July 2023).
- USDA. USDA. Available online: https://fdc.nal.usda.gov/ (accessed on 31 July 2022).
- NIH. NIH. Available online: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/#h3 (accessed on 31 July 2022).
- Ruiz-Torralba, A.; Guerra-Hernández, E.J.; García-Villanova, B. Antioxidant Capacity, Polyphenol Content and Contribution to Dietary Intake of 52 Fruits Sold in Spain. CYTA—J. Food 2018, 16, 1131–1138. [Google Scholar] [CrossRef]
- Szeto, Y.T.; Tomlinson, B.; Benzie, I.F.F. Total Antioxidant and Ascorbic Acid Content of Fresh Fruits and Vegetables: Implications for Dietary Planning and Food Preservation. Br. J. Nutr. 2002, 87, 55–59. [Google Scholar] [CrossRef]
- Morales-Soto, A.; García-Salas, P.; Rodríguez-Pérez, C.; Jiménez-Sánchez, C.; de la Luz Cádiz-Gurrea, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Antioxidant Capacity of 44 Cultivars of Fruits and Vegetables Grown in Andalusia (Spain). Food Res. Int. 2014, 58, 35–46. [Google Scholar] [CrossRef]
- Adeyanju, A.A.; Oyenihi, O.R.; Oguntibeju, O.O. Antioxidant-Rich Vegetables: Impact on Human Health. In Vegetable Crops—Health Benefits and Cultivation; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Cisneros-Zevallos, L. The Power of Plants: How Fruit and Vegetables Work as Source of Nutraceuticals and Supplements. Int. J. Food Sci. Nutr. 2021, 72, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Lampe, J. Health Effects of Vegetables and Fruits: Assessing Mechanisms of Action in Hu-Man Experimental. Am. J. Clin. Nutr. 1999, 70, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.J.; Yang, J. Progress in the Study of Antioxidant Capacity of Fruits and Vegetables. China Public Health 2001, 17, 87–88. [Google Scholar]
- Cunha, A.L.; Moura, K.S.; Barbosa, J.C.; Dos Santos, A.F. Os Metabólitos Secundários e Sua Importância Para o Organismo. Divers. J. 2016, 1, 175. [Google Scholar] [CrossRef]
- Cavaco, J.K.D. Caracterização Da Atividade Antioxidante de Sumos Verdes Comerciais e Os Seus Equivalentes Manufaturados, Ao Longo Do Tempo. Master’s Thesis, Egas Moniz School of Health & Science (Portugal), Almada, Portugal, 2017. Available online: https://comum.rcaap.pt/handle/10400.26/18390 (accessed on 20 July 2024).
- Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant Activities of Peel, Pulp and Seed Fractions of Common Fruits as Determined by FRAP Assay. J. Nutres 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Worthington, V. Nutritional Quality of Organic Versus Conventional Fruits, Vegetables, and Grains. J. Altern. Complement. Med. 2001, 7, 161–173. [Google Scholar] [CrossRef]
- Olsson, M.E.; Andersson, C.S.; Oredsson, S.; Berglund, R.H.; Gustavsson, K.-E. Antioxidant Levels and Inhibition of Cancer Cell Proliferation in Vitro by Extracts from Organically and Conventionally Cultivated Strawberries. J. Agric. Food Chem. 2006, 54, 1248–1255. [Google Scholar] [CrossRef]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher Antioxidant and Lower Cadmium Concentrations and Lower Incidence of Pesticide Residues in Organically Grown Crops: A Systematic Literature Review and Meta-Analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef]
- Storz, M.A. What Makes a Plant-Based Diet? A Review of Current Concepts and Proposal for a Standardized Plant-Based Dietary Intervention Checklist. Eur. J. Clin. Nutr. 2022, 76, 789–800. [Google Scholar] [CrossRef]
- Gan, Z.H.; Cheong, H.C.; Tu, Y.K.; Kuo, P.H. Association between Plant-Based Dietary Patterns and Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis of pro-Spective Cohort Studies. Nutrients 2021, 13, 3952. [Google Scholar] [CrossRef]
- Islam, S.U.; Ahmed, M.B.; Ahsan, H. Recent Molecular Mechanisms and Beneficial Effects of Phytochemicals and Plant-Based Whole Foods in Reducing LDL-C and Preventing Cardiovascular Disease. Antioxidants 2021, 10, 784. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, K.A.; Potter, J.D. Vegetables, Fruit, and Cancer Prevention. J. Am. Diet. Assoc. 1996, 96, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- Vij, S.; Kumar, R.; Singh, A.P.; Singh, A.P.; Sharma, P. Nutraceuticals: A Review. Safety 2024, 8, 2. [Google Scholar] [CrossRef]
