Polymer Inclusion Membranes with P507-TBP Carriers for Lithium Extraction from Brines
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Preparation of PIMs
2.3. Characterization of PIMs
2.4. Transport Experiments
3. Results and Discussion
3.1. Characterization of the PIMs
3.1.1. Morphology Study
3.1.2. FTIR and EDX Analysis
3.1.3. Surface Hydrophilicity Analysis
3.2. Separation Performance of the PIMs
3.2.1. Optimization of the Carrier Content
3.2.2. Effect of Mg/Li Ratio and Coexisting Cations
3.2.3. Stability and Reusability of the PIMs
3.2.4. Ions Transport Kinetics across the PIM
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, G.; Zhao, Z.; Ghahreman, A. Novel approaches for lithium extraction from salt-lake brines: A review. Hydrometallurgy 2019, 187, 81–100. [Google Scholar] [CrossRef]
- Siekierka, A.; Bryjak, M.; Razmjou, A.; Kujawski, W.; Nikoloski, A.N.; Dumée, L.F. Electro-driven materials and processes for lithium recovery—A review. Membranes 2022, 12, 343. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, Q.; Wang, Y.; Yun, R.; Xiang, X. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Sep. Purif. Technol. 2020, 256, 117807. [Google Scholar] [CrossRef]
- Shi, D.; Cui, B.; Li, L.; Peng, X.; Zhang, L.; Zhang, Y. Lithium extraction from low-grade salt lake brine with ultrahigh Mg/Li ratio using TBP – kerosene – FeCl3 system. Sep. Purif. Technol. 2018, 211, 303–309. [Google Scholar] [CrossRef]
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Guo, X.; Hu, S.; Wang, C.; Duan, H.; Xiang, X. Highly efficient separation of magnesium and lithium and high-valued utilization of magnesium from salt lake brine by a reaction-coupled separation technology. Ind. Eng. Chem. Res. 2018, 57, 6618–6626. [Google Scholar] [CrossRef]
- Xu, W.; Liu, D.; He, L.; Zhao, Z. A comprehensive membrane process for preparing lithium carbonate from high Mg/Li brine. Membranes 2020, 10, 371. [Google Scholar] [CrossRef]
- Mu, Y.; Zhang, C.; Zhang, W.; Wang, Y. Electrochemical lithium recovery from brine with high Mg2+/Li+ ratio using mesoporous λ-MnO2/LiMn2O4 modified 3D graphite felt electrodes. Desalination 2021, 511, 115112. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, J.H.; Moon, S.J.; Jung, J.T.; Wang, H.H.; Ali, A.; Quist-Jensen, C.A.; Macedonio, F.; Drioli, E.; Lee, Y.M. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J. Membr. Sci. 2020, 598, 117683. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Zeng, X.; Deng, T.; Wang, J. Membranes for separation of alkali/alkaline earth metal ions: A review. Sep. Purif. Technol. 2021, 278, 119640. [Google Scholar] [CrossRef]
- Saif, H.M.; Huertas, R.M.; Pawlowski, S.; Crespo, J.G.; Velizarov, S. Development of highly selective composite polymeric membranes for Li+/Mg2+ separation. J. Membr. Sci. 2021, 620, 118891. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Sun, W.; Hu, Y.; Tang, H.J.J.O.I.; Chemistry, E. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review. J. Ind. Eng. Chem. 2020, 81, 7–23. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Wang, Y. Diffusion dialysis for acid recovery from acidic waste solutions: Anion exchange membranes and technology integration. Membranes 2020, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.-Y.; Ji, Z.-Y.; Chen, Q.-B.; Liu, J.; Zhao, Y.-Y.; Wang, S.-Z.; Li, F.; Yuan, J.-S. Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis. Sep. Purif. Technol. 2018, 207, 1–11. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Li, Y.; Wang, M.; Xiang, X. An integrated membrane process for preparation of lithium hydroxide from high Mg/Li ratio salt lake brine. Desalination 2020, 493, 114620. [Google Scholar] [CrossRef]
