In-Depth Insight into the Effect of Hydrophilic-Hydrophobic Group Designing in Amidinium Salts for Perovskite Precursor Solution on Their Photovoltaic Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication
2.2. Instruments and Characterization
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A.J.; Gupta, G.; Crochet, J.J.; Chhowalla, M.; Tretiak, S.; Alam, M.A.; et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NREL Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 2 November 2022).
- Jung, M.; Ji, S.-G.; Kim, G.; Seok, S.I. Perovskite precursor solution chemistry: From fundamentals to photovoltaic applications. Chem. Soc. Rev. 2019, 48, 2011–2038. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Song, L.; Chen, Y.; Huang, W. Modeling thin film solar cells: From organic to perovskite. Adv. Sci. 2020, 7, 1901397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.Y.; Lee, J.-W.; Jung, H.S.; Shin, H.; Park, N.-G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, J.; He, K.; Cai, Y.; Han, Y.; Yang, S.; Zhan, S.; Wang, D.; Liu, Z.; Liu, S. A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano Micro Lett. 2021, 13, 169. [Google Scholar] [CrossRef]
- Yuan, Q.; Yi, S.; Han, D.; Wang, F.; Li, Q.; Huang, R.; Cui, Y.; Zheng, R.; Zhou, D.-Y.; Feng, L. S8 additive enables CsPbI2Br perovskite with reduced defects and improved hydrophobicity for inverted solar cells. Sol. RRL 2021, 5, 2000714. [Google Scholar] [CrossRef]
- Lao, Y.; Yang, S.; Yu, W.; Guo, H.; Zou, Y.; Chen, Z.; Xiao, L. Multifunctional π-conjugated additives for halide perovskite. Adv. Sci. 2022, 9, 2105307. [Google Scholar] [CrossRef]
- Vasilopoulou, M.; Fakharuddin, A.; Coutsolelos, A.G.; Falaras, P.; Argitis, P.; bin Mohd Yusoff, A.R.; Nazeeruddin, M.K. Molecular materials as interfacial layers and additives in perovskite solar cells. Chem. Soc. Rev. 2020, 49, 4496–4526. [Google Scholar] [CrossRef]
- Zhi, L.; Li, Y.; Cao, X.; Li, Y.; Cui, X.; Ci, L.; Wei, J. Dissolution and recrystallization of perovskite induced by N-methyl-2-pyrrolidone in a closed steam annealing method. J. Energy Chem. 2019, 30, 78–83. [Google Scholar] [CrossRef]
- Lyu, M.; Lee, D.-K.; Park, N.-G. Effect of alkaline earth metal chloride additives BCl2 (B = Mg, Ca, Sr and Ba) on the photovoltaic performance of FAPbI3 based perovskite solar cells. Nanoscale Horiz. 2020, 5, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Zhu, T.; Pauporté, T. A coadditive strategy for blocking ionic mobility in methylammonium-free perovskite solar cells and high-stability achievement. Sol. RRL 2021, 5, 2100010. [Google Scholar] [CrossRef]
- Tan, S.; Shi, J.; Yu, B.; Zhao, W.; Li, Y.; Li, Y.; Wu, H.; Luo, Y.; Li, D.; Meng, Q. Inorganic ammonium halide additive strategy for highly efficient and stable CsPbI3 perovskite solar cells. Adv. Funct. Mater 2021, 31, 2010813. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Sakai, N.; Da, P.; Wu, J.; Sansom, H.C.; Ramadan, A.J.; Mahesh, S.; Liu, J.; Oliver, R.D.J.; Lim, J.; et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 2020, 369, 96–102. [Google Scholar] [CrossRef]
