Acute Phase Protein Levels as An Auxiliary Tool in Diagnosing Viral Diseases in Ruminants—A Review
Abstract
:1. Introduction
2. Acute Phase Proteins
3. APP Levels in Blood Serum of Farm Dairy Ruminants During Viral Infections
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Philipsson, J. Breeding for animal health—The Scandinavian experience. In Proceedings of the International Conference on Ethics and Animal Welfare, Relationships between Human and Animals, Stockholm, Sweden, 29–30 May 2001. [Google Scholar]
- Eckersall, P.D. Recent advantages and future prospects for the use of acute phase proteins as markers of disease in animals. Revue Med. Vet. 2000, 151, 577–584. [Google Scholar]
- Debenedicits, C.; Joubeh, S.; Zhang, G.; Barria, M.; Ghohestani, R.F. Immune functions of the skin. Clin. Dermatol. 2001, 19, 573–585. [Google Scholar] [CrossRef]
- Gómez-Laguna, J.; Salguero, F.J.; Pallarés, F.J.; Rodriguez-Gómez, I.M.; Barranco, I.; Carrasco, L. Acute phase proteins as biomarkers in animal health and welfare. In Acute Phase Proteins As Early Non-Specific Biomarkers of Human and Veterinary Diseases; Intech-Ics AG: Wallenwil, Switzerland, 2011. [Google Scholar]
- Eckersall, P.D.; Bell, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010, 185, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Tothova, C.; Nagy, O.; Kovac, G. Acute phase proteins and their use in the diagnosis of diseases in ruminants: A. review. Vet. Med-Czech. 2014, 59, 163–180. [Google Scholar] [CrossRef]
- Idoate, I.; Ley, B.V.; Schultz, L.; Heller, M. Acute phase proteins in naturally occurring respiratory disease of feedlot cattle. Vet. Immunol. Immunopathol. 2015, 163, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Iliev, P.T.; Georgieva, T.M. Acute phase proteins in sheep and goats—Function, reference ranges and assessment methods: An overview. Bulg. J. Vet. Med. 2018, 21, 1–16. [Google Scholar] [CrossRef]
- Cray, C.; Zaias, J.; Altman, N.H. Acute phase response in animals: A review. Comp. Med. 2009, 59, 517–526. [Google Scholar] [PubMed]
- Murata, H.; Shimada, N.; Yoshioka, M. Current research on acute phase proteins in veterinary diagnosis an overview. Vet. J. 2004, 168, 28–40. [Google Scholar] [CrossRef]
- Jensen, L.E.; Whitehead, A.S. Regulation of serum amyloid A protein expression during the acute-phase response. Biochem. J. 1998, 334, 489–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolanos-Garcia, V.M.; Miguel, R.N. On the structure and function of apolipoproteins: More than a family of lipid-binding proteins. Prog. Biophys. Mol. Biol. 2002, 883, 47–68. [Google Scholar] [CrossRef]
- Jain, S.; Gautam, V.; Naseem, S. Acute-phase proteins: As diagnostic tool. J. Pharm. Bioallied Sci. 2011, 3, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Moestrup, S.K.; Møller, H.J. CD163: A regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann. Med. 2004, 36, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Carter, K.; Worwood, M. Haptoglobin: A review of the major allele frequencies worldwide and their association with diseases. Int. J. Lab. Hematol. 2007, 29, 92–110. [Google Scholar] [CrossRef] [PubMed]
- Panicker, V.P.; Gopalakrishnan, A.; George, S. Acute phase proteins of veterinary importance—Review. World J. Pharm. Pharm. Sci. 2014, 3, 188–195. [Google Scholar]
- Healy, J.; Tipton, K. Ceruloplasmin and what it might do. J. Neural Transm. 2007, 114, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Ebersole, J.L.; Cappelli, D. Acute-phase reactants in infections and inflammatory diseases. Periodontology 2000 2000. [Google Scholar] [CrossRef]