- Zhang, C.; Mu, Y.; Zhang, W.; Zhao, S.; Wang, Y. PVC-based hybrid membranes containing metal-organic frameworks for Li+/Mg2+ separation. J. Membr. Sci. 2020, 596, 117724. [Google Scholar] [CrossRef]
- Zante, G.; Boltoeva, M.; Masmoudi, A.; Barillon, R.; Trébouet, D. Lithium extraction from complex aqueous solutions using supported ionic liquid membranes. J. Membr. Sci. 2019, 580, 62–76. [Google Scholar] [CrossRef]
- Song, J.; Li, X.-M.; Zhang, Y.; Yin, Y.; Zhao, B.; Li, C.; Kong, D.; He, T. Hydrophilic nanoporous ion-exchange membranes as a stabilizing barrier for liquid–liquid membrane extraction of lithium ions. J. Membr. Sci. 2014, 471, 372–380. [Google Scholar] [CrossRef]
- Garcia-Rodríguez, A.; Matamoros, V.; Kolev, S.D.; Fontàs, C. Development of a polymer inclusion membrane (PIM) for the preconcentration of antibiotics in environmental water samples. J. Membr. Sci. 2015, 492, 32–39. [Google Scholar] [CrossRef]
- Almeida, M.I.G.S.; Cattrall, R.W.; Kolev, S.D. Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). J. Membr. Sci. 2012, 415–416, 9–23. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Mornane, P.; Potter, I.D.; Perera, J.M.; Cattrall, R.W.; Kolev, S.D. Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Membr. Sci. 2006, 281, 7–41. [Google Scholar] [CrossRef]
- Pereira, N.; John, A.S.; Cattrall, R.W.; Perera, J.M.; Kolev, S.D. Influence of the composition of polymer inclusion membranes on their homogeneity and flexibility. Desalination 2009, 236, 327–333. [Google Scholar] [CrossRef]
- Bahrami, S.; Yaftian, M.R.; Najvak, P.; Dolatyari, L.; Shayani-Jam, H.; Kolev, S.D. PVDF-HFP based polymer inclusion membranes containing Cyphos® IL 101 and aliquat® 336 for the removal of Cr(VI) from sulfate solutions. Sep. Purif. Technol. 2020, 250, 117251. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Maslowska, K.; Urbaniak, W. Removal of copper (II), zinc (II), cobalt (II), and nickel (II) ions by PIMs doped 2-alkylimidazoles. Membranes 2022, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Bonggotgetsakul, Y.Y.; Cattrall, R.W.; Kolev, S.D. Extraction of gold(III) from hydrochloric acid solutions with a PVC-based polymer inclusion membrane (PIM) containing cyphos® IL 104. Membranes 2015, 5, 903–914. [Google Scholar] [CrossRef]
- Pospiech, B. Hydrometallurgical recovery of cobalt (II) from acidic chloride solutions by transport through polymer inclusion membranes. Physicochem. Probl. Miner. Processing 2013, 49, 641–649. [Google Scholar]
- Pospiech, B. Selective recovery of cobalt (II) towards lithium (I) from chloride media by transport across polymer inclusion membrane with triisooctylamine. Pol. J. Chem. Technol. 2014, 16, 15–20. [Google Scholar] [CrossRef]
- Wang, L.; Paimin, R.; Cattrall, R.W.; Shen, W.; Kolev, S.D. The extraction of cadmium(II) and copper(II) from hydrochloric acid solutions using an Aliquat 336/PVC membrane. J. Membr. Sci. 2000, 176, 105–111. [Google Scholar] [CrossRef]
