Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis and Characterization of Powdered Nanosilver Product
2.3. Density Functional Theory (DFT) Calculations
2.4. Preparation and Characterization of Silver Nanoparticle Dispersions
2.5. Deposition Process and Post-Printing Treatment
3. Results and Discussion
3.1. Synthesis of Amphiphilic Silver Nanoparticles; an Experimental and Theoretical Aspect
3.2. Characterization of the Powdered Silver Material
3.3. Dispersion Stability and Conductive Ink Formulation
3.3.1. Influence of the Solvents on the Silver Nanoparticle Dispersion Stability
3.3.2. Influence of Silver Nanoparticles on Dispersion Viscosity and Surface Tension
3.3.3. Formulation and Characterization of the Conductive Ink Based on Amphiphilic Particles
3.4. Inkjet Printing and IPL Post-Print Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Liu, J. Pervasive liquid metal printed electronics: From concept incubation to industry. iScience 2021, 24, 102026. [Google Scholar] [CrossRef] [PubMed]
- Zhuldybina, M.; Ropagnol, X.; Blanchard, F. Towards in-situ quality control of conductive printable electronics: A review of possible pathways. Flex. Print. Electron. 2021, 6, 043007. [Google Scholar] [CrossRef]
- Khan, S.; Ali, S.; Bermak, A. Recent Developments in Printing Flexible and Wearable Sensing Electronics for Healthcare Applications. Sensors 2019, 19, 1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beedasy, V.; Smith, P.J. Printed Electronics as Prepared by Inkjet Printing. Materials 2020, 13, 704. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Li, J.A.; Pan, L.J.; Shi, Y. Inkjet printing for flexible and wearable electronics. APL Mater. 2020, 8, 22. [Google Scholar] [CrossRef]
- Nayak, L.; Mohanty, S.; Nayak, S.K.; Ramadoss, A. A review on inkjet printing of nanoparticle inks for flexible electronics. J. Mater. Chem. C 2019, 7, 8771–8795. [Google Scholar] [CrossRef]
- Fernandes, I.J.; Aroche, A.F.; Schuck, A.; Lamberty, P.; Peter, C.R.; Hasenkamp, W.; Rocha, T. Silver nanoparticle conductive inks: Synthesis, characterization, and fabrication of inkjet-printed flexible electrodes. Sci. Rep. 2020, 10, 11. [Google Scholar] [CrossRef]
- Mo, L.X.; Guo, Z.X.; Yang, L.; Zhang, Q.Q.; Fang, Y.; Xin, Z.Q.; Chen, Z.; Hu, K.; Han, L.; Li, L.H. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics. Int. J. Mol. Sci. 2019, 20, 2124. [Google Scholar] [CrossRef] [Green Version]
- Milardovic, S.; Ivanisevic, I.; Rogina, A.; Kassal, P. Synthesis and Electrochemical Characterization of AgNP Ink Suitable for Inkjet Printing. Int. J. Electrochem. Sci. 2018, 13, 11136–11149. [Google Scholar] [CrossRef]
- Pajor-Świerzy, A.; Szczepanowicz, K.; Kamyshny, A.; Magdassi, S. Metallic core-shell nanoparticles for conductive coatings and printing. Adv. Colloid Interface Sci. 2022, 299, 102578. [Google Scholar] [CrossRef]
- Ivanišević, I.; Milardović, S.; Ressler, A.; Kassal, P. Fabrication of an All-Solid-State Ammonium Paper Electrode Using a Graphite-Polyvinyl Butyral Transducer Layer. Chemosensors 2021, 9, 333. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.A.; Yang, Y.; Huang, F.; Zhu, M.K.; Ang, B.T.W.; Xue, J.M. Heterometallic Seed-Mediated Zinc Deposition on Inkjet Printed Silver Nanoparticles Toward Foldable and Heat-Resistant Zinc Batteries. Adv. Funct. Mater. 2021, 31, 2101607. [Google Scholar] [CrossRef]
