Dendritic Cells in Innate and Adaptive Immune Responses against Influenza Virus
Abstract
:1. Introduction
2. Innate immunity
2.1. Importance of DC responses in innate immunity
2.2. DC responses to influenza A viruses
2.3. Relative roles of different DC subsets responding to influenza A viruses
IFN- a/b | Pro-inflammatory cytokines | chemokines | maturationb | |||||
---|---|---|---|---|---|---|---|---|
pDC | cDC | pDC | cDC | pDC | cDC | pDC | cDC | |
Live virus | ++++ | -/+a | IL-6, TNF-a, IL-12 | IL-6 a, TNF-a a, IL-12a | CCL3, 4, 22 CXCL10, 11, 13 | CCL2, 4, 5, 8, 19, 22 CXCL9, 10, 11, 13a | + | + |
DNS1 mutant | ? | ++ | ? | High responses | ? | High responses | + | ++ |
Inactivated virusc | ++++ | - | As live virus | -/+d | ? | ? | + | - |
3. Adaptive immunity
3.1. Importance of DC for induction of CD4 and CD8 responses
3.2. Involvement of respiratory DC in promoting T-lymphocyte responses
CD8+ Tc lymphocytes | Antibody | |
---|---|---|
Intraepithelial RDCb | Potent priming | No evidence for a direct role |
Steady-state submucosal or interstitial RDC | Conflicting reports | No evidence for a direct role |
Monocyte-derived inflammatory RDC | Local expansion in lung | No evidence for a direct role |
pDC | Conflicting reports | B-cell differentiation and isotype switching |
Resident steady-state lymph node DC | Potent priming | No evidence for a direct role |
3.3. Involvement of pDC in promoting T-lymphocyte responses
3.4. DC and the induction of antibody responses
4. Immunopathology
4.1. Roles for DC in influenza virus-induced immunopathology
4.2. The “cytokine storm” phenomenon
4.3. Roles for DC other than the pDC
5. Conclusions and implications for vaccines
Acknowledgments
References
- Zhang, Z.; Wang, F.S. Plasmacytoid dendritic cells act as the most competent cell type in linking antiviral innate and adaptive immune responses. Cell Mol Immunol 2005, 2, 411–417. [Google Scholar] [PubMed]
- Reis e Sousa, C. Activation of dendritic cells: translating innate into adaptive immunity. Curr Opin Immunol 2004, 16, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Iwasaki, A. Innate control of adaptive immunity: dendritic cells and beyond. Semin Immunol 2007, 19, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, K.; Kaisho, T. Nucleic acid sensing Toll-like receptors in dendritic cells. Curr Opin Immunol 2008, 20, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 2005, 275–306. [Google Scholar] [CrossRef]
- Summerfield, A.; McCullough, K.C. The porcine dendritic cell family. Dev Comp Immunol 2009, 33, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Yanai, H.; Negishi, H.; Asagiri, M.; Sato, M.; Mizutani, T.; Shimada, N.; Ohba, Y.; Takaoka, A.; Yoshida, N.; Taniguchi, T. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005, 434, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Ohba, Y.; Yanai, H.; Negishi, H.; Mizutani, T.; Takaoka, A.; Taya, C.; Taniguchi, T. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 2005, 434, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Barchet, W.; Krug, A.; Cella, M.; Newby, C.; Fischer, J.A.; Dzionek, A.; Pekosz, A.; Colonna, M. Dendritic cells respond to influenza virus through TLR7- and PKR-independent pathways. Eur J Immunol 2005, 35, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Pichlmair, A.; Schulz, O.; Tan, C.P.; Naslund, T.I.; Liljestrom, P.; Weber, F.; Reis e Sousa, C. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006, 314, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Bender, A.; Albert, M.; Reddy, A.; Feldman, M.; Sauter, B.; Kaplan, G.; Hellman, W.; Bhardwaj, N. The distinctive features of influenza virus infection of dendritic cells. Immunobiology 1998, 198, 552–567. [Google Scholar] [PubMed]
