Computational Analysis of the Interaction Energies between Amino Acid Residues of the Measles Virus Hemagglutinin and Its Receptors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Evaluated Affinities of Measles Virus H Protein (MVH) to Signaling Lymphocyte-Activation Molecule (SLAM), Nectin-4, and CD46 by the Fragment Molecular Orbital (FMO) Method
3.2. Distribution of Amino Acid Residues on MVH Showing Significant Interactions with the Three Receptors
3.3. Comparison of Calculated MVH-Receptor Affinities with Those of Experimental Observations
3.4. Effects of Amino Acid Substitutions in MVH on the Binding Affinity
3.5. Designs for SLAM-Blind MVH and MVH-Binding Inhibitor
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bulter, D. Measles by the numbers: A race to eradication. Nature 2015, 518, 148–149. [Google Scholar]
- Tatsuo, H.; Ono, N.; Tanaka, K.; Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 2000, 406, 893–897. [Google Scholar] [PubMed]
- Schwartzberg, P.L.; Mueller, K.L.; Qi, H.; Cannons, J.L. SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat. Rev. Immunol. 2009, 9, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Tahara, M.; Takeda, M.; Shirogane, Y.; Hashiguchi, T.; Ohno, S.; Yanagi, Y. Measles virus infects both polarized epithelial and immune cells by using distinctive receptor-binding sites on its hemagglutinin. J. Virol. 2008, 82, 4630–4637. [Google Scholar] [CrossRef] [PubMed]
- Noyce, R.S.; Bondre, D.G.; Ha, M.N.; Lin, L.T.; Sisson, G.; Tsao, M.S.; Richardson, C.D. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 2011, 7, e1002240. [Google Scholar] [CrossRef] [PubMed]
- Muhlebach, M.D.; Mateo, M.; Sinn, P.L.; Prufer, S.; Uhlig, K.M.; Leonard, V.H.; Navaratnarajah, C.K.; Frenzke, M.; Wong, X.X.; Sawatsky, B.; et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011, 480, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Naniche, D.; Wild, T.F.; Rabourdin-Combe, C.; Gerlier, D. A monoclonal antibody recognizes a human cell surface glycoprotein involved in measles virus binding. J. Gen. Virol. 1992, 73, 2617–2624. [Google Scholar] [CrossRef] [PubMed]
- Dorig, R.E.; Marcil, A.; Chopra, A.; Richardson, C.D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 1993, 75, 295–305. [Google Scholar] [CrossRef]
- Lin, L.-T.; Richardson, C.D. The host cell receptors for measles virus and their interaction with the viral hemagglutinin (H) protein. Viruses 2016, 8, 250. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, T.; Kajikawa, M.; Maita, N.; Takeda, M.; Kuroki, K.; Sasaki, K.; Kohda, D.; Yanagi, Y.; Maenaka, K. Crystal structure of measles virus hemagglutinin provides insight into effective vaccines. Proc. Natl. Acad. Sci. USA 2007, 104, 19535–19540. [Google Scholar] [CrossRef] [PubMed]
- Santiago, C.; Celma, M.L.; Stehle, T.; Casasnovas, J.M. Structure of the measles virus hemagglutinin bound to the CD46 receptor. Nat. Struct. Mol. Biol. 2010, 17, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, T.; Ose, T.; Kubota, M.; Maita, N.; Kamishikiryo, J.; Maenaka, K.; Yanagi, Y. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat. Struct. Mol. Biol. 2011, 18, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lu, G.; Qi, J.; Li, Y.; He, Y.; Xu, X.; Shi, J.; Zhang, C.W.; Yan, J.; Gao, G.F. Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4. Nat. Struct. Mol. Biol. 2013, 20, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y. Predicting receptor functionality of signaling lymphocyte activation molecule for measles virus hemagglutinin by docking simulation. Microbiol. Immunol. 2017, 61, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M. Fragment molecular orbital method: An approximate computational method for large molecules. Chem. Phys. Lett. 1999, 313, 701–706. [Google Scholar] [CrossRef]
- Nakano, T.; Kaminuma, T.; Sato, T.; Akiyama, Y.; Uebayasi, M.; Kitaura, K. Fragment molecular orbital method: Application to polypeptides. Chem. Phys. Lett. 2000, 318, 614–618. [Google Scholar] [CrossRef]
- Tanaka, S.; Mochizuki, Y.; Komeiji, Y.; Okiyama, Y.; Fukuzawa, K. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys. Chem. Chem. Phys. 2014, 16, 10310–10344. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Peng, K.W.; Vongpunsawad, S.; Harvey, M.; Mizuguchi, H.; Hayakawa, T.; Cattaneo, R.; Russell, S.J. Antibody-targeted cell fusion. Nat. Biotechnol. 2004, 22, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T. Recombinant measles virus for cancer therapy. Drug Deliv. Syst. 2009, 24, 599–607. [Google Scholar] [CrossRef]
- Msaouel, P.; Iankov, I.D.; Dispenzieri, A.; Galanis, E. Attenuated oncolytic measles virus strains as cancer therapeutics. Curr. Pharm. Biotechnol. 2012, 13, 1732–1741. [Google Scholar] [CrossRef] [PubMed]
- Aref, S.; Bailey, K.; Fielding, A. Measles to the rescue: A review of oncolytic measles virus. Viruses 2016, 8, 294. [Google Scholar] [CrossRef] [PubMed]
- Molecular Operating Environment (MOE) ver. 2016.08; Chemical Computing Group (CCG) Inc.: Montreal, QC, Canada, 2016.