- Ramon, E.; Sowade, E.; Martinez-Domingo, C.; Mitra, K.Y.; Alcalde, A.; Baumann, R.R.; Carrabina, J. Large-scale fabrication of all-inkjet-printed resistors and WORM memories on flexible polymer films with high yield and stability. Flex. Print. Electron. 2021, 6, 015003. [Google Scholar] [CrossRef]
- Ali, S.; Hassan, A.; Bae, J.; Lee, C.H.; Kim, J. All-Printed Differential Temperature Sensor for the Compensation of Bending Effects. Langmuir 2016, 32, 11432–11439. [Google Scholar] [CrossRef]
- Kim, I.; Ju, B.; Zhou, Y.; Li, B.M.; Jur, J.S. Microstructures in All-Inkjet-Printed Textile Capacitors with Bilayer Interfaces of Polymer Dielectrics and Metal–Organic Decomposition Silver Electrodes. ACS Appl. Mater. Interfaces 2021, 13, 24081–24094. [Google Scholar] [CrossRef]
- Zhuo, L.C.; Liu, W.; Zhao, Z.; Yin, E.H.; Li, C.; Zhou, L.; Zhang, Q.Q.; Feng, Y.Y.; Lin, S. Cost-effective silver nano-ink for inkjet printing in application of flexible electronic devices. Chem. Phys. Lett. 2020, 757, 137904. [Google Scholar] [CrossRef]
- Tam, K.C.; Saito, H.; Maisch, P.; Forberich, K.; Feroze, S.; Hisaeda, Y.; Brabec, C.J.; Egelhaaf, H.J. Highly Reflective and Low Resistive Top Electrode for Organic Solar Cells and Modules by Low Temperature Silver Nanoparticle Ink. Solar RRL 2022, 6, 2100877. [Google Scholar] [CrossRef]
- Deroco, P.B.; Wachholz, D.; Kubota, L.T. Silver Inkjet-Printed Electrode on Paper for Electrochemical Sensing of Paraquat. Chemosensors 2021, 9, 61. [Google Scholar] [CrossRef]
- Ibrahim, N.; Akindoyo, J.O.; Mariatti, M. Recent development in silver-based ink for flexible electronics. J. Sci. Adv. Mater. Dev. 2022, 7, 100395. [Google Scholar] [CrossRef]
- Batista, C.A.S.; Larson, R.G.; Kotov, N.A. Nonadditivity of nanoparticle interactions. Science 2015, 350, 1242477. [Google Scholar] [CrossRef]
- Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci. 2020, 279, 102162. [Google Scholar] [CrossRef] [PubMed]
- Kant, T.; Shrivas, K.; Ganesan, V.; Mahipal, Y.K.; Devi, R.; Deb, M.K.; Shankar, R. Flexible printed paper electrode with silver nano-ink for electrochemical applications. Microchem. J. 2020, 155, 104687. [Google Scholar] [CrossRef]
- Mavuri, A.; Mayes, A.G.; Alexander, M.S. Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size. Materials 2019, 12, 2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Kim, J.; Park, J.; Lee, C. Characterization of in situ sintering of silver nanoparticles on commercial photo papers in inkjet printing. Flex. Print. Electron. 2018, 3, 025001. [Google Scholar] [CrossRef]
- Ivanisevic, I.; Kassal, P.; Milinkovic, A.; Rogina, A.; Milardovic, S. Combined Chemical and Thermal Sintering for High Conductivity Inkjet-printed Silver Nanoink on Flexible Substrates. Chem. Biochem. Eng. Q. 2019, 33, 377–384. [Google Scholar] [CrossRef]
- Rosati, G.; Ravarotto, M.; Scaramuzza, M.; De Toni, A.; Paccagnella, A. Silver nanoparticles inkjet-printed flexible biosensor for rapid label-free antibiotic detection in milk. Sens. Actuator B Chem. 2019, 280, 280–289. [Google Scholar] [CrossRef]