- Tello, J.; Moffa, L.; Ferradás, Y.; Gasparro, M.; Chitarra, W.; Milella, R.A.; Nerva, L.; Savoi, S. Grapes: A Crop with High Nutraceuticals Genetic Diversity; Kole, C., Ed.; Compendium of Crop Genome Designing for Nutraceutricals; Springer: Singapore, 2023; ISBN 978-981-19-4168-9. [Google Scholar]
- Finglas, P.; Roe, M.; Pinchen, H. The Contribution of Food Composition Resources to Nutrition Science Methodology. Nutr. Bull. 2017, 42, 198–206. [Google Scholar] [CrossRef]
- Schönfeldt, H.C.; Gibson, N. Food Composition Data in Health Communica-Tion. Eur. J. Clin. Nutr. 2010, 64, S128–S133. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.E.; Kim, K. Regional Difference in the Effect of Food Accessibility and Affordability on Vegetable and Fruit Acquisition and Healthy Eating Behaviors for Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 14973. [Google Scholar] [CrossRef]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical Review: Vegetables and Fruit in the Prevention of Chronic Diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef]
- Munir, H.; Yaqoob, S.; Awan, K.A.; Imtiaz, A.; Naveed, H.; Ahmad, N.; Naeem, M.; Sultan, W.; Ma, Y. Unveiling the Chemistry of Citrus Peel: Insights into Nutraceutical Potential and Therapeutic Applications. Foods 2024, 13, 1681. [Google Scholar] [CrossRef]
- Giampieri, F.; Alvarez-Suarez, J.M.; Mazzoni, L.; Romandini, S.; Bompadre, S.; Diamanti, J.; Capocasa, F.; Mezzetti, B.; Quiles, J.L.; Ferreiro, M.S.; et al. The Potential Impact of Strawberry on Human Health. Nat. Prod. Res. 2013, 27, 448–455. [Google Scholar] [CrossRef]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef]
- Vilela, A.; Pinto, T. Grape Infusions: Between Nutraceutical and Green Chemistry. Sustain. Chem. 2021, 2, 441–466. [Google Scholar] [CrossRef]
- Manchali, S.; Chidambara Murthy, K.N.; Vishnuvardana; Patil, B.S. Nutritional Composition and Health Benefits of Various Botanical Types of Melon (Cucumis melo L.). Plants 2021, 10, 1755. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.V.; Ramana Rao, T.V. Nutritional Quality of Muskmelon Fruit as Revealed by Its Biochemical Properties during Different Rates of Ripening. Int. Food Res. J. 2012, 19, 1621–1628. Available online: http://www.ifrj.upm.edu.my/ (accessed on 20 November 2024).
- Kumari, P.; Gaur, S.S.; Tiwari, R.K. Banana and Its By-Products: A Comprehensive Review on Its Nutritional Composition and Pharmacological Benefits. eFood 2023, 4, e110. [Google Scholar] [CrossRef]
- Padalino, L.; Caliandro, R.; Chita, G.; Conte, A.; Del Nobile, M.A. Study of Drying Process on Starch Structural Properties and Their Effect on Semolina Pasta Sensory Quality. Carbohydr. Polym. 2016, 153, 229–235. [Google Scholar] [CrossRef]
- Coelho, M.C.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. Integral Valorisation of Tomato By-Products towards Bioactive Compounds Recovery: Human Health Benefits. Food Chem. 2023, 410, 135319. [Google Scholar] [CrossRef]
- Kaboré, K.; Konaté, K.; Dakuyo, R.; Sanou, A.; Sama, H.; Santara, B.; Dicko, M.H. Evaluation of Phytonutrients Composition and Nutraceutical Potential of Tomato By-Products. CYTA—J. Food 2022, 20, 404–411. [Google Scholar] [CrossRef]
- Dinu, M.; Soare, R.; Băbeanu, C.; Hoza, G.; Sima, R. Nutraceutical Value and Production of the Sweet Potato (Ipomoea Batatas l.) Cultivated in South-West of Romania. J. Cent. Eur. Agric. 2021, 22, 285–294. [Google Scholar] [CrossRef]
- Arshad, M.S.; Sohaib, M.; Nadeem, M.; Saeed, F.; Imran, A.; Javed, A.; Amjad, Z.; Batool, S.M. Status and Trends of Nutraceuticals from Onion and Onion By-Products: A Critical Review. Cogent Food Agric. 2017, 3, 1280254. [Google Scholar] [CrossRef]
- Kumar, V.M.; Author, C. Bioactive Composition of Onion (Allium cepa) and Its Health Benefits: A Review. Pharma Innov. J. 2022, 11, 1148–1153. Available online: https://www.thepharmajournal.com/ (accessed on 20 November 2024).
