Synthesis and Characterization of Boehmite Particles Obtained from Recycling: Water Disinfection Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Boehmite (γ-AlO(OH)) by Metallic Aluminum Acid Digestion
2.2. Sample Purification
2.3. Ag-NPs’ Preparation with Aloe Vera Extract
2.4. Boehmite Decorated with Ag-NPs
2.5. Characterization
2.6. Lake Water Collection and Treatment
3. Results and Discussion
3.1. Scanning Electronic Microscopy with Energy Dispersive Spectroscopy (SEM/EDS)
3.2. X-ray Diffractometry (XRD)
3.3. Zeta Potential (ζ)
3.4. Water Treatment
3.5. Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES)
3.6. Colorimetry (CIEL*a*b*)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhardwaj, A.K.; Shukla, A.; Mishra, R.K.; Singh, S.C.; Mishra, V.; Uttam, K.N.; Singh, M.P.; Sharma, S.; Gopal, R. Power and Time Dependent Microwave Assisted Fabrication of Silver Nanoparticles Decorated Cotton (SNDC) Fibers for Bacterial Decontamination. Front. Microbiol. 2017, 8, 330. [Google Scholar] [CrossRef] [PubMed]
- Bayu, T.; Kim, H.; Oki, T. Water Governance Contribution to Water and Sanitation Access Equality in Developing Countries. Water Resour. Res. 2020, 56, e2019WR025330. [Google Scholar] [CrossRef]
- Fukuda, S.; Noda, K.; Oki, T. How Global Targets on Drinking Water Were Developed and Achieved. Nat. Sustain. 2019, 2, 429–434. [Google Scholar] [CrossRef]
- Ranjan, M.; Singh, P.K.; Srivastav, A.L. A Review of Bismuth-Based Sorptive Materials for the Removal of Major Contaminants from Drinking Water. Environ. Sci. Pollut. Res. 2020, 27, 17492–17504. [Google Scholar] [CrossRef] [PubMed]
- Srivastav, A.; Patel, N.; Chaudhary, V.K. Disinfection By-Products in Drinking Water: Occurrence, Toxicity and Abatement. Environ. Pollut. 2020, 267, 115474. [Google Scholar] [CrossRef] [PubMed]
- Setty, K.; Jiménez, A.; Willetts, J.; Leifels, M.; Bartram, J. Global Water, Sanitation and Hygiene Research Priorities and Learning Challenges under Sustainable Development Goal 6. Dev. Policy Rev. 2020, 38, 64–84. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.K.; Sundaram, S.; Yadav, K.K.; Srivastav, A.L. An Overview of Silver Nano-Particles as Promising Materials for Water Disinfection. Environ. Technol. Innov. 2021, 23, 101721. [Google Scholar] [CrossRef]
- Gehrke, I.; Geiser, A.; Somborn-Schulz, A. Innovations in Nanotechnology for Water Treatment. Nanotechnol. Sci. Appl. 2015, 8. [Google Scholar] [CrossRef]
- Shaikh, S.; Nazam, N.; Rizvi, S.M.D.; Ahmad, K.; Baig, M.H.; Lee, E.J.; Choi, I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci. 2019, 20, 2468. [Google Scholar] [CrossRef]
- Salleh, A.; Naomi, R.; Utami, N.D.; Mohammad, A.W.; Mahmoudi, E.; Mustafa, N.; Fauzi, M.B. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials 2020, 10, 1556. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Zhang, N.; Sun, B.; Wang, K.; Zhang, Y.; Zhu, L. Self-Defense Mechanisms of Microorganisms from the Antimicrobial Effect of Silver Nanoparticles: Highlight the Role of Extracellular Polymeric Substances. Water Res. 2022, 218, 118452. [Google Scholar] [CrossRef]
- Lara, H.H.; Ayala-Núñez, N.V.; del Turrent, L.C.I.; Padilla, C.R. Bactericidal Effect of Silver Nanoparticles against Multidrug-Resistant Bacteria. World, J. Microbiol. Biotechnol. 2010, 26, 615–621. [Google Scholar] [CrossRef]
- Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic Synthesis of Silver Nanoparticles and Their Synergistic Effect with Antibiotics: A Study against Gram-Positive and Gram-Negative Bacteria. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 103–109. [Google Scholar] [CrossRef]