- Ahn, B.Y.; Lewis, J.A. Amphiphilic silver particles for conductive inks with controlled wetting behavior. Mater. Chem. Phys. 2014, 148, 686–691. [Google Scholar] [CrossRef]
- Kamyshny, A.; Magdassi, S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem. Soc. Rev. 2019, 48, 1712–1740. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Lousada, C.M.; Korzhavyi, P.A. Surface Chemistry of Oxygen on Aluminum-Performance of the Density Functionals: PBE, PBE0, M06, and M06-L. J. Comput. Chem. 2016, 37, 787–794. [Google Scholar] [CrossRef]
- Kovacs, A.; Dobrowolski, J.C.; Ostrowski, S.; Rode, J.E. Benchmarking density functionals in conjunction with Grimme’s dispersion correction for noble gas dimers (Ne-2, Ar-2, Kr-2, Xe-2, Rn-2). Int. J. Quantum Chem. 2017, 117, e25358. [Google Scholar] [CrossRef] [Green Version]
- Bauza, A.; Quinonero, D.; Deya, P.M.; Frontera, A. Is the Use of Diffuse Functions Essential for the Properly Description of Noncovalent Interactions Involving Anions? J. Phys. Chem. A 2013, 117, 2651–2655. [Google Scholar] [CrossRef] [PubMed]
- Fournier, R. Theoretical study of the structure of silver clusters. J. Chem. Phys. 2001, 115, 2165–2177. [Google Scholar] [CrossRef] [Green Version]
- Boryak, O.A.; Kosevich, M.V.; Chagovets, V.V.; Shelkovsky, V.S. Mass Spectrometric Detection of Charged Silver Nanoclusters with Hydrogen Inclusions Formed by the Reduction of AgNO3 in Ethylene Glycol. J. Anal. Chem. 2017, 72, 1289–1294. [Google Scholar] [CrossRef]
- Farshad, M.; Perera, D.C.; Rasaiah, J.C. Theoretical study of the stability, structure, and optical spectra of small silver clusters and their formation using density functional theory. Phys. Chem. Chem. Phys. 2021, 23, 25507–25517. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 13387. 2022. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1-Methyl-2-pyrrolidinone (accessed on 15 September 2022).
- Wang, Q.; Newton, M.D. Structure, energetics, and electronic coupling in the (TCNE2)(-)circle encounter complex in solution: A polarizable continuum study. J. Phys. Chem. B 2008, 112, 568–576. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.; Millam, J. GaussView 6.0. 16; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Ronavari, A.; Belteky, P.; Boka, E.; Zakupszky, D.; Igaz, N.; Szerencses, B.; Pfeiffer, I.; Konya, Z.; Kiricsi, M. Polyvinyl-Pyrrolidone-Coated Silver Nanoparticles-The Colloidal, Chemical, and Biological Consequences of Steric Stabilization under Biorelevant Conditions. Int. J. Mol. Sci. 2021, 22, 8673. [Google Scholar] [CrossRef]
- Valeur, E.; Bradley, M. Amide bond formation: Beyond the myth of coupling reagents. Chem. Soc. Rev. 2009, 38, 606–631. [Google Scholar] [CrossRef]
- Badland, M.; Crook, R.; Delayre, B.; Fussell, S.J.; Gladwell, L.; Hawksworth, M.; Howard, R.M.; Walton, R.; Weisenburger, G.A. A comparative study of amide -bond forming reagents in aqueous media—Substrate scope and reagent compatibility. Tetrahedron Lett. 2017, 58, 4391–4394. [Google Scholar] [CrossRef]