- Davalos, D.; Akassoglou, K. Fibrinogen as a key regulator of inflammation indisease. Semin. Immunopathol. 2012, 34, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Chowdhury, N.A.; Sofdar, G.; Rahman, Z.; Majumder, A.S. Acute phase reactans. Acta Med. 2013, 2, 2–7. [Google Scholar]
- Tillet, W.S.; Francis, T.S. Erological reactions in pneumonia with a non-protein somatic cells fraction of pneumococcus. J. Exp. Med. 1930, 52, 561–571. [Google Scholar] [CrossRef]
- Du Clos, T.W.; Mold, C. C-reactive protein. Immunol. Res. 2004, 30, 261–277. [Google Scholar] [CrossRef]
- Montovani, A.; Garlanda, C.; Doni, A.; Bottazzi, B. Pentraxin in innate immunity: From C-reactive protein to the long pentraxin PTX3. J. Clin. Immunol. 2008, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekera, S. C-reactive protein: An inflammatory marker with specific role in physiology, pathology, and diagnosis. Internet J. Rheumatol. Clin. Immunol. 2004, 2. [Google Scholar] [CrossRef]
- Haligur, M.; Ozmen, O. Immunohistochemical detection of serum amyloid-A, serum amyloid-P, C reactive protein, tumour necrosis factor-α and tnf-α receptor in sheep and goat pneumonias. Revue Med. Vet. 2011, 162, 475–481. [Google Scholar]
- Flower, D.R. The lipocalin protein family: Structure and function. Biochem. J. 1996, 318, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Hochepied, T.; van Molle, W.; Berger, F.G.; Baumann, H.; Libert, C. Involvement of the acute phase protein α1-acid glycoprotein in nonspecific resistance to a lethal gram-negative infection. J. Biol. Chem. 2000, 275, 14903–14909. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Ribera, A.; Lecchi, C.; Bronzo, V.; Scaccabarozzi, L.; Sartorelli, P.; Francosi, F.; Ceciliani, F. Down-regulatory effect of alpha-1-acid glycoprotein on bovine neutrophil degranulation. Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Fournier, T.; Medjoubi, N.N.; Porquet, D. Alpha-1-acid glycoprotein. Biochim. Biophys. Acta 2000, 1482, 157–171. [Google Scholar] [CrossRef]
- Ceciliani, F.; Ceron, J.J.; Eckersall, P.D.; Sauerwein, H. Acute phase proteins in ruminants. J. Proteom. 2012, 75, 4207–4231. [Google Scholar] [CrossRef] [PubMed]
- Schrӧdl, W.; Büchler, R.; Wendler, S.; Reinhold, P.; Muckova, P.; Reindl, J.; Rhode, H. Acute phase proteins as promising biomarkers: Perspectives and limitations for human and veterinary medicine. Proteom. Clin. Appl. 2016, 10, 1077–1092. [Google Scholar] [CrossRef] [PubMed]
- Permyakov, E.A.; Berliner, L.J.A. Lactalbumin: Structure and function. FEBS Lett. 2000, 473, 269–274. [Google Scholar] [CrossRef]
- Ribeiro, N.L.; Ribeiro, M.N.; Bozzi, R.; Givisiez, E.N.; Costa, R.C. Physiological and biochemical blood parameters of goats subjected to heat stress. J. Appl. Anim. Res. 2014, 46, 1036–1041. [Google Scholar] [CrossRef]
- Czopowicz, M.; Szaluś-Jordanow, O.; Mickiewicz, M.; Moroz, A.; Witkowski, L.; Markowska-Daniel, I.; Stefaniak, T.; Bagnicka, E.; Kaba, J. Haptoglobin and serum amyloid A in goats with clinical form of caprine arthritis-encephalitis. Small Rumin. Res. 2017, 156, 73–77. [Google Scholar] [CrossRef]
- Balikci, E.; Yildiz, A.; Gurdogan, F. Selected acute phase proteins, oxidative stress biomarkers, and antioxidants in aborting and non-aborting goats infected with Border disease virus. Bull. Vet. Inst. Pulawy 2013, 57, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Arslan, H.H.; Cenesiz, S.; Nisbet, C.; Yazici, Z. Serum haptoglobin and amyloid a concentrations and clinical findings in sheep with peste des petits ruminants. Bull. Vet. Inst. Pulawy 2007, 51, 471–474. [Google Scholar]