- Kolev, S.D.; Baba, Y.; Cattrall, R.W.; Tasaki, T.; Pereira, N.; Perera, J.M.; Stevens, G.W. Solid phase extraction of zinc(II) using a PVC-based polymer inclusion membrane with di(2-ethylhexyl)phosphoric acid (D2EHPA) as the carrier. Talanta 2009, 78, 795–799. [Google Scholar] [CrossRef]
- Bahrami, S.; Dolatyari, L.; Shayani-Jam, H.; Yaftian, M.R.; Kolev, S.D. On the potential of a poly(vinylidenefluoride-co-hexafluoropropylene) polymer inclusion membrane containing aliquat® 336 and dibutyl phthalate for V(V) extraction from sulfate solutions. Membranes 2022, 12, 90. [Google Scholar] [CrossRef]
- Cai, C.; Yang, F.; Zhao, Z.; Liao, Q.; Bai, R.; Guo, W.; Chen, P.; Zhang, Y.; Zhang, H. Promising transport and high-selective separation of Li(I) from Na(I) and K(I) by a functional polymer inclusion membrane (PIM) system. J. Membr. Sci. 2019, 579, 1–10. [Google Scholar] [CrossRef]
- Paredes, C.; Miguel, E.R.D.S. Selective lithium extraction and concentration from diluted alkaline aqueous media by a polymer inclusion membrane and application to seawater. Desalination 2020, 487, 114500. [Google Scholar] [CrossRef]
- Zhang, C.; Mu, Y.; Zhao, S.; Zhang, W.; Wang, Y. Lithium extraction from synthetic brine with high Mg2+/Li+ ratio using the polymer inclusion membrane. Desalination 2020, 496, 114710. [Google Scholar] [CrossRef]
- Xu, L.; Zeng, X.; He, Q.; Deng, T.; Zhang, C.; Zhang, W. Stable ionic liquid-based polymer inclusion membranes for lithium and magnesium separation. Sep. Purif. Technol. 2022, 288, 120626. [Google Scholar] [CrossRef]
- Su, H.; Li, Z.; Zhang, J.; Liu, W.; Zhu, Z.; Wang, L.; Qi, T. Combining selective extraction and easy stripping of lithium using a ternary synergistic solvent extraction system through regulation of Fe3+ coordination. ACS Sustain. Chem. Eng. 2020, 8, 1971–1979. [Google Scholar] [CrossRef]
- Kozlowski, C.A.; Walkowiak, W. Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes. Water Res. 2002, 36, 4870–4876. [Google Scholar] [CrossRef]
- Zioui, D.; Arous, O.; Mameri, N.; Kerdjoudj, H.; Sebastian, M.S.; Vilas, J.L.; Nunes-Pereira, J.; Lanceros-Méndez, S. Membranes based on polymer miscibility for selective transport and separation of metallic ions. J. Hazard. Mater. 2017, 336, 188–194. [Google Scholar] [CrossRef]
- Azizitorghabeh, A.; Rashchi, F.; Babakhani, A. Stoichiometry and structural studies of Fe(III) and Zn(II) solvent extraction using D2EHPA/TBP. Sep. Purif. Technol. 2016, 171, 197–205. [Google Scholar] [CrossRef]
- Liu, C.; Chen, L.; Chen, J.; Zou, D.; Deng, Y.; Li, D. Application of P507 and isooctanol extraction system in recovery of scandium from simulated red mud leach solution. J. Rare Earths 2019, 37, 1002–1008. [Google Scholar] [CrossRef]
- Binks, B.P.; Isa, L.; Tyowua, A.T.J.L. Direct measurement of contact angles of silica particles in relation to double inversion of pickering emulsions. Langmuir 2013, 29, 4923–4927. [Google Scholar] [CrossRef]
- An, J.W.; Kang, D.J.; Tran, K.T.; Kim, M.J.; Lim, T.; Tran, T. Recovery of lithium from uyuni salar brine. Hydrometallurgy 2012, 117–118, 64–70. [Google Scholar] [CrossRef]