- Guzman, M.; Dille, J.; Godet, S. Synthesis and Antibacterial Activity of Silver Nanoparticles against Gram-Positive and Gram-Negative Bacteria. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 37–45. [Google Scholar] [CrossRef]
- Venkatadri, B.; Shanparvish, E.; Rameshkumar, M.R.; Arasu, M.V.; Al-Dhabi, N.A.; Ponnusamy, V.K.; Agastian, P. Green Synthesis of Silver Nanoparticles Using Aqueous Rhizome Extract of Zingiber Officinale and Curcuma Longa: In-Vitro Anti-Cancer Potential on Human Colon Carcinoma HT-29 Cells. Saudi J. Biol. Sci. 2020, 27, 2980–2986. [Google Scholar] [CrossRef]
- Primo, J.d.O.; Horsth, D.F.; Correa, J.d.S.; Das, A.; Bittencourt, C.; Umek, P.; Buzanich, A.G.; Radtke, M.; Yusenko, K.V.; Zanette, C.; et al. Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water. Nanomaterials 2022, 12, 1764. [Google Scholar] [CrossRef]
- Sharma, R. Nanotechnology: An Approach for Water Purification-Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1116, 012007. [Google Scholar] [CrossRef]
- Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Liu, H.; Miyamoto, N.; Nguyen, M.T.; Shirato, H.; Yonezawa, T. Green and Effective Synthesis of Gold Nanoparticles as an Injectable Fiducial Marker for Real-Time Image Gated Proton Therapy. Mater. Adv. 2022, 3, 5430. [Google Scholar] [CrossRef]
- Primo, J.d.O.; Bittencourt, C.; Acosta, S.; Sierra-Castillo, A.; Colomer, J.F.; Jaerger, S.; Teixeira, V.C.; Anaissi, F.J. Synthesis of Zinc Oxide Nanoparticles by Ecofriendly Routes: Adsorbent for Copper Removal from Wastewater. Front. Chem. 2020, 8, 571790. [Google Scholar] [CrossRef]
- Roopan, S. Current Scenario in Green Approaches for Metal/Metal Oxide Nanoparticles Synthesis: Synthesis, Characterization and Their Applications. In The Macabresque: Human Violation and Hate in Genocide, Mass Atrocity and Enemy-Making; Oxford University Press: Oxford, UK, 2018; pp. 467–512. ISBN 9781119418238. [Google Scholar]
- Achadu, O.J.; Elizur, G.L.; Boye, T.E.; Park, E.Y. Green Synthesis of Carbon Dots Using Expired Agar for a Label-Free Fluorescence Signal-Amplified Detection of Ferric Ion Utilizing Oxalate Functionalization. Mater. Adv. 2022, 3, 6307–6315. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Silva, S.R.P.; Ding, B.; Zhang, P.; Shao, G. Lithium–Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Parameters for High Gravimetric and Volume Energy Density. Adv. Sci. 2022, 9, 2103879. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. “Green” Synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
- Sangeetha, G.; Rajeshwari, S.; Venckatesh, R. Green Synthesis of Zinc Oxide Nanoparticles by Aloe Barbadensis Miller Leaf Extract: Structure and Optical Properties. Mater. Res. Bull. 2011, 46, 2560–2566. [Google Scholar] [CrossRef]
- Anju, T.R.; Parvathy, S.; Valiya Veettil, M.; Rosemary, J.; Ansalna, T.H.; Shahzabanu, M.M.; Devika, S. Green Synthesis of Silver Nanoparticles from Aloe Vera Leaf Extract and Its Antimicrobial Activity. In Proceedings of the Materials Today: Proceedings; Elsevier: Amsterdam, The Netherlands, 2020; Volume 43, pp. 3956–3960. [Google Scholar]