- Aytekin, H.; Aksit, A.; Sait, F.; Kaya, D.; Aksit, M.; Gokmen, A.; Unsal, B. Evaluation of oxidative stress via total antioxidant status, sialic acid, malondialdehyde and RT-PCR findings in sheep affected with bluetongue. Vet. Rec. Open. 2015, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cordón, P.J.; Pleguezuelos, F.J.; Pérez de Diego, A.C.; Gómez-Villamandos, J.C.; Sánchez-Vizcaíno, J.M. Comparative study of clinical courses, gross lesions, acute phase response and coagulation disorders in sheep inoculated with bluetongue virus serotype 1 and 8. Vet. Microbiol. 2013, 182, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Heegaard, P.M.H.; Godson, D.L.; Toussaint, M.J.M.; Tjørnehøj, K.; Larsen, L.E.; Viuff, B.; Rønsholt, L. The acute phase response of haptoglobin and serum amyloid A (SAA) in cattle undergoing experimental infection with bovine respiratory syncytial virus. Vet. Immunol. Immunopath. 2000, 77, 151–159. [Google Scholar] [CrossRef]
- Ulutas, B.; Tan, T.; Ulutas, P.A.; Bayramli, G. Haptoglobin and serum amyloid a responses in cattle persistently infectes with bovine viral dairrhea virus. Acta Sci. Vet. 2011, 39, 937–942. [Google Scholar]
- Stokstad, M.; Løken, T. Pestivirusin cattle: Experimentally induced persistent infectionin calves. J. Vet. Med. 2012, 49, 494–501. [Google Scholar] [CrossRef]
- Nonnecke, B.J.; McGill, J.L.; Ridpath, J.F.; Sacco, R.E.; Lippolis, J.D.; Reinhardt, T.A. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. J. Dairy Sci. 2014, 97, 5566–5579. [Google Scholar] [CrossRef] [PubMed]
- Gånheim, C.; Hulten, C.; Carlsson, U.; Kindahl, H.; Niskanen, R.; Waller, K.P. The acute phase response in calves experimentally infected with bovine viral diarrhoea virus and/or Mannheimia haemolytica. J. Vet. Med. B 2003, 50, 183–190. [Google Scholar] [CrossRef]
- Nazifi, S.; Ansari-Lari, A.; Ghafari, N.; Mohtarami, S.; Ghezelbash, A.; Tabandeh, M.R. Evaluation of sialic acids, TNF-α, INF-γ, and acute-phase proteins in cattle infected with foot-and-mouth disease. Comp. Clin. Pathol. 2012, 21, 23–28. [Google Scholar] [CrossRef]
- Stenfeld, C.; Heegaard, P.M.H.; Stockmarr, A.; Tjørnehøj, K.; Belsham, G.J. Analysis of the acute phase responses of Serum Amyloid A, haptoglobin and Type 1 Interferon in cattle experimentally infected with foot-and-mouth disease virus serotype O. Vet. Res. 2011, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merhan, O.; Bozukluhan, K.; Kiziltepe, S.; Gokce, H.I. Investigation of levels of haptoglobin, serum amyloid A, ceruloplasmin and albumin in cattle with foot-and-month disease. Isr. J. Vet. Med. 2017, 72, 14–17. [Google Scholar]
- Gershwin, L.J. Immunology of bovine respiratory syncytial virus infection of cattle. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Sacco, R.E.; McGill, J.L.; Pilltzki, A.E.; Ackermann, M.R. Respiratory syncytial virus infection in cattle. Vet. Pathol. 2014, 51, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Guzman, E.; Taylor, G. Immunology of bovine respiratory syncytial virus in calves. Mol. Immunol. 2015, 66, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.R.; Zandomeni, R.; Weber, L. Quasispecies in the 5′ untranslated genomic region of bovine viral diarrhoea virus from a single individual. J. Gen. Virol. 