- Sun, S.-Y.; Cai, L.-J.; Nie, X.-Y.; Song, X.; Yu, J.-G. Separation of magnesium and lithium from brine using a desal nanofiltration membrane. J. Water Process Eng. 2015, 7, 210–217. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiang, X.; Wang, M.; Wang, H.; Li, Y.; Li, J.; Yang, H. Preparation of LiOH through BMED process from lithium-containing solutions: Effects of coexisting ions and competition between Na+ and Li+. Desalination 2021, 512, 115126. [Google Scholar] [CrossRef]
- Kagaya, S.; Ryokan, Y.; Cattrall, R.W.; Kolev, S.D. Stability studies of poly(vinyl chloride)-based polymer inclusion membranes containing Aliquat 336 as a carrier. Sep. Purif. Technol. 2012, 101, 69–75. [Google Scholar] [CrossRef]
- Deng, T.; Zeng, X.; Zhang, C.; Wang, Y.; Zhang, W. Constructing proton selective pathways using MOFs to enhance acid recovery efficiency of anion exchange membranes. Chem. Eng. J. 2022, 445, 136752. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, G.; Jia, H.; He, L. Sandwiched liquid-membrane electrodialysis: Lithium selective recovery from salt lake brines with high Mg/Li ratio. J. Membr. Sci. 2020, 596, 117685. [Google Scholar] [CrossRef]
Membranes | CTA | P507-TBP (v/v: 3/1) | Thickness (μm) |
---|---|---|---|
CTA/P507-TBP20% | 0.2 g | 0.05 | 72 ± 3 |
CTA/P507-TBP30% | 0.2 g | 0.086 | 81 ± 6 |
CTA/P507-TBP40% | 0.2 g | 0.133 | 97 ± 4 |
CTA/P507-TBP50% | 0.2 g | 0.2 | 112 ± 3 |
CTA/P507-TBP60% | 0.2 g | 0.3 | 132 ± 4 |
CTA/P507-TBP70% | 0.2 g | 0.467 | 165 ± 3 |
Membranes | Feed Solution | J0, (mol·m−2·h−1) | Recovery Percentage (%) | Separation Factor | Refs |
---|---|---|---|---|---|
PIM: PVC/c-TBP-50% | 0.2 mol/L LiCl + 3.0 mol/L MgCl2 | Li+: 8.12 × 10−4 | 25 | Li/Mg: 176 | [33] |
PIM: CTA/TBP-[C4mim] [NTf2] 40% | 7.2 mmol/L LiCl + 2.06 mmol/L MgCl2 | Li+: 3.2 × 10−3 | 19 | Li/Mg: 2.2 | [34] |
PIM: CTA + TTA + TOPO | 2.9 mmol/L LiCl + 0.87 mmol/L NaCl + 0.51 mmol/L KCl | Li+: 5.79 × 10−3 | 88 | Li/Na: 54.3 | [31] |
Li/K: 50.6 | |||||
SLM: PVDF/TBP-[C4mim] [NTf2] | 12.83 mmol/L LiCl + 5.17 mmol/L MgCl2 | Li+: 50.7 × 10−3 | 46 | Li/Mg: ~1.6 | [17] |
SLM: TBP + FeCl3 system | 0.15 mol/L LiCl + 2.06 mol/L MgCl2 + 0.20 mol/L FeCl3 | -- | 48 | Li/Mg: ~14.5 | [46] |
SLM: TBP + ClO4-system | 0.15 mol/L LiClO4 + 2.06 mol/L MgCl2 | -- | 41 | Li/Mg: ~8.2 | [46] |
PIM: CTA/P507-TBP60% | 0.1 mol/L LiCl + 4.0 mol/L MgCl2 + 0.13 mol/L FeCl3 | Li+: 4.76 × 10−3 | 55 | Li/Mg: 10.2 | This work |
PIM: CTA/P507-TBP60% | 0.1 mol/L LiCl + 2.0 mol/L NaCl + 0.5 mol/L KCl + 1.0 mol/L MgCl2 + 0.13 mol/L FeCl3 | Li+: 3.86 × 10−3 | 47 | Li/Na: 13.2 | This work |
Li/K: 32.0 | |||||
Li/Mg: 21.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Xu, L.; Deng, T.; Zhang, C.; Xu, W.; Zhang, W. Polymer Inclusion Membranes with P507-TBP Carriers for Lithium Extraction from Brines. Membranes 2022, 12, 839. https://doi.org/10.3390/membranes12090839
Zeng X, Xu L, Deng T, Zhang C, Xu W, Zhang W. Polymer Inclusion Membranes with P507-TBP Carriers for Lithium Extraction from Brines. Membranes. 2022; 12(9):839. https://doi.org/10.3390/membranes12090839
Chicago/Turabian StyleZeng, Xianjie, Li Xu, Tao Deng, Chengyi Zhang, Wei Xu, and Wen Zhang. 2022. "Polymer Inclusion Membranes with P507-TBP Carriers for Lithium Extraction from Brines" Membranes 12, no. 9: 839. https://doi.org/10.3390/membranes12090839
APA StyleZeng, X., Xu, L., Deng, T., Zhang, C., Xu, W., & Zhang, W. (2022). Polymer Inclusion Membranes with P507-TBP Carriers for Lithium Extraction from Brines. Membranes, 12(9), 839. https://doi.org/10.3390/membranes12090839