- Iwata, T.; Fukuzawa, K.; Nakajima, K.; Aida-Hyugaji, S.; Mochizuki, Y.; Watanabe, H.; Tanaka, S. Theoretical analysis of binding specificity of influenza viral hemagglutinin to avian and human receptors based on the fragment molecular orbital method. Comput. Biol. Chem. 2008, 32, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Takematsu, K.; Fukuzawa, K.; Omagari, K.; Nakajima, S.; Nakajima, K.; Mochizuki, Y.; Nakano, T.; Watanabe, H.; Tanaka, S. Possibility of mutation prediction of influenza hemagglutinin by combination of hemadsorption experiment and quantum chemical calculation for antibody binding. J. Phys. Chem. B 2009, 113, 4991–4994. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, A.; Fukuzawa, K.; Mochizuki, Y.; Yamashita, K.; Nakano, T.; Okiyama, Y.; Nobusawa, E.; Nakajima, K.; Tanaka, S. Prediction of probable mutations in influenza virus hemagglutinin protein based on large-scale ab initio fragment molecular orbital calculations. J. Mol. Graph. Model. 2011, 30, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Anzaki, S.; Watanabe, C.; Fukuzawa, K.; Mochizuki, Y.; Tanaka, S. Interaction energy analysis on specific binding of influenza virus hemagglutinin to avian and human sialosaccharide receptors: Importance of mutation-induced structural change. J. Mol. Graph. Model. 2014, 53, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, K.; Suzuki, R.; Maruyama, T. Host-virus specificity of the morbillivirus receptor, SLAM, in marine mammals: Risk assessment of infection based on three-dimensional models. In New Approaches to the Study of Marine Mammals; Romero, A., Keith, E.O., Eds.; InTech: Rijeka, Croatia, 2014; pp. 123–204. [Google Scholar]
- Vongpunsawad, S.; Oezgun, N.; Braun, W.; Cattaneo, R. Selectively receptor-blind measles viruses: Identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J. Virol. 2004, 78, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Masse, N.; Ainouze, M.; Néel, B.; Wild, T.F.; Buckland, R.; Langedijk, J.P. Measles virus (MV) hemagglutinin: Evidence that attachment sites for MV receptors SLAM and CD46 overlap on the globular head. J. Virol. 2004, 78, 9051. [Google Scholar] [CrossRef] [PubMed]
- Leonard, V.H.; Sinn, P.L.; Hodge, G.; Miest, T.; Devaux, P.; Oezguen, N.; Braun, W.; McCray, P.B., Jr.; McChesney, M.B.; Cattaneo, R. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J. Clin. Investig. 2008, 118, 2448–2458. [Google Scholar] [CrossRef] [PubMed]
- Massé, N.; Barrett, T.; Muller, C.P.; Wild, T.F.; Buckland, R. Identification of a second major site for CD46 binding in the hemagglutinin protein from a laboratory strain of measles virus (MV): Potential consequences for wild-type MV infection. J. Virol. 2002, 76, 13034–13038. [Google Scholar] [CrossRef] [PubMed]
- Bluming, A.Z.; Ziegler, J.L. Regression of Burkitt’s lymphoma in association with measles infection. Lancet 1971, 10, 105–106. [Google Scholar] [CrossRef]
- Taqi, A.M.; Abdurrahman, M.B.; Yakubu, A.M.; Fleming, A.F. Regression of Hodgkin’s disease after measles. Lancet 1981, 16, 1112. [Google Scholar] [CrossRef]