- Thitithanyanont, A.; Engering, A.; Ekchariyawat, P.; Wiboon-ut, S.; Limsalakpetch, A.; Yongvanitchit, K.; Kum-Arb, U.; Kanchongkittiphon, W.; Utaisincharoen, P.; Sirisinha, S.; Puthavathana, P.; Fukuda, M.M.; Pichyangkul, S. High susceptibility of human dendritic cells to avian influenza H5N1 virus infection and protection by IFN-alpha and TLR ligands. J Immunol 2007, 179, 5220–5227. [Google Scholar] [PubMed]
- Perrone, L.A.; Plowden, J.K.; Garcia-Sastre, A.; Katz, J.M.; Tumpey, T.M. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog 2008, 4, e1000115. [Google Scholar] [CrossRef] [PubMed]
- Fonteneau, J.F.; Gilliet, M.; Larsson, M.; Dasilva, I.; Munz, C.; Liu, Y.J.; Bhardwaj, N. Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood 2003, 101, 3520–3526. [Google Scholar] [CrossRef] [PubMed]
- Ichinohe, T.; Iwasaki, A.; Hasegawa, H. Innate sensors of influenza virus: clues to developing better intranasal vaccines. Expert Rev Vaccines 2008, 7, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Wolff, T.; Zielecki, F.; Abt, M.; Voss, D.; Semmler, I.; Matthaei, M. Sabotage of antiviral signaling and effectors by influenza viruses. Biol Chem 2008, 389, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Piqueras, B.; Connolly, J.; Freitas, H.; Palucka, A.K.; Banchereau, J. Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors. Blood 2006, 107, 2613–2618. [Google Scholar] [CrossRef] [PubMed]
- Lund, J.M.; Alexopoulou, L.; Sato, A.; Karow, M.; Adams, N.C.; Gale, N.W.; Iwasaki, A.; Flavell, R.A. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A 2004, 101, 5598–5603. [Google Scholar] [CrossRef] [PubMed]
- Diebold, S.S.; Kaisho, T.; Hemmi, H.; Akira, S.; Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004, 303, 1529–1531. [Google Scholar] [CrossRef] [PubMed]
- Siegal, F.P.; Kadowaki, N.; Shodell, M.; Fitzgerald-Bocarsly, P.A.; Shah, K.; Ho, S.; Antonenko, S.; Liu, Y.J. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999, 284, 1835–1837. [Google Scholar] [CrossRef] [PubMed]
- Angel, J.; Chaperot, L.; Molens, J.P.; Mezin, P.; Amacker, M.; Zurbriggen, R.; Grichine, A.; Plumas, J. Virosome-mediated delivery of tumor antigen to plasmacytoid dendritic cells. Vaccine 2007, 25, 3913–3921. [Google Scholar] [CrossRef] [PubMed]
- Geeraedts, F.; Bungener, L.; Pool, J.; ter Veer, W.; Wilschut, J.; Huckriede, A. Whole inactivated virus influenza vaccine is superior to subunit vaccine in inducing immune responses and secretion of proinflammatory cytokines by DCs. Influenza Other Respi Viruses 2008, 2, 41–51. [Google Scholar] [CrossRef]
- Jewell, N.A.; Vaghefi, N.; Mertz, S.E.; Akter, P.; Peebles Jr., R.S.; Bakaletz, L.O.; Durbin, R.K.; Flano, E.; Durbin, J.E. Differential type I interferon induction by respiratory syncytial virus and influenza a virus in vivo. J Virol 2007, 81, 9790–9800. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Smith, E.; Lee, C.K.; Levy, D.E. Tissue-specific positive feedback requirements for production of type I interferon following virus infection. J Biol Chem 2005, 280, 18651–18657. [Google Scholar] [CrossRef] [PubMed]
- Siren, J.; Imaizumi, T.; Sarkar, D.; Pietila, T.; Noah, D.L.; Lin, R.; Hiscott, J.; Krug, R.M.; Fisher, P.B.; Julkunen, I.; Matikainen, S. Retinoic acid inducible gene-I and mda-5 are involved in influenza A virus-induced expression of antiviral cytokines. Microbes Infect 2006, 460, 711–716. [Google Scholar]