- Stoica, F.; Rațu, R.N.; Veleșcu, I.D.; Stănciuc, N.; Râpeanu, G. A Comprehensive Review on Bioactive Compounds, Health Benefits, and Potential Food Applications of Onion (Allium cepa L.) Skin Waste. Trends Food Sci. Technol. 2023, 141, 104173. [Google Scholar] [CrossRef]
- Fejes, R.; Bondonno, C.P.; Radavelli-Bagatini, S.; Kühn, T.; Wagner, K.-H. Exploring the Health Benefits of Raw White Garlic Consumption in Humans: A Mini Review. Front. Nutr. 2024, 11, 1459627. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.J.; Mainkar, P.; Mahajan, V. Exploring the Nutritional-Nutraceutical Composition and Phytochemical Potential of Garlic Agents in Preclinical and Clinical Studies With a Focus on Drug Likeness. J. Herb. Med. 2024, 46, 100911. [Google Scholar] [CrossRef]
- Touloupakis, E.; Ghanotakis, D.F. Nutraceutical Use of Garlic Sulfur-Containing Compounds. Adv. Exp. Med. Biol. 2010, 698, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Bystrická, J.; Kavalcová, P.; Musilová, J.; Vollmannová, A.; Tóth, T.; Lenková, M. Carrot (Daucus Carota L. Ssp. Sativus (Hoffm.) Arcang.) as Source of Antioxidants. Acta Agric. Slov. 2015, 105, 303–311. [Google Scholar] [CrossRef]
- Riaz, N.; Yousaf, Z.; Yasmin, Z.; Munawar, M.; Younas, A.; Rashid, M.; Aftab, A.; Shamsheer, B.; Yasin, H.; Najeebullah, M.; et al. Development of Carrot Nutraceutical Products as an Alternative Supplement for the Prevention of Nutritional Diseases. Front. Nutr. 2022, 8, 787351. [Google Scholar] [CrossRef]
- Ikram, A.; Rasheed, A.; Ahmad Khan, A.; Khan, R.; Ahmad, M.; Bashir, R.; Hassan Mohamed, M. Exploring the Health Benefits and Utility of Carrots and Carrot Pomace: A Systematic Review. Int. J. Food Prop. 2024, 27, 180–193. [Google Scholar] [CrossRef]
Fruits | Antioxidant Potential (Average Value) μmol/100 g | Antioxidant Potential (Min.–Max.) μmol/100 g | References |
---|---|---|---|
Orange Citrus × sinensis L. | 1.05 | 0.83–1.59 | [7] |
[25] | |||
[26] | |||
Lemon Citrus limon (L.) Burm. f. | 8.27 | 0.56–14.34 | [7] |
[27] | |||
[26] | |||
Strawberry Fragaria × ananassa (Duchesne) L. | 2.03 | 1.59–2.47 | [27] |
[25] | |||
[26] | |||
Apple Malus domestica Borkh. | 0.40 | 0.15–1.22 | [7] |
[25] | |||
[26] | |||
White grapes Red grapes Vitis vinifera L. | 1.08 5.33 | 0.13–4.78 0.32–16.38 | [7] |
[27] | |||
[25] | |||
[26] | |||
Pear Pyrus communis L. | 0.21 | 0.02–0.41 | [7] |
[25] | |||
[26] | |||
Watermelon Citrullus lanatus (Thunb.) Matsum. & Nakai | [7] | ||
0.44 | 0.02–0.86 | [27] | |
[25] | |||
Melon Cucumis melo L. | 1.34 | 0.29–3.34 | [7] |
[27] | |||
[25] | |||
Banana Musa acuminata L. | 0.28 | 0.08–0.42 | [25] |
[7] | |||
[26] | |||
Loquat Eriobotrya japonica (Thunb.) Lindl. | 0.53 | 0.56–0.85 | [25] |
[27] |
Vegetables | Antioxidant Potencial (Average Value) μmol/100 g | Antioxidant Potencial (Min.–Max.) μmol/100 g | References |
---|---|---|---|
Letuce Lactuca sativa L. | 0.95 | 0.07–2.08 | [7] |
[27] | |||
[26] | |||
Tomato Solanum lycopersicum L. | 2.41 | 0.16–5.00 | [7] |
[27] | |||
[26] | |||
Potato Solanum tuberosum L. | 0.40 | 0.06–1.44 | [7] |
[27] | |||
[26] | |||
Carrot Daucus carota L. | 0.83 | 0.02–1.66 | [7] |
[27] | |||
[26] | |||
Onion Allium cepa L. | 2.91 | 0.11–6.86 | [7] |
[27] | |||
[26] | |||
Garlic Allium sativum L. | 0.60 | 0.06–2.68 | [7] |
[27] | |||
[26] | |||
Zucchini Cucurbita pepo L. | 0.84 | 0.03–1.78 | [7] |
[27] | |||
Cabbages Brassica oleracea L. | 0.9 | 0.02–3.5 | [7] |
[26] | |||
Sweet potato Ipomoea batatas (L.) Lam. | 0.16 | 0.08–0.24 | [7] |
Pumpkin Cucurbita pepo L. | 0.04 | 0.02–0.05 | [7] |