2002, 83, 2161–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avalos-Ramirez, R.; Orlich, M.; Thiel, H.J.; Becher, P. Evidence for the presence of two novel pestivirus species. Virology 2001, 286, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Czopowicz, M.; Kaba, J.; Schirrmeier, H.; Bagnicka, E.; Szaluś-Jordanow, O.; Nowicki, M.; Witkowski, L.; Frymus, T. Serological evidence for BVDV-1 infection in goats in Poland-short communication. Acta Vet. Hung. 2011, 59, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Passler, T.; Riddeli, K.P.; Edmondson, M.A.; Chamorro, M.F.; Neill, J.D.; Brodersen, B.W.; Walz, H.L.; Galik, P.K.; Zhang, Y.; Walz, P.H. Experimental infection of pregnant goats with bovine viral diarrhea virus (BVDV) 1 or 2. Vet. Res. 2014, 45. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, K.; Fowler, V.L.; Barnett, P.V.; Gold, S.; Wadsworth, J.; Knowles, N.J.; Jackson, T. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus. J. Gen. Virol. 2015, 96, 2684–2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandersen, S.; Zhang, Z.; Donaldson, A.I.; Garland, A.J.M. The pathogenesis and diagnosis of foot-and-mouth disease. J. Comp. Pathol. 2003, 129, 1–36. [Google Scholar] [CrossRef]
- Kaba, J.; Strzałkowska, N.; Jóźwik, A.; Krzyżewski, J.; Bagnicka, E. Twelve-year cohort study on the influence of caprine arthritis-encephalitis virus infection on milk yield and composition. J. Dairy Sci. 2012, 95, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Navalón, B.; Peris, C.; Gómez, E.A.; Peris, B.; Roche, M.L.; Caballero, C.; Goyena, E.; Berriatua, E. Quantitative estimation of the impact of caprine arthritis encephalitis virus infection on milk production by dairy goats. Vet. J. 2013, 197, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Jarczak, J.; Kaba, J.; Reczyńska, D.; Bagnicka, E. Impaired expression of cytokines as a result of viral infections with an emphasis on small ruminant lentivirus infection in goat. Viruses 2016, 8, 186. [Google Scholar] [CrossRef] [PubMed]
- Leroux, C.; Chastang, J.; Greenland, T.; Mornex, J.F. Genomic heterogeneity of small ruminant lentiviruses: Existence of heterogeneous populations in sheep and of the same lentiviral genotypes in sheep and goats. Arch. Virol. 1997, 142, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Villet, S.; Bouzar, B.A.; Morin, G.; Verdier, G.; Legras, C.; Chebloune, Y. Maedi-visna virus and caprine arthritis encephalitis virus genomes encode a VPR-like but no tat protein. J. Virol. 2003, 77, 9632–9638. [Google Scholar] [CrossRef] [PubMed]
- Blacklaws, B.A. Small ruminant lentiviruses: Immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Lamara, A.; Fieni, F.; Chatagnon, G.; Larrat, M.; Dubreil, L.; Chebloune, Y. Caprine arthritis encephalitis virus (CAEV) replicates productively in cultured epididymall cells from goats. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Stonos, N.; Wootton, S.K.; Karrow, N. Immunogenetics of small ruminant lentiviral infections. Viruses 2014, 6, 3311–3333. [Google Scholar] [CrossRef] [PubMed]
- Kaba, J.; Stefaniak, T.; Bagnicka, E.; Czopowicz, M. Haptoglobin in goats with caprine arthiritis-encephalitis. Cent. Eur. J. Immunol. 2011, 36, 76–78. [Google Scholar]
- Reczyńska, D.; Zalewska, M.; Czopowicz, M.; Kaba, J.; Zwierzchowski, L.; Bagnicka, E. Small ruminant lentivirus infection influences on expressions of some acute phase proteins and cathelicidin genes in milk somatic cells and peripheral blood leukocytes of dairy goats. In preparation.