- Grote, D.; Russell, S.J.; Gornu, T.I.; Cattaneo, R.; Vile, R.; Polang, G.A.; Fielding, A.K. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 2001, 97, 3746–3754. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.W.; Ahmann, G.J.; Pham, L.; Greipp, P.R.; Cattaneo, R.; Russell, S.J. Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood 2001, 98, 2002–2007. [Google Scholar] [CrossRef] [PubMed]
- Masaouel, P.; Opyrchal, M.; Dispenzieri, A.; Peng, K.W.; Federspiel, M.J.; Russell, S.J.; Galanis, E. Clinical trials with oncolytic measles virus: Current status and future prospects. Curr. Cancer Drug Targets 2017. [Google Scholar] [CrossRef] [PubMed]
- Takano, A.; Ishikawa, N.; Nishino, R.; Masuda, K.; Yasui, W.; Inai, K.; Nishimura, H.; Ito, H.; Nakayama, H.; Miyagi, Y.; et al. Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res. 2009, 69, 6694–6703. [Google Scholar] [CrossRef] [PubMed]
- Derycke, M.S.; Pambuccian, S.E.; Gilks, C.B.; Kalloger, S.E.; Ghidouche, A.; Lopez, M.; Bliss, R.L.; Geller, M.A.; Argenta, P.A.; Harrington, K.M.; et al. Nectin 4 overexpression in ovarian cancer tissues and serum: Potential role as a serum biomarker. Am. J. Clin. Pathol. 2010, 134, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, T.; Yoneda, M.; Kuraishi, T.; Hattori, S.; Inoue, Y.; Sato, H.; Kai, C. Measles virus selectively blind to signaling lymphocyte activation molecule as a novel oncolytic virus for breast cancer treatment. Gene Ther. 2013, 20, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Fujiyuki, A.; Yoneda, M.; Amagi, Y.; Obayashi, K.; Ikeda, F.; Shoji, K.; Murakami, Y.; Sato, H.; Kai, C. A measles virus selectively blind to signaling lymphocytic activation molecule shows anti-tumor activity against lung cancer cells. Oncotarget 2015, 6, 24895–24903. [Google Scholar] [CrossRef] [PubMed]
- Awano, M.; Fujiyuki, A.; Shoji, K.; Amagi, Y.; Murakami, Y.; Furukawa, Y.; Obayashi, K.; Sato, H.; Yoneda, M.; Kai, C. Measles virus selectively blind to signaling lymphocyte activity molecule has oncolytic efficacy against nectin-4-expressing pancreatic cancer cells. Cancer Sci. 2016, 107, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
Receptor | SLAM | Nectin-4 | CD46 |
---|---|---|---|
Protein Data Bank (PDB) code | 3ALZ | 4GJT | 3INB |
Chain designation in PDB | Chain B (3) | Chain B (4) | Chain D (5) |
Receptor charge (1) | +2 | −5 | −4 |
MVH charge (2) | −1 | −2 | −2 |
Total IFIE (kcal/mol) | −707.7 | −173.8 | −285.7 |
Rank | (a) SLAM (Chain B in PDB Code 3ALZ) | ||||
---|---|---|---|---|---|
MVH Amino Acid (a.a.) Position (1) | IFIE Sum (2) with the Receptor | Receptor a.a. with the Highest (1st) Affinity (3) | IFIE-1st (4) with the Receptor a.a. | IFIE-1st/IFIE Sum Ratio (5) | |
(kcal/mol) | (kcal/mol) | ||||
1 | Asp507(−) | −133.2 | Lys77(+) | −80.0 | 60% |
2 | Asp505(−) | −107.7 | Lys77(+) | −106.3 | 99% |
3 | Arg533(+) | −80.5 | Glu123(−) | −122.0 | 152% |
4 | Arg556(+) | −74.2 | Glu123(−) | −45.7 | 62% |
5 | Asp530(−) | −67.6 | Lys77(+) | −66.4 | 98% |
6 | Glu503(−) | −53.4 | Lys77(+) | −48.0 | 90% |
