Prevalence and Factors Related to Natural Resistance-Associated Substitutions to Direct-Acting Antivirals in Patients with Genotype 1 Hepatitis C Virus Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. RT-PCR and Automated Sanger Sequencing
2.3. NGS Sequencing
2.4. RASs Analysis
2.5. HCV Quasispecies Analysis
2.6. SNPs Genotyping
2.7. Evaluated Variables and Statistical Analyses
3. Results
3.1. Patients’ Characteristics
3.2. Prevalence of RASs in NS5A Protein
3.3. Prevalence of RASs in NS5B Polymerase
3.4. Prevalence of RASs in NS3 Protease
3.5. Comparison of NGS and Direct Sequencing Results
3.6. Assessment of HCV Quasispecies Diversity
3.7. Factors Related to the Presence of Baseline RASs
3.8. Effect of Baseline RASs on Treatment Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: A modelling study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef]
- World Health Organization. Global Hepatitis Report 2017. Available online: http://who.int/hepatitis/publications/global-hepatitis-report2017/en/ (accessed on 26 October 2018).
- Gaite, L.A.; Marciano, S.; Galdame, O.A.; Gadano, A.C. Hepatitis C in Argentina: Epidemiology and treatment. Hepatic Med. 2014, 6, 35–43. [Google Scholar] [CrossRef]
- Golemba, M.D.; Di Lello, F.A.; Bessone, F.; Fay, F.; Benetti, S.; Jones, L.R.; Campos, R.H. High prevalence of hepatitis C virus genotype 1b infection in small town of Argentina. Phylogenetic and Bayesian coalescent analysis. PLoS ONE 2010, 5, e8751. [Google Scholar] [CrossRef] [PubMed]
- Asselah, T.; Boyer, N.; Saadoun, D.; Martinot-Peignoux, M.; Marcellin, P. Direct-acting antivirals for the treatment of hepatitis C virus infection: Optimizing current IFN-free treatment and future perspectives. Liver Int. 2016, 36, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Pawlotsky, J.M. Hepatitis C Virus Resistance to Direct-Acting Antiviral Drugs in Interferon-Free Regimens. Gastroenterology 2016, 151, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Lontok, E.; Harrington, P.; Howe, A.; Kieffer, T.; Lennerstrand, J.; Lenz, O.; McPhee, F.; Mo, H.; Parkin, N.; Pilot-Matias, T.; et al. Hepatitis C virus drug resistance-associated substitutions: State of the art summary. Hepatology 2015, 62, 1623–1632. [Google Scholar] [CrossRef] [Green Version]
- Bagaglio, S.; Uberti-Foppa, C.; Morsica, G. Resistance Mechanisms in Hepatitis C Virus: Implications for Direct-Acting Antiviral Use. Drugs 2017, 77, 1043–1055. [Google Scholar] [CrossRef]
- Asociación Argentina para el Estudio de las Enfermedades del Hígado (AAEEH). Recomendaciones para el Tratamiento de la Hepatitis Crónica por virus C. Indicaciones de Tratamiento 2018. Available online: http://aaeeh.org.ar/guias-y-consensos/guias/ (accessed on 26 October 2018).
- Sarrazin, C.; Dvory-Sobol, H.; Svarovskaia, E.S.; Doehle, B.P.; Pang, P.S.; Chuang, S.M.; Ma, J.; Ding, X.; Afdhal, N.H.; Kowdley, K.V.; et al. Prevalence of Resistance-Associated Substitutions in HCV NS5A, NS5B, or NS3 and Outcomes of Treatment With Ledipasvir and Sofosbuvir. Gastroenterology 2016, 151, 501–512. [Google Scholar] [CrossRef]
- EASL. Recommendations on Treatment of Hepatitis C 2016, Update of September 2016. Available online: http://www.easl.eu/medias/cpg/HCV2016/English-report.pdf (accessed on 11 December 2018).
- AASLD-IDSA HCV Guidance Panel. Hepatitis C Guidance 2018 Update: AASLD-IDSA Recommendations for Testing, Managing, and Treating Hepatitis C Virus Infection. Clin. Infect. Dis. 2018, 67, 1477–1492. [Google Scholar] [CrossRef]
- Perales, C. Quasispecies dynamics and clinical significance of HCV antiviral resistance. Int. J. Antimicrob. Agents 2018. [Google Scholar] [CrossRef]
- Feld, J.J. Resistance testing: Interpretation and incorporation into HCV treatment algorithms. Clin. Liver Dis. 2017, 9, 115–120, doiorg/101002/cld631. [Google Scholar] [CrossRef]