- Wu, W.-Q.; Zhong, J.-X.; Liao, J.-F.; Zhang, C.; Zhou, Y.; Feng, W.; Ding, L.; Wang, L.; Kuang, D.-B. Spontaneous surface/interface ligand-anchored functionalization for extremely high fill factor over 86% in perovskite solar cells. Nano Energy 2020, 75, 104929. [Google Scholar] [CrossRef]
- Fu, C.; Gu, Z.; Tang, Y.; Xiao, Q.; Zhang, S.; Zhang, Y.; Song, Y. From structural design to functional construction: Amine molecules in high-performance formamidinium-based perovskite solar cells. Angew. Chem. Int. Edit. 2022, 61, e202117067. [Google Scholar] [CrossRef]
- Yoo, J.J.; Wieghold, S.; Sponseller, M.C.; Chua, M.R.; Bertram, S.N.; Hartono, N.T.P.; Tresback, J.S.; Hansen, E.C.; Correa-Baena, J.-P.; Bulović, V.; et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 2019, 12, 2192–2199. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Zheng, H.; Xu, X.; Xu, S.; Zhang, X.; Pan, X.; Dai, S. Introduction of hydrophobic ammonium salts with halogen functional groups for high-efficiency and sTable 2D/3D perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1807565. [Google Scholar] [CrossRef]
- Wang, R.; Xue, J.; Wang, K.-L.; Wang, Z.-K.; Luo, Y.; Fenning, D.; Xu, G.; Nuryyeva, S.; Huang, T.; Zhao, Y.; et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 2019, 366, 1509–1513. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Kayesh, M.E.; Matsuishi, K.; Kaneko, R.; Kazaoui, S.; Lee, J.-J.; Noda, T.; Islam, A. Coadditive engineering with 5-ammonium valeric acid iodide for efficient and stable Sn perovskite solar cells. ACS Energy Lett. 2019, 4, 278–284. [Google Scholar] [CrossRef]
- Zou, J.; Liu, W.; Deng, W.; Lei, G.; Zeng, S.; Xiong, J.; Gu, H.; Hu, Z.; Wang, X.; Li, J. An efficient guanidinium isothiocyanate additive for improving the photovoltaic performances and thermal stability of perovskite solar cells. Electrochim. Acta 2018, 291, 297–303. [Google Scholar] [CrossRef]
- Kim, S.-G.; Chen, J.; Seo, J.-Y.; Kang, D.-H.; Park, N.-G. Rear-surface passivation by melaminium iodide additive for stable and hysteresis-less perovskite solar cells. ACS Appl. Mater. Inter. 2018, 10, 25372–25383. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yan, Z.; Zhao, H.; Yuan, S.; Yang, Z.; Li, J.; Liu, B.; Niu, T.; Feng, J.; Wang, Q.; et al. Bifunctional hydroxylamine hydrochloride incorporated perovskite films for efficient and stable planar perovskite solar cells. ACS Appl. Energy Mater. 2018, 1, 900–909. [Google Scholar] [CrossRef]
- Hu, L.; Liu, T.; Sun, L.; Xiong, S.; Qin, F.; Jiang, X.; Jiang, Y.; Zhou, Y. Suppressing generation of iodine impurity via an amidine additive in perovskite solar cells. Chem. Commun. 2018, 54, 4704–4707. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Ma, Y.; Cao, Y.; Wang, Z.; Liu, L.; Wan, M.; Mahmoudi, T.; Hahn, Y.-B.; Wang, Y.; Mai, Y. Roles of long-chain alkylamine ligands in triple-halide perovskites for efficient NiOx-based inverted perovskite solar cells. Sol. RRL 2022, 6, 2101082. [Google Scholar] [CrossRef]
- De Marco, N.; Zhou, H.; Chen, Q.; Sun, P.; Liu, Z.; Meng, L.; Yao, E.-P.; Liu, Y.; Schiffer, A.; Yang, Y. Guanidinium: A route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells. Nano Lett. 2016, 16, 1009–1016. [Google Scholar] [CrossRef]