7 | Arg195(+) | −36.7 | Ser127 | −24.9 | 68% |
8 | Thr193(*) | −32.6 | Arg130(+) | −15.3 | 47% |
9 | Phe552(*) | −18.6 | Glu 75(−) | −9.2 | 49% |
10 | Tyr551(*) | −18.0 | Arg130(+) | −17.8 | 99% |
11 | Tyr553(*) | −14.1 | Ser 127 | −7.2 | 51% |
12 | Ser532(*) | −13.1 | Ser 80 | −4.8 | 37% |
13 | Phe483(*) | −12.3 | Asn72 | −11.8 | 96% |
14 | Gly196(*) | −9.3 | Ser 127 | −11.7 | 126% |
15 | Pro554 | −8.9 | Glu123(−) | −9.9 | 111% |
16 | Tyr541(*) | −8.6 | Glu 75(−) | −6.3 | 73% |
17 | Thr192(*) | −7.5 | Phe 131 | −14.2 | 189% |
18 | Ile194(*) | −7.3 | Gln129 | −8.5 | 116% |
19 | Val534(*) | −6.0 | Asp82(−) | −4.7 | 78% |
20 | Tyr543(*) | −5.1 | Ser73 | −3.2 | 63% |
Rank | (b) Nectin-4 (Chain B in PDB Code 4JGT) | ||||
1 | Arg547(+) | −46.4 | Glu2(−) | −42.1 | 91% |
2 | Ser550(*) | −29.5 | Asp26(−) | −25.8 | 87% |
3 | Gln391 | −27.5 | Tyr55 | −24.4 | 89% |
4 | Tyr543(*) | −16.8 | Gly104 | −5.8 | 35% |
5 | Thr392(*) | −16.8 | Lys 54(+) | −18.3 | 109% |
6 | Leu500(*) | −11.7 | Lys 54(+) | −6.3 | 54% |
7 | Leu464(*) | −10.9 | Thr100 | −6.1 | 56% |
8 | Phe483(*) | −10.0 | Ser105 | −5.3 | 53% |
9 | Gly506(*) | −9.3 | Gln 30 | −9.3 | 100% |
10 | Ser548(*) | −9.1 | Glu2(−) | −10.2 | 112% |
11 | Gly465(*) | −7.1 | Ala 103 | −11.7 | 165% |
12 | Gly388(*) | −6.3 | Tyr 55 | −4.6 | 73% |
13 | Tyr499(*) | −5.9 | Lys 54(+) | −5.6 | 95% |
14 | Tyr524(*) | −3.9 | Gly 104 | −2.9 | 74% |
15 | Lys460(+) | −3.1 | Phe101 | −3.1 | 100% |
16 | Val485(*) | −2.3 | Gln33 | −1.6 | 70% |
17 | Pro486 | −2.1 | Gln 33 | −1.7 | 81% |
18 | Ala463(*) | −1.9 | Phe 101 | −1.9 | 100% |
19 | Pro458 | −1.9 | Ala103 | −2.0 | 105% |
20 | Ile390(*) | −1.1 | Lys 54(+) | −1.1 | 100% |
Rank | (c) CD46 (Chain D in PDB Code 3INB) | ||||
1 | Lys477(+) | −66.2 | Asp70(−) | −67.4 | 102% |
2 | Glu503(−) | −36.1 | Ala41 | −23.3 | 65% |
3 | Gly546(*) | −33.7 | Glu63(−) | −27.2 | 81% |
4 | Lys488(+) | −29.6 | Gly81 | −29.9 | 101% |
5 | Tyr481(*) | −22.1 | Pro66 | −14.5 | 66% |
6 | Glu471(−) | −17.9 | Arg69(+) | −51.4 | 287% |
7 | His448 | −14.2 | Arg69(+) | −10.0 | 70% |
8 | Pro501 | −7.3 | Asp58(−) | −5.6 | 77% |
9 | Phe483(*) | −6.6 | Tyr 61 | −3.7 | 56% |
10 | Pro486 | −6.4 | Thr 82 | −4.0 | 63% |
11 | Tyr543(*) | −6.3 | Ile37 | −15.5 | 246% |
12 | Arg547(+) | −6.3 | Glu63(−) | −45.4 | 721% |
13 | Thr498(*) | −6.2 | Tyr 61 | −6.2 | 100% |
14 | Val485(*) | −4.3 | Arg62(+) | −4.5 | 105% |
15 | Tyr541(*) | −4.3 | Pro38 | −1.7 | 40% |
16 | His495 | −3.6 | Thr 82 | −4.2 | 117% |
17 | Val451(*) | −3.4 | Tyr 67 | −1.8 | 53% |
18 | Pro545 | −3.3 | Glu63(−) | −1.9 | 58% |
19 | Thr469(*) | −2.2 | Tyr 67 | −2.2 | 100% |
20 | Leu462(*) | −2.1 | Pro39 | −1.5 | 71% |
Hydrophobicity | Amino Acid Residues of MVH | IFIE Sum (kcal/mol) with Receptor Residues within 5 Å (a) | ||
---|---|---|---|---|
SLAM (Chain B in PDB Code 3ALZ) | Nectin-4 (Chain B in PDB Code 4JGT) | CD46 (Chain D in PDB Code 3INB) | ||
Hydrophobic (neutral) amino acids | Leu464 (b) | −0.7 | −10.9 | −0.4 |
Leu482 (b) | −1.4 | −0.2 | 2.5 | |
Phe483 (b) | −12.3 | −10.0 | −6.6 | |
Leu500 (b) | 0.2 | −11.7 | 9.3 | |
Tyr524 (b) | −0.6 | −3.9 | −1.7 | |