- van den Eynde, S.; Bracquené, E.; Diaz-Romero, D.; Zaplana, I.; Engelen, B.; Duflou, J.R.; Peeters, J.R. Forecasting Global Aluminium Flows to Demonstrate the Need for Improved Sorting and Recycling Methods. Waste Manag. 2022, 137, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Zhang, S.; Zhang, Y.; Li, N.; Wang, S.; Ding, B.; Shao, G.; Zhang, P. A “Three-Region” Configuration for Enhanced Electrochemical Kinetics and High-Areal Capacity Lithium–Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2200302. [Google Scholar] [CrossRef]
- Horsth, D.F.L.; Primo, J.O.; Dalpasquale, M.; Bittencourt, C.; Anaissi, F.J. Colored Aluminates Pigments Obtained from Metallic Aluminum Waste, an Opportunity in the Circular Economy. Clean. Eng. Technol. 2021, 5, 100313. [Google Scholar] [CrossRef]
- Lomasso, A.L.; Rodrigo, B.; Fabiana, S.; Da, A.; Anjos, S.; Cristina De Andrade, J.; Aparecida, L.; Silva, D.; Rodrigues, Q.; Ana, S.; et al. Benefícios e Desafios Na Implementação Da Reciclagem: Um Estudo de Caso No Centro Mineiro de Referência Em Resíduos (CMRR). Revista Pensar Gestão e Administração 2015, 3, 1–20. [Google Scholar]
- Leopoldo Constantino, V.R.; Araki, K.; de Oliveira Silva Wanda de Oliveira, D. Preparação De Compostos De Alumínio A Partir Da Bauxita: Considerações Sobre Alguns Aspectos Envolvidos Em Um Experimento Didático. Química Nova 2002, 25, 490–495. [Google Scholar] [CrossRef]
- Damasceno, F.C. Estudo Da Adsorção de Íons Ortofosfato Em Hidróxido de Alumínio; Universidade Federal de Goiás: Goiânia, Brazil, 2009. [Google Scholar]
- Ghorbani-Choghamarani, A.; Mohammadi, M.; Hudson, R.H.E.; Tamoradi, T. Boehmite@tryptophan-Pd Nanoparticles: A New Catalyst for C–C Bond Formation. Appl. Organomet. Chem. 2019, 33, e4977. [Google Scholar] [CrossRef]
- Carbonell, E.; Delgado-Pinar, E.; Pitarch-Jarque, J.; Alarcón, J.; García-España, E. Boehmite Supported Pyrene Polyamine Systems as Probes for Iodide Recognition. J. Phys. Chem. C 2013, 117, 14325–14331. [Google Scholar] [CrossRef]
- Amjad, M.U.; Ahmed, B.A.; Ahmed, F.; Saeed, H.A. Development and Characterization of Silver-Doped Multi-Walled Carbon Nanotube Membranes for Water Purification Applications. Membranes 2022, 12, 179. [Google Scholar] [CrossRef]
- Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater the Nineteenth and Earlier Editions, 20th ed.; American Public Health Association, American Water Works Association, Eds.; American Public Health Association: Washington, DC, USA, 1999. [Google Scholar]
- Osmolovskaya, O.M.; Osmolowsky, M.G.; Petrov, M.P.; Voitylov, A.V.; Vojtylov, V.V. Theoretical and Experimental Approaches to the Electro-Optical Study of Boehmite Nanoparticles with given Morphology. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124095. [Google Scholar] [CrossRef]
- Lightfoot, P. Inorganic Materials; Bruce, D.W., O’Hare, D., Eds.; Wiley: Chichester, UK, 1992; Volume 4, ISBN 0471928895. [Google Scholar]
- Kawashita, M.; Kamitani, A.; Miyazaki, T.; Matsui, N.; Li, Z.; Kanetaka, H.; Hashimoto, M. Zeta Potential of Alumina Powders with Different Crystalline Phases in Simulated Body Fluids. Mater. Sci. Eng. C 2012, 32, 2617–2622. [Google Scholar] [CrossRef]
- Pedroso, C.R.; de Souza, J.B.; Kovalski, T.; Vidal, C.M.d.S.; Martins, K.G. Inactivation of Indicator Microorganisms of Faecal Contamination by Ultraviolet Radiation and Evaluation of Photoreactivation and Dark Repair Phenomena. Eng. Sanit. Ambient. 2018, 23, 987–994. [Google Scholar] [CrossRef]
- Pandur, Ž.; Dular, M.; Kostanjšek, R.; Stopar, D. Bacterial Cell Wall Material Properties Determine, E. Coli Resistance to Sonolysis. Ultrason. Sonochem. 2022, 83, 105919. [Google Scholar] [CrossRef]