FRAP Values μmol/100 g | 0–0.50 | >0.50–1 | >1–1.50 | >1.50–2 | >2–2.50 | >2.50–3 | >3 |
---|---|---|---|---|---|---|---|
Scale Fruits | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Orange | ● | ● | |||||
Lemon | ● | ● | ● | ● | ● | ● | |
Strawberry | ● | ● | |||||
Apple | ● | ||||||
Grapes | ● | ● | ● | ● | ● | ● | ● |
Pear | ● | ||||||
Watermelon | ● | ||||||
Melon | ● | ● | ● | ● | ● | ● | ● |
Banana | ● | ||||||
Loquat | ● | ● |
FRAP Values μmol/100 g | 0–0.50 | >0.50–1 | >1–1.50 | >1.50–2 | >2–2.50 | >2.50–3 | >3 |
---|---|---|---|---|---|---|---|
Scale Vegetables | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Letuce | ● | ● | ● | ● | |||
Tomato | ● | ● | ● | ● | ● | ● | ● |
Potato | ● | ||||||
Carrot | ● | ● | ● | ● | |||
Onion | ● | ● | ● | ● | ● | ● | ● |
Garlic | ● | ● | ● | ● | ● | ● | |
Zucchini | ● | ● | ● | ● | |||
Cabbages | ● | ● | ● | ● | ● | ● | ● |
Sweet potato | ● | ||||||
Pumpkin | ● |
Fruits Criteria | Orange | Lemon | Strawberry | Apple | Grape | Pear | Watermelon | Melon | Banana | Loquat |
---|---|---|---|---|---|---|---|---|---|---|
High antioxidant capacity (FRAP values above 1) | ● | ● | ● | ● | ||||||
Presence of n-3 fatty acids | ||||||||||
Less than 2% saturated fat per 100g | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Less than 50 mg of cholesterol per 100 g | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Free of trans fatty acids | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● |
More than 2.5 g of fiber per 100 g | ● | |||||||||
Less than 200 mg of sodium per 100 g | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Potential cardiovascular benefit | 5 | 5 | 5 | 4 | 5 | 4 | 4 | 5 | 5 | 4 |
Vegetables Criteria | Letuce | Tomato | Potato | Carrot | Onion | Garlic | Zucchini | Cabbages | Sweet potato | Pumpkin |
---|---|---|---|---|---|---|---|---|---|---|
High antioxidant capacity (FRAP values above 1) | ● | ● | ||||||||
Presence of n-3 fatty acids | ||||||||||
Less than 2% saturated fat per 100 g | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Less than 50 mg of cholesterol per 100 g | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Free of trans fatty acids | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● |
More than 2.5 g of fiber per 100 g | ● | ● | ● | |||||||
Less than 200 mg of sodium per 100 g | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Potential cardiovascular benefit | 4 | 5 | 4 | 5 | 5 | 5 | 4 | 4 | 5 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, A.; Lameiras, J.; Mendes-Moreira, P.; Botelho, G. Antioxidant Capacity and Cardiovascular Benefits of Fruits and Vegetables: A Proposal for Comparative Scales. Nutraceuticals 2024, 4, 695-709. https://doi.org/10.3390/nutraceuticals4040039
Oliveira A, Lameiras J, Mendes-Moreira P, Botelho G. Antioxidant Capacity and Cardiovascular Benefits of Fruits and Vegetables: A Proposal for Comparative Scales. Nutraceuticals. 2024; 4(4):695-709. https://doi.org/10.3390/nutraceuticals4040039
Chicago/Turabian StyleOliveira, André, Jorge Lameiras, Pedro Mendes-Moreira, and Goreti Botelho. 2024. "Antioxidant Capacity and Cardiovascular Benefits of Fruits and Vegetables: A Proposal for Comparative Scales" Nutraceuticals 4, no. 4: 695-709. https://doi.org/10.3390/nutraceuticals4040039
APA StyleOliveira, A., Lameiras, J., Mendes-Moreira, P., & Botelho, G. (2024). Antioxidant Capacity and Cardiovascular Benefits of Fruits and Vegetables: A Proposal for Comparative Scales. Nutraceuticals, 4(4), 695-709. https://doi.org/10.3390/nutraceuticals4040039