- Phipps-Yonas, H.; Seto, J.; Sealfon, S.C.; Moran, T.M.; Fernandez-Sesma, A. Interferon-beta pretreatment of conventional and plasmacytoid human dendritic cells enhances their activation by influenza virus. PLoS Pathog 2008, 4, e1000193. [Google Scholar] [CrossRef] [PubMed]
- GeurtsvanKessel, C.H.; Willart, M.A.; van Rijt, L.S.; Muskens, F.; Kool, M.; Baas, C.; Thielemans, K.; Bennett, C.; Clausen, B.E.; Hoogsteden, H.C.; Osterhaus, A.D.; Rimmelzwaan, G.F.; Lambrecht, B.N. Clearance of influenza virus from the lung depends on migratory langerin+CD11b- but not plasmacytoid dendritic cells. J Exp Med 2008, 205, 1621–1634. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.I.; Buehler, D.; Hensley, S.E.; Cavanagh, L.L.; Wherry, E.J.; Kastner, P.; Chan, S.; Weninger, W. Plasmacytoid dendritic cells are dispensable during primary influenza virus infection. J Immunol 2009, 182, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Staeheli, P.; Grob, R.; Meier, E.; Sutcliffe, J.G.; Haller, O. Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol Cell Biol 1988, 8, 4518–4523. [Google Scholar] [PubMed]
- Tumpey, T.M.; Szretter, K.J.; Van Hoeven, N.; Katz, J.M.; Kochs, G.; Haller, O.; Garcia-Sastre, A.; Staeheli, P. The Mx1 gene protects mice against the pandemic 1918 and highly lethal human H5N1 influenza viruses. J Virol 2007, 81, 10818–10821. [Google Scholar] [CrossRef] [PubMed]
- Osterlund, P.; Veckman, V.; Siren, J.; Klucher, K.M.; Hiscott, J.; Matikainen, S.; Julkunen, I. Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J Virol 2005, 79, 9608–9617. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Sesma, A.; Marukian, S.; Ebersole, B.J.; Kaminski, D.; Park, M.S.; Yuen, T.; Sealfon, S.C.; Garcia-Sastre, A.; Moran, T.M. Influenza virus evades innate and adaptive immunity via the NS1 protein. J Virol 2006, 80, 6295–6304. [Google Scholar] [CrossRef] [PubMed]
- Haye, K.; Burmakina, S.; Moran, T.; Garcia-Sastre, A.; Fernandez-Sesma, A. The NS1 protein of a human influenza virus inhibits type I interferon production and the induction of antiviral responses in primary human dendritic and respiratory epithelial cells. J Virol 2009, 83, 6849–6862. [Google Scholar] [CrossRef] [PubMed]
- Richt, J.A.; Lekcharoensuk, P.; Lager, K.M.; Vincent, A.L.; Loiacono, C.M.; Janke, B.H.; Wu, W.H.; Yoon, K.J.; Webby, R.J.; Solorzano, A.; Garcia-Sastre, A. Vaccination of pigs against swine influenza viruses by using an NS1-truncated modified live-virus vaccine. J Virol 2006, 80, 11009–11018. [Google Scholar] [CrossRef] [PubMed]
- Steel, J.; Lowen, A.C.; Pena, L.; Angel, M.; Solorzano, A.; Albrecht, R.; Perez, D.R.; Garcia-Sastre, A.; Palese, P. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J Virol 2009, 83, 1742–1753. [Google Scholar] [CrossRef] [PubMed]
- Guermonprez, P.; Valladeau, J.; Zitvogel, L.; Thery, C.; Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu.Rev Immunol 2002, 20, 621–667. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.L.; Agrewala, J.N.; Brown, D.M.; Jelley-Gibbs, D.M.; Golech, S.; Huston, G.; Jones, S.C.; Kamperschroer, C.; Lee, W.H.; McKinstry, K.K.; Roman, E.; Strutt, T.; Weng, N.P. CD4+ T-cell memory: generation and multi-faceted roles for CD4+ T cells in protective immunity to influenza. Immunol Rev 2006, 211, 8–22. [Google Scholar] [CrossRef]