- Li, H.; Wu, G.; Li, W.; Zhang, Y.; Liu, Z.; Wang, D.; Liu, S. Additive engineering to grow micron-sized grains for stable high efficiency perovskite solar cells. Adv. Sci. 2019, 6, 1901241. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Li, H.; Cui, J.; Zhang, Y.; Olthof, S.; Chen, S.; Liu, Z.; Wang, D.; Liu, S. Solvent engineering using a volatile solid for highly efficient and stable perovskite solar cells. Adv. Sci. 2020, 7, 1903250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wu, G.; Liu, F.; Ding, C.; Zou, Z.; Shen, Q. Photoexcited carrier dynamics in colloidal quantum dot solar cells: Insights into individual quantum dots, quantum dot solid films and devices. Chem. Soc. Rev. 2020, 49, 49–84. [Google Scholar] [CrossRef]
- Lu, C.-H.; Biesold-McGee, G.V.; Liu, Y.; Kang, Z.; Lin, Z. Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem. Soc. Rev. 2020, 49, 4953–5007. [Google Scholar] [CrossRef]
- Yuan, S.; Qian, F.; Yang, S.; Cai, Y.; Wang, Q.; Sun, J.; Liu, Z.; Liu, S. NbF5: A novel α-phase stabilizer for FA-based perovskite solar cells with high efficiency. Adv. Funct. Mater. 2019, 29, 1904014. [Google Scholar] [CrossRef]
- Lang, F.; Shargaieva, O.; Brus, V.V.; Neitzert, H.C.; Rappich, J.; Nickel, N.H. Influence of radiation on the properties and the stability of hybrid perovskites. Adv. Mater. 2018, 30, 1702905. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Zhang, K.; Zheng, S.; Yang, S. Good or evil: What is the role of water in crystallization of organometal halide perovskites? Nanoscale Horiz. 2020, 5, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
PSCs | Voc/V | Jsc/mA·cm−2 | FF/% | PCE/% |
---|---|---|---|---|
Control | 1.06 ± 0.02 | 24.39 ± 0.33 | 71.1 ± 1.7 | 18.41 ± 0.25 |
GUI | 1.09 ± 0.01 | 24.76 ± 0.17 | 75.2 ± 1.4 | 20.22 ± 0.33 |
DIFA | 1.09 ± 0.01 | 24.72 ± 0.41 | 76.3 ± 0.9 | 20.65 ± 0.37 |
PSCs | Rs/Ω | Rrec/Ω | Cμ/F |
---|---|---|---|
Control | 17.6 | 284 | 1.13 × 10−8 |
GUI | 15.4 | 418 | 9.69 × 10−9 |
DIFA | 13.2 | 646 | 1.11 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Li, H.; Chen, S.; Liu, S.; Zhang, Y.; Wang, D. In-Depth Insight into the Effect of Hydrophilic-Hydrophobic Group Designing in Amidinium Salts for Perovskite Precursor Solution on Their Photovoltaic Performance. Nanomaterials 2022, 12, 3881. https://doi.org/10.3390/nano12213881
Wu G, Li H, Chen S, Liu S, Zhang Y, Wang D. In-Depth Insight into the Effect of Hydrophilic-Hydrophobic Group Designing in Amidinium Salts for Perovskite Precursor Solution on Their Photovoltaic Performance. Nanomaterials. 2022; 12(21):3881. https://doi.org/10.3390/nano12213881
Chicago/Turabian StyleWu, Guohua, Hua Li, Shuai Chen, Shengzhong (Frank) Liu, Yaohong Zhang, and Dapeng Wang. 2022. "In-Depth Insight into the Effect of Hydrophilic-Hydrophobic Group Designing in Amidinium Salts for Perovskite Precursor Solution on Their Photovoltaic Performance" Nanomaterials 12, no. 21: 3881. https://doi.org/10.3390/nano12213881
APA StyleWu, G., Li, H., Chen, S., Liu, S., Zhang, Y., & Wang, D. (2022). In-Depth Insight into the Effect of Hydrophilic-Hydrophobic Group Designing in Amidinium Salts for Perovskite Precursor Solution on Their Photovoltaic Performance. Nanomaterials, 12(21), 3881. https://doi.org/10.3390/nano12213881