Tyr541 (b) | −8.6 | 3.7 | −4.3 | |
Tyr543 (b) | −5.1 | −16.8 | −6.3 | |
Ser548 (b) | −1.2 | −9.1 | −1.3 | |
IFIE sum of the above values | −29.7 | −58.8 | −8.8 | |
Contribution to the MVH-receptor interaction (c) | 4.2% | 17.4% | 3.1% | |
Hydrophilic (charged) amino acids | Asp507 (d) | −133.2 | — (f) | — |
Asp505 (d) | −107.7 | −0.4 | — | |
Arg533 (d) | −80.5 | — | — | |
Arg556 (d) | −74.2 | — | — | |
Asp530 (d) | −67.6 | — | — | |
IFIE sum above | −463.0 | |||
IFIE sum/Total IFIE (e) | 65.4% |
Receptor | MVH Mutation | Strand Region | IFIE (before Mutation) | IFIE (after Mutation) | ΔIFIE * (kcal/mol) | Major Cause for IFIE Change | Virological Experimental Results |
---|---|---|---|---|---|---|---|
SLAM | R533A | β5 | −707.7 | −636.7 | 71.0 | Loss of salt bridge | + + [28] |
D505A | β4–β5 | −707.7 | −608.7 | 98.9 | Loss of salt bridge | n.r. $ | |
D507A | β4–β5 | −707.7 | −576.8 | 130.9 | Loss of salt bridge | + [29] | |
D530A | β5 | −707.7 | −646.8 | 60.9 | Loss of salt bridge | + + [29] | |
E503A | β4–β5 | −707.7 | −661.6 | 46.0 | Loss of salt bridge | n.r. | |
P554A | β5–β6 | −707.7 | −675.4 | 32.2 | Loss of van der Waals interaction | + [28] | |
F552A | β5–β6 | −707.7 | −680.9 | 26.8 | Loss of OH-π | + [28] | |
Y541A | β5 | −707.7 | −694.5 | 13.2 | Loss of hydrogen bond | n.r. | |
L482R | β4 | −707.7 | −713.8 | −6.1 | Increase of electrostatic interaction | n.r. | |
Nectin-4 | Y543S | β5 | −173.8 | −167.3 | 6.5 | Loss of NH-π | + + [30] |
CD46 | G546S | β5 | −285.7 | −309.6 | −23.8 | Increase of electrostatic interaction | + + [31] |
Y481A | β5 | −285.7 | −265.5 | 20.3 | Loss of hydrogen bond | + + [18] | |
Y481N | β5 | −285.7 | −267.8 | 17.9 | Loss of hydrogen bond | + + [28] | |
E471A # | β4 | −285.7 | −142.3 # | 143.5 # | Loss of van der Waals interaction | n.r. | |
K477A # | β4 | ||||||
K488A # | β4 | ||||||
E503A # | β4–β5 | ||||||
R547A # | β5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Tanaka, S.; Watanabe, H.; Shimane, Y.; Iwasawa, M.; Ohishi, K.; Maruyama, T. Computational Analysis of the Interaction Energies between Amino Acid Residues of the Measles Virus Hemagglutinin and Its Receptors. Viruses 2018, 10, 236. https://doi.org/10.3390/v10050236
Xu F, Tanaka S, Watanabe H, Shimane Y, Iwasawa M, Ohishi K, Maruyama T. Computational Analysis of the Interaction Energies between Amino Acid Residues of the Measles Virus Hemagglutinin and Its Receptors. Viruses. 2018; 10(5):236. https://doi.org/10.3390/v10050236
Chicago/Turabian StyleXu, Fengqi, Shigenori Tanaka, Hirofumi Watanabe, Yasuhiro Shimane, Misako Iwasawa, Kazue Ohishi, and Tadashi Maruyama. 2018. "Computational Analysis of the Interaction Energies between Amino Acid Residues of the Measles Virus Hemagglutinin and Its Receptors" Viruses 10, no. 5: 236. https://doi.org/10.3390/v10050236
APA StyleXu, F., Tanaka, S., Watanabe, H., Shimane, Y., Iwasawa, M., Ohishi, K., & Maruyama, T. (2018). Computational Analysis of the Interaction Energies between Amino Acid Residues of the Measles Virus Hemagglutinin and Its Receptors. Viruses, 10(5), 236. https://doi.org/10.3390/v10050236