- Giangaspero, M.; Ibata, G.; Savini, G.; Osawa, T.; Tatami, S.; Takagi, E.; Moriya, H.; Okura, N.; Kimura, A.; Harasawa, R. Epidemiological survey of Border disease virus among sheep from northern districts of Japan. J. Vet. Med. Sci. 2011, 73, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Krametter-Froetscher, R.; Kohler, H.; Benetka, V.; Moestl, K.; Golja, F.; Vilcek, S.; Baumgartner, W. Influence of communal alpine pasturing on the spread of pestiviruses among sheep and goats in Austria: First identification of border disease virus in Austria. Zoonoses Public Health 2007, 54, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Krametter-Froetscher, R.; Loitsch, A.; Kohler, H.; Schleiner, A.; Schiefer, P.; Moestl, K.; Golja, F.; Baumgartner, W. Prevelence of antibodies to pestiviruses in goats in Austria. J. Vet. Med. 2006, 53, 48–50. [Google Scholar] [CrossRef] [PubMed]
- Oguzoglu, T.C.; Tan, M.T.; Toplu, N.; Demir, A.B.; Bigle-Dagalp, S.; Karaoglu, T. Border disease virus (BDV) infections of small ruminants in Turkey: A new BDV subgroup? Vet. Microbiol. 2008, 135, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Orsel, K.; Antonis, A.F.D.G.; Oosterloo, J.C.; Vellema, P.; van de Meer, F.J.U.M. Seroprevelence of antibodies against pestiviruses in small ruminants in the Netherlands. Tijdschr. Diergeneeskd. 2009, 134, 2–6. [Google Scholar]
- Li, W.; Mao, L.; Zhao, Y.; Sun, Y.; He, K.; Jiang, J. Detection of border disease virus (BDV) in goat herds suffering diarrhea in eastern China. Virol. J. 2013, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Liu, X.; Li, W.; Yang, L.; Zhang, W.; Jiang, J. Characterization of one sheep border disease virus in China. Virol. J. 2015, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rosamilia, A.; Grattarola, C.; Caruso, C.; Peletto, S.; Gobbi, E.; Tarello, V.; Caroggio, P.; Dondo, A.; Masoero, L.; Acutis, P.L. Detection of border disease virus (BDV) genotype 3 in Italian goat herds. Vet. J. 2014, 199, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Rajukumar, K.; Vilcek, S.; Kalaiyarasu, S.; Behera, S.P.; Dubey, P.; Nema, R.K.; Gavade, V.B.; Dubey, S.C.; Kulkarni, D.D. Identification and molecular characterization of border disease virus (BDV) from sheep in India. Comp. Immunol. Microbiol. Infect. Dis. 2016, 44, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Berriatua, E.; Barandika, J.F.; Aduriz, G.; Hurtado, A.; Estévez, L.; Atxaerandio, R.; García-Pérez, A.L. Flock-prevalence of border disease virus infection in Basque dairy-sheep estimated by bulk-tank milk analysis. Vet. Microbiol. 2006, 118, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Valdazo-González, B.; Alvarez-Martínez, M.; Greiser-Wilke, I. Genetic typing and prevelence of Border Disease Virus (BDV) in small ruminant flocks in Spain. Vet. Microbiol. 