- Basma, N.S.; Headen, T.F.; Shaffer, M.S.P.; Skipper, N.T.; Howard, C.A. Local Structure and Polar Order in Liquid N-Methyl-2-pyrrolidone (NMP). J. Phys. Chem. B 2018, 122, 8963–8971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, G.Z.; Wang, F.; Yang, X.Q.; Qian, J. The hydrogen bonding dynamics and cooperative interactions of NMP-water mixture studied by dielectric relaxation spectroscopy. J. Mol. Liq. 2014, 197, 328–333. [Google Scholar] [CrossRef]
- Szalewicz, K. Hydrogen Bond. Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; Volume 7, pp. 505–538. [Google Scholar]
- Shen, W.F.; Zhang, X.P.; Huang, Q.J.; Xu, Q.S.; Song, W.J. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 2014, 6, 1622–1628. [Google Scholar] [CrossRef]
- Ramanathan, S.; Gopinath, S.C.B. Potentials in synthesizing nanostructured silver particles. Microsyst. Technol. 2017, 23, 4345–4357. [Google Scholar] [CrossRef]
- Dong, J.; Ozaki, Y.; Nakashima, K. Infrared, Raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules 1997, 30, 1111–1117. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, Z.; Sun, L.; Li, B.; Zhao, Y. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities. Mate. Sci. Eng. C 2014, 41, 249–254. [Google Scholar] [CrossRef]
- Rezaeivala, M.; Ahmadi, M.; Captain, B.; Bayat, M.; Saeidirad, M.; Sahin-Bolukbasi, S.; Yildiz, B.; Gable, R.W. Some new morpholine-based Schiff-base complexes; Synthesis, characterization, anticancer activities and theoretical studies. Inorg. Chim. Acta 2020, 513, 119935. [Google Scholar] [CrossRef]
- Ivanišević, I.; Milardović, S.; Kassal, P.; Zlatar, M. Electrochemical and spectroscopic characterization of AgNP suspension stability influenced by strong inorganic acids. Electrochim. Acta 2021, 377, 138126. [Google Scholar] [CrossRef]
- Cano-Raya, C.; Denchev, Z.Z.; Cruz, S.F.; Viana, J.C. Chemistry of solid metal-based inks and pastes for printed electronics—A review. Appl. Mater. Today 2019, 15, 416–430. [Google Scholar] [CrossRef]
- Pryshchepa, O.; Pomastowski, P.; Buszewski, B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv. Colloid Interface Sci. 2020, 284, 102246. [Google Scholar] [CrossRef]
- Jeong, S.; Song, H.C.; Lee, W.W.; Choi, Y.; Ryu, B.-H. Preparation of aqueous Ag Ink with long-term dispersion stability and its inkjet printing for fabricating conductive tracks on a polyimide film. J. Appl. Phys. 2010, 108, 102805. [Google Scholar] [CrossRef]
- Ahn, B.Y.; Duoss, E.B.; Motala, M.J.; Guo, X.Y.; Park, S.I.; Xiong, Y.J.; Yoon, J.; Nuzzo, R.G.; Rogers, J.A.; Lewis, J.A. Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes. Science 2009, 323, 1590–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molleman, B.; Hiemstra, T. Surface Structure of Silver Nanoparticles as a Model for Understanding the Oxidative Dissolution of Silver Ions. Langmuir 2015, 31, 13361–13372. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorso, F.; Bartolotta, A.; Coleman, J.N.; Backes, C. 2D-Crystal-Based Functional Inks. Adv. Mater. 2016, 28, 6136–6166. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Chou, K.S.; Huang, K.C. Inkjet printing of nanosized silver colloids. Nanotechnology 2005, 16, 2436–2441. [Google Scholar] [CrossRef]