- Strutt, T.M.; McKinstry, K.K.; Swain, S.L. Functionally diverse subsets in CD4 T cell responses against influenza. J Clin Immunol 2009, 29, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Nonacs, R.; Humborg, C.; Tam, J.P.; Steinman, R.M. Mechanisms of mouse spleen dendritic cell function in the generation of influenza-specific, cytolytic T lymphocytes. J Exp Med 1992, 176, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Bender, A.; Bui, L.K.; Feldman, M.A.; Larsson, M.; Bhardwaj, N. Inactivated influenza virus, when presented on dendritic cells, elicits human CD8+ cytolytic T cell responses. J Exp Med 1995, 182, 1663–1671. [Google Scholar] [CrossRef] [PubMed]
- Rock, K.L.; Shen, L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol Rev 2005, 207, 166–183. [Google Scholar] [CrossRef] [PubMed]
- Unanue, E.R. Perspective on antigen processing and presentation. Immunol Rev 2002, 185, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Rimmelzwaan, G.F.; McElhaney, J.E. Correlates of protection: novel generations of influenza vaccines. Vaccine 2008, 26, D41–44. [Google Scholar] [CrossRef] [PubMed]
- Schlecht, G.; Garcia, S.; Escriou, N.; Freitas, A.A.; Leclerc, C.; Dadaglio, G. Murine plasmacytoid dendritic cells induce effector/memory CD8+ T-cell responses in vivo after viral stimulation. Blood 2004, 104, 1808–1815. [Google Scholar] [CrossRef] [PubMed]
- Zammit, D.J.; Cauley, L.S.; Pham, Q.M.; Lefrancois, L. Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 2005, 22, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.S.; Braciale, T.J. Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. PLoS ONE 2009, 4, e4204. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Kim, T.S.; Braciale, T.J. Differential response of respiratory dendritic cell subsets to influenza virus infection. J Virol 2008, 82, 4908–4919. [Google Scholar] [CrossRef] [PubMed]
- Ingulli, E.; Funatake, C.; Jacovetty, E.L.; Zanetti, M. Cutting edge: antigen presentation to CD8 T cells after influenza A virus infection. J Immunol 2009, 182, 29–33. [Google Scholar] [PubMed]
- Aldridge Jr., J.R.; Moseley, C.E.; Boltz, D.A.; Negovetich, N.J.; Reynolds, C.; Franks, J.; Brown, S.A.; Doherty, P.C.; Webster, R.G.; Thomas, P.G. TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc Natl Acad Sci U S A 2009, 106, 5306–5311. [Google Scholar] [CrossRef] [PubMed]
- Belz, G.T.; Smith, C.M.; Kleinert, L.; Reading, P.; Brooks, A.; Shortman, K.; Carbone, F.R.; Heath, W.R. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc Natl Acad Sci U S A 2004, 101, 8670–8675. [Google Scholar] [CrossRef] [PubMed]
- Belz, G.T.; Smith, C.M.; Eichner, D.; Shortman, K.; Karupiah, G.; Carbone, F.R.; Heath, W.R. Cutting edge: conventional CD8 alpha+ dendritic cells are generally involved in priming CTL immunity to viruses. J Immunol 2004, 172, 1996–2000. [Google Scholar] [PubMed]
- Carbone, F.R.; Belz, G.T.; Heath, W.R. Transfer of antigen between migrating and lymph node-resident DCs in peripheral T-cell tolerance and immunity. Trends Immunol 2004, 25, 655–658. [Google Scholar] [CrossRef] [PubMed]
- Allan, R.S.; Waithman, J.; Bedoui, S.; Jones, C.M.; Villadangos, J.A.; Zhan, Y.; Lew, A.M.; Shortman, K.; Heath, W.R.; Carbone, F.R. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 2006, 25, 153–162. [Google Scholar] [CrossRef] [PubMed]
- McGill, J.; Heusel, J.W.; Legge, K.L. Innate immune control and regulation of influenza virus infections. J Leukoc Biol 2009, 86, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Guzylack-Piriou, L.; Balmelli, C.; McCullough, K.C.; Summerfield, A. Type-A CpG oligonucleotides activate exclusively porcine natural interferon-producing cells to secrete interferon-alpha, tumour necrosis factor-alpha and interleukin-12. Immunology 2004, 112, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Hochrein, H.; Wagner, H. Of men, mice and pigs: looking at their plasmacytoid dendritic cells [corrected]. Immunology 2004, 112, 26–27. [Google Scholar] [CrossRef] [PubMed]