2006, 117, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Toplu, N.; Oguzoglu, T.C.; Albayrak, H. Dual infection of fetal and neonatal small ruminants with border disease virus and peste des petits ruminants virus (PPRV): Neuronal tropism of PPRV as a novel finding. J. Comp. Pathol. 2011, 146, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Albina, E.; Kwiatek, O.; Minet, C.; Lancelot, R.; Servan de Almeida, R.; Libeau, G. Peste des petits ruminants, the next eradicated animal disease? Vet. Microbiol. 2013, 165, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Empikpe, B.O.; Ezeasor, C.K.; Sabri, M.Y.; Anosa, V.O. Clinicopathological evaluation of intranasal, subcutaneous and intramuscular routes of vaccination against intratracheal challenge of Peste des petits ruminants virus in goats. Small Rumin. Res. 2013, 113, 290–296. [Google Scholar] [CrossRef]
- Maclachlan, N.J.; Henderson, C.; Schwartz-Cornil, I.; Zientara, S. The immune response of ruminant livestock to bluetongue virus: From type I interferon to antibody. Virus Res. 2014, 182, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganter, M. Bluetongue disease-global overview and future risks. Small Rumin. Res. 2014, 118, 79–85. [Google Scholar] [CrossRef]
- Lavie, M.; Voisset, C.; Vu-Dac, N.; Zurawski, V.; Duverlie, G.; Wychowski, C.; Dubuisson, J. Serum amyloid a has antiviral activity against hepatitis C virus by inhibiting virus entry in a cell culture system. Hepatology 2006, 44, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Taha, T.E.; Kumwenda, N.; Mtimavalye, L.; Broadhead, R.; Miotti, P.G.; Chiphangwi, J.D. Iron status and indicators of human immunodeficiency virus disease severity among pregnant women in Malawi. Chin. Infect. Dis. 2001, 32, 1496–1499. [Google Scholar] [CrossRef] [PubMed]
- Ablij, H.C.; Meinders, A.E. C-reactive protein: History and revival. Eur. J. Intern. Med. 2002, 13, 412–422. [Google Scholar] [CrossRef]
- Chaturvedi, U.C.; Shrivaqstava, R.; Upreti, R.K. Viral infections and trace elements: A complex interaction. Curr. Sci. 2004, 87, 1536–1554. [Google Scholar]
- Mutsaers, S.E.; Bishop, J.E.; McGrouther, G.; Laurent, G.J. Mechanisms of tissue repair: From wound healing to fibrios. Int. J. Biochem. Cell Biol. 1997, 29, 5–17. [Google Scholar] [CrossRef]
- El-Deeb, W.M.; Elmoslemany, A.M. The diagnostic accuracy of acute phase proteins and proinflammatory cytokines in sheep with pneumonic pasteurellosis. PeerJ 2016. [Google Scholar] [CrossRef] [PubMed]
- Iliev, P.T.; Georgieva, T.M. Acute phase biomarkers of diseases in small ruminants: An overview. Bulg. J. Vet. Med. 2017. [Google Scholar] [CrossRef]
- Ametaj, B.N.; Hosseini, A.; Odhiambo, J.F.; Iqbal, S.; Sharma, S.; Deng, Q.; Lam, T.H.; Farooq, U.; Zebeli, Q.; Dunn, S.M. Application of Acute Phase Proteins for Monitoring Inflammatory States in Cattle; Intech-Ics AG: Wallenwil, Switzerland, 2011. [Google Scholar]
Virus | Disease | Family of Virus | Species | Positive APP | Negative APP | Ref. |
---|---|---|---|---|---|---|