- Machrafi, H. Surface tension of nanoparticle dispersions unravelled by size-dependent non-occupied sites free energy versus adsorption kinetics. Npj Microgravity 2022, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.H.; Phuoc, T.X.; Martello, D. Surface tension of evaporating nanofluid droplets. Int. J. Heat Mass Transf. 2011, 54, 2459–2466. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Du, D.X.; Wang, Y.H. Preparation of silver nanoparticles and application in water-based conductive inks. Int. J. Mod. Phys. B 2019, 33, 1950385. [Google Scholar] [CrossRef]
- Hao, Y.Y.; Gao, J.; Xu, Z.S.; Zhang, N.; Luo, J.; Liu, X.Y. Preparation of silver nanoparticles with hyperbranched polymers as a stabilizer for inkjet printing of flexible circuits. New J. Chem. 2019, 43, 2797–2803. [Google Scholar] [CrossRef]
- Tobjörk, D.; Österbacka, R. Paper Electronics. Adv. Mater. 2011, 23, 1935–1961. [Google Scholar] [CrossRef]
- Shin, K.Y.; Lee, S.H.; Oh, J.H. Solvent and substrate effects on inkjet-printed dots and lines of silver nanoparticle colloids. J. Micromech. Microeng. 2011, 21, 045012. [Google Scholar] [CrossRef]
- Duan, J.L.; Qiu, Z.Y.; Li, L.; Feng, L.X.; Huang, L.; Xiao, G.N. Inkjet printed silver nanoparticles on hydrophobic papers for efficient detection of thiram. Spectroc. Acta Part A Molec. Biomolec. Spectr. 2020, 243, 118811. [Google Scholar] [CrossRef]
- Mu, B.; Xu, Y.; Xu, J.; Nikitina, M.A.; Zafari, U.; Xiao, X. Inkjet direct printing approach for flexible electronic. Results Eng. 2022, 14, 100466. [Google Scholar] [CrossRef]
- Hu, S.; Zhu, W.; Yang, W.; Ji, H.; Li, M. Facile method for printing reliable sliver patterns on polymer film. Mater. Lett. 2022, 314, 131551. [Google Scholar] [CrossRef]
- Kralj, M.; Krivacic, S.; Ivanisevic, I.; Zubak, M.; Supina, A.; Marcius, M.; Halasz, I.; Kassal, P. Conductive Inks Based on Melamine Intercalated Graphene Nanosheets for Inkjet Printed Flexible Electronics. Nanomaterials 2022, 12, 2936. [Google Scholar] [CrossRef]
- Kamyshny, A.; Steinke, J.; Magdassi, S. Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 2011, 4, 19–36. [Google Scholar] [CrossRef]
- Jang, Y.R.; Joo, S.J.; Chu, J.H.; Uhm, H.J.; Park, J.W.; Ryu, C.H.; Yu, M.H.; Kim, H.S. A Review on Intense Pulsed Light Sintering Technologies for Conductive Electrodes in Printed Electronics. Int. J. Prec. Eng. Manuf. GT 2021, 8, 327–363. [Google Scholar] [CrossRef]
- Lim, H.S.; Kim, S.J.; Jang, H.W.; Lim, J.A. Intense pulsed light for split-second structural development of nanomaterials. J. Mater. Chem. C 2017, 5, 7142–7160. [Google Scholar] [CrossRef]
- Noh, Y.; Kim, G.Y.; Lee, H.; Shin, J.; An, K.; Kumar, M.; Lee, D. A review on intense pulsed light process as post-treatment for metal oxide thin films and nanostructures for device application. Nanotechnology 2022, 33, 272001. [Google Scholar] [CrossRef]
- Ohlund, T.; Ortegren, J.; Forsberg, S.; Nilsson, H.E. Paper surfaces for metal nanoparticle inkjet printing. Appl. Surf. Sci. 2012, 259, 731–739. [Google Scholar] [CrossRef]