- Jego, G.; Palucka, A.K.; Blanck, J.P.; Chalouni, C.; Pascual, V.; Banchereau, J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003, 19, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Heer, A.K.; Shamshiev, A.; Donda, A.; Uematsu, S.; Akira, S.; Kopf, M.; Marsland, B.J. TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J Immunol 2007, 178, 2182–2191. [Google Scholar] [PubMed]
- Geeraedts, F.; Goutagny, N.; Hornung, V.; Severa, M.; de Haan, A.; Pool, J.; Wilschut, J.; Fitzgerald, K.A.; Huckriede, A. Superior immunogenicity of inactivated whole virus H5N1 influenza vaccine is primarily controlled by Toll-like receptor signalling. PLoS Pathog 2008, 4, e1000138. [Google Scholar] [PubMed]
- Korteweg, C.; Gu, J. Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am J Pathol 2008, 172, 1155–1170. [Google Scholar] [CrossRef] [PubMed]
- Maines, T.R.; Szretter, K.J.; Perrone, L.; Belser, J.A.; Bright, R.A.; Zeng, H.; Tumpey, T.M.; Katz, J.M. Pathogenesis of emerging avian influenza viruses in mammals and the host innate immune response. Immunol Rev 2008, 225, 68–84. [Google Scholar] [CrossRef] [PubMed]
- Droebner, K.; Reiling, S.J.; Planz, O. Role of hypercytokinemia in NF-kappaB p50-deficient mice after H5N1 influenza A virus infection. J Virol 2008, 82, 11461–11466. [Google Scholar] [CrossRef] [PubMed]
- Salomon, R.; Hoffmann, E.; Webster, R.G. Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection. Proc Natl Acad Sci U S A 2007, 104, 12479–12481. [Google Scholar] [CrossRef] [PubMed]
- Baskin, C.R.; Bielefeldt-Ohmann, H.; Tumpey, T.M.; Sabourin, P.J.; Long, J.P.; Garcia-Sastre, A.; Tolnay, A.E.; Albrecht, R.; Pyles, J.A.; Olson, P.H.; Aicher, L.D.; Rosenzweig, E.R.; Murali-Krishna, K.; Clark, E.A.; Kotur, M.S.; Fornek, J.L.; Proll, S.; Palermo, R.E.; Sabourin, C.L.; Katze, M.G. Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proc Natl Acad Sci U S A 2009, 106, 3455–3460. [Google Scholar] [CrossRef] [PubMed]
- Sandbulte, M.R.; Boon, A.C.; Webby, R.J.; Riberdy, J.M. Analysis of cytokine secretion from human plasmacytoid dendritic cells infected with H5N1 or low-pathogenicity influenza viruses. Virology 2008, 381, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Hagenaars, N.; Mastrobattista, E.; Glansbeek, H.; Heldens, J.; van den Bosch, H.; Schijns, V.; Betbeder, D.; Vromans, H.; Jiskoot, W. Head-to-head comparison of four nonadjuvanted inactivated cell culture-derived influenza vaccines: effect of composition, spatial organization and immunization route on the immunogenicity in a murine challenge model. Vaccine 2008, 26, 6555–6563. [Google Scholar] [CrossRef] [PubMed]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Share and Cite
Summerfield, A.; McCullough, K.C. Dendritic Cells in Innate and Adaptive Immune Responses against Influenza Virus. Viruses 2009, 1, 1022-1034. https://doi.org/10.3390/v1031022
Summerfield A, McCullough KC. Dendritic Cells in Innate and Adaptive Immune Responses against Influenza Virus. Viruses. 2009; 1(3):1022-1034. https://doi.org/10.3390/v1031022
Chicago/Turabian StyleSummerfield, Artur, and Kenneth C. McCullough. 2009. "Dendritic Cells in Innate and Adaptive Immune Responses against Influenza Virus" Viruses 1, no. 3: 1022-1034. https://doi.org/10.3390/v1031022
APA StyleSummerfield, A., & McCullough, K. C. (2009). Dendritic Cells in Innate and Adaptive Immune Responses against Influenza Virus. Viruses, 1(3), 1022-1034. https://doi.org/10.3390/v1031022