SRLV | Caprine arthritis encephalitis | Retroviridae | goat | Hp, SAA | NT | [34] |
BDV | Border disease | Flaviviridae | goat | Hp, SAA | NT | [35] |
PPRV | Peste des petits ruminants | Paramyxoviridae | sheep | Hp, SAA | NT | [36] |
BTV | Blue tongue disease | Reoviridae | sheep | Hp, Cp | albumins | [37,38] |
BRSV | Bovine respiratory disease | Paramyxoviridae | cattle | Hp, SAA | NT | [39] |
BVDV | Bovine viral diarrhea | Flaviviridae | cattle | Hp, SAA, Fb | NT | [40,41,42,43] |
FMDV | Foot and mouth disease | Picornaviridae | cattle | Hp, SAA, Fb, Cp | albumins | [44,45,46] |
Species | Virus | Disease | Health State | SAA | Hp | Cp | Fb | Albumins | References |
---|---|---|---|---|---|---|---|---|---|
goat | SRLV | Caprine arthritis encephalitis | Healthy | 0.28–27.40 mg/L | 0.21–4.89 g/L | NT | NT | NT | [34] |
Infected | 0.31–28.70 mg/L | 0.22–4.65 g/L | NT | NT | NT | ||||
BDV | Border disease | Healthy | 6.06 µg/mL | 0.056 mg/mL | NT | NT | NT | [35] | |
Infected | 42.13–68.86 µg/mL | 0.424–0.866 mg/mL | NT | NT | NT | ||||
sheep | PPRV | Peste des petits ruminants | Healthy | 12.80 a | 1.54 a | NT | NT | NT | [36] |
Infected | 32.3 a | 3.13 a | NT | NT | NT | ||||
BTV | Blue tongue disease | Healthy | ND | 0.04 g/L | 41.53 mg/dL | NT | ND | [37,38] | |
Infected | ND | 1.58 g/L | 25.59 mg/dL | NT | ND | ||||
cattle | BRSV | Bovine respiratory disease | Healthy | <17 µg/mL | <18 µg/mL | NT | NT | NT | [39] |
Infected | 60–80 µg/mL | 8–10 mg/mL | NT | NT | NT | ||||
BVDV | Bovine viral diarrhea | Healthy | 25.6 mg/L | 0.13 g/L | NT | 6.45 g/L | NT | [43] | |
Infected | 77.7–375 mg/L | 0.89–1.87 g/L | NT | 6.5–10 g/L | NT | ||||
FMDV | Foot and mouth disease | Healthy | 4.50–4.86 µg/mL | 0.084–0.09 g/L | 0.06–0.08 g/L | 0.06 g/L | 3.43 g/dL | [44,46] | |
Infected | 28.8–45.44 µg/mL | 0.308–0.41 g/L | 0.10–0.16 g/L | 4.64 g/L | 2.49–3.39 g/dL |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reczyńska, D.; Zalewska, M.; Czopowicz, M.; Kaba, J.; Zwierzchowski, L.; Bagnicka, E. Acute Phase Protein Levels as An Auxiliary Tool in Diagnosing Viral Diseases in Ruminants—A Review. Viruses 2018, 10, 502. https://doi.org/10.3390/v10090502
Reczyńska D, Zalewska M, Czopowicz M, Kaba J, Zwierzchowski L, Bagnicka E. Acute Phase Protein Levels as An Auxiliary Tool in Diagnosing Viral Diseases in Ruminants—A Review. Viruses. 2018; 10(9):502. https://doi.org/10.3390/v10090502
Chicago/Turabian StyleReczyńska, Daria, Magdalena Zalewska, Michał Czopowicz, Jarosław Kaba, Lech Zwierzchowski, and Emilia Bagnicka. 2018. "Acute Phase Protein Levels as An Auxiliary Tool in Diagnosing Viral Diseases in Ruminants—A Review" Viruses 10, no. 9: 502. https://doi.org/10.3390/v10090502
APA StyleReczyńska, D., Zalewska, M., Czopowicz, M., Kaba, J., Zwierzchowski, L., & Bagnicka, E. (2018). Acute Phase Protein Levels as An Auxiliary Tool in Diagnosing Viral Diseases in Ruminants—A Review. Viruses, 10(9), 502. https://doi.org/10.3390/v10090502