- Wang, Y.H.; Du, D.X.; Xie, H.; Zhang, X.B.; Lin, K.W.; Wang, K.; Fu, E. Printability and electrical conductivity of silver nanoparticle-based conductive inks for inkjet printing. J. Mater. Sci. Mater. Electron. 2021, 32, 496–508. [Google Scholar] [CrossRef]
- Zikulnig, J.; Roshanghias, A.; Rauter, L.; Hirschl, C. Evaluation of the Sheet Resistance of Inkjet-Printed Ag-Layers on Flexible, Uncoated Paper Substrates Using Van-der-Pauw’s Method. Sensors 2020, 20, 2398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.L.; Wang, S.Y.; Luo, Z.W.; Lu, J.X.; Lin, K.W.; Xie, H.; Wang, Y.H.; Li, J.Z. Inkjet Printing of Flexible Transparent Conductive Films with Silver Nanowires Ink. Nanomaterials 2021, 11, 1571. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wu, X.L.; Wang, K.; Lin, K.W.; Xie, H.; Zhang, X.B.; Li, J.Z. Novel Insights into Inkjet Printed Silver Nanowires Flexible Transparent Conductive Films. Int. J. Mol. Sci. 2021, 22, 7719. [Google Scholar] [CrossRef] [PubMed]
- Sung, K.H.; Park, J.; Kang, H. Multi-Layer Inkjet Printing of Ag Nanoparticle Inks and Its Sintering with a Near-Infrared System. Int. J. Prec. Eng. Manuf. 2018, 19, 303–307. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, X.L.; Su, W.M.; Cui, Z.; Lai, W.Y. In-Depth Investigation of Inkjet-Printed Silver Electrodes over Large-Area: Ink Recipe, Flow, and Solidification. Adv. Mater. Interfaces 2022, 9, 2102548. [Google Scholar] [CrossRef]
- Apostolakis, A.; Barmpakos, D.; Pilatis, A.; Patsis, G.; Pagonis, D.-N.; Belessi, V.; Kaltsas, G. Resistivity study of inkjet-printed structures and electrical interfacing on flexible substrates. Micro Nano Eng. 2022, 15, 100129. [Google Scholar] [CrossRef]
- Mitra, D.; Mitra, K.Y.; Dzhagan, V.; Pillai, N.; Zahn, D.R.T.; Baumann, R.R. Work Function and Conductivity of Inkjet-Printed Silver Layers: Effect of Inks and Post-treatments. J. Electron. Mater. 2018, 47, 2135–2142. [Google Scholar] [CrossRef]
Solvent | PAA-AgNP | MPA-PAA-AgNP | ||
---|---|---|---|---|
d/nm | ζ/mV | d/nm | ζ/mV | |
H2O | 39.25 | –43.3 | 34.35 | –37.5 |
EG | 36.75 | –41.9 | 37.28 | –41.7 |
EtOH | 54.12 | –39.0 | 45.30 | –34.3 |
IPA | – | – | 85.65 | –32.1 |
TpOH | – | – | 110.30 | –21.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanišević, I.; Kovačić, M.; Zubak, M.; Ressler, A.; Krivačić, S.; Katančić, Z.; Gudan Pavlović, I.; Kassal, P. Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks. Nanomaterials 2022, 12, 4252. https://doi.org/10.3390/nano12234252
Ivanišević I, Kovačić M, Zubak M, Ressler A, Krivačić S, Katančić Z, Gudan Pavlović I, Kassal P. Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks. Nanomaterials. 2022; 12(23):4252. https://doi.org/10.3390/nano12234252
Chicago/Turabian StyleIvanišević, Irena, Marin Kovačić, Marko Zubak, Antonia Ressler, Sara Krivačić, Zvonimir Katančić, Iva Gudan Pavlović, and Petar Kassal. 2022. "Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks" Nanomaterials 12, no. 23: 4252. https://doi.org/10.3390/nano12234252
APA StyleIvanišević, I., Kovačić, M., Zubak, M., Ressler, A., Krivačić, S., Katančić, Z., Gudan Pavlović, I., & Kassal, P. (2022). Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks. Nanomaterials, 12(23), 4252. https://doi.org/10.3390/nano12234252