- Chen, H.J.; Tian, W.J.; Ding, W.X. Preparation of Meso-Ag/Al2O3 and Synergistic Water Disinfection of Metallic Silver and ROS under Visible Light. Sol. Energy 2018, 173, 1065–1072. [Google Scholar] [CrossRef]
- Wei, W.J.; Yang, Y.; Li, X.Y.; Huang, P.; Wang, Q.; Yang, P.J. Cloud Point Extraction (CPE) Combined with Single Particle -Inductively Coupled Plasma-Mass Spectrometry (SP-ICP-MS) to Analyze and Characterize Nano-Silver Sulfide in Water Environment. Talanta 2022, 239, 123117. [Google Scholar] [CrossRef]
- Fan, Y.; Li, J.; Guo, Y.; Xie, L.; Zhang, G. Digital Image Colorimetry on Smartphone for Chemical Analysis: A Review. Meas. J. Int. Meas. Confed. 2021, 171, 108829. [Google Scholar] [CrossRef]
- Jankowska, A.; Kowalak, S. Synthesis of Ultramarine Analogs from Erionite. Microporous Mesoporous Mater.-Microporous Mesoporous Mat. 2008, 110, 570–578. [Google Scholar] [CrossRef]
Parameter Analyzed | Method |
---|---|
Total coliforms | SMEWW 9223 B- Enzymatic Substrate Coliform Test |
Escherichia coli | SMEWW 9223 B |
pH | SMEWW4500H + B—Electrometric Method |
Turbidity | SMEWW 2130 B—Nephelometric Method |
Sample | % Weight | ||||
---|---|---|---|---|---|
C | Al | O | Cl | Ag | |
Boehmite | 2.8 | 37.4 | 53.5 | 6.3 | - |
Ag-Boehmite | 1.5 | 57.1 | 33.2 | 4.6 | 3.6 |
Sample | Crystallinity (%) | Crystallite Size (nm) | |
---|---|---|---|
k = 0.9 | k = 1.3 | ||
Boehmite | 60.4 | 2.1 | 3.0 |
Ag-NPs | 17.9 | 21.2 | 30.7 |
Ag-Boehmite | 80.0 | 36.3 | 52.4 |
Sample | Parameters | |||
---|---|---|---|---|
Total Coliforms (MPN/100 mL) | Escherichia coli (MPN/100 mL) | pH | Turbidity (NTU) | |
Lake Water (100 mL) | >2419.6 | 195.6 | 6.3 | 13.0 |
1st use Boehmite | 547.5 | 26.2 | 5.1 | 0.7 |
reuse Boehmite | Presence | Presence | 5.5 | 5.6 |
2nd reuse | Presence | Presence | 5.8 | 5.7 |
3rd reuse | Presence | Presence | 5.8 | 6.3 |
4th reuse | Presence | Presence | 6.0 | 5.6 |
1st use Ag-Boehmite | <1 | <1 | 6.0 | 4.8 |
reuse Ag-Boehmite | Presence | <1 | 6.1 | 5.8 |
2nd reuse | Presence | <1 | 6.1 | 5.9 |
3rd reuse | Presence | <1 | 6.1 | 5.2 |
4th reuse | Presence | <1 | 6.2 | 5.5 |
Sample | Concentration (ppm) | |
---|---|---|
Al | Ag | |
Contaminated water | 0.371 ± 0.0028 | −0.031 ± 0.0025 |
Boehmite | 3.299 ± 0.0138 | −0.025 ± 0.0019 |
Boehmite-Ag | 0.082 ± 0.0012 | −0.014 ± 0.0048 |
Sample | Colorimetric Parameters | ||||
---|---|---|---|---|---|
L* | a* | b* | C | ∆E | |
Boehmite | 89.40 | 1.94 | 5.00 | 5.37 | 6.54 |
Boehmite (after) | 85.94 | 4.12 | 10.10 | 10.91 | |
Ag-boehmite | 63.28 | 4.28 | 8.58 | 9.51 | 14.26 |
Ag-boehmite (after) | 49.18 | 3.70 | 10.63 | 11.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horsth, D.F.L.; Primo, J.d.O.; Balaba, N.; Correa, J.S.; Zanette, C.M.; Silva, D.K.; Bittencourt, C.; Anaissi, F.J. Synthesis and Characterization of Boehmite Particles Obtained from Recycling: Water Disinfection Application. Nanomaterials 2022, 12, 2771. https://doi.org/10.3390/nano12162771
Horsth DFL, Primo JdO, Balaba N, Correa JS, Zanette CM, Silva DK, Bittencourt C, Anaissi FJ. Synthesis and Characterization of Boehmite Particles Obtained from Recycling: Water Disinfection Application. Nanomaterials. 2022; 12(16):2771. https://doi.org/10.3390/nano12162771
Chicago/Turabian StyleHorsth, Dienifer F. L., Julia de O. Primo, Nayara Balaba, Jamille S. Correa, Cristina M. Zanette, Douglas K. Silva, Carla Bittencourt, and Fauze J. Anaissi. 2022. "Synthesis and Characterization of Boehmite Particles Obtained from Recycling: Water Disinfection Application" Nanomaterials 12, no. 16: 2771. https://doi.org/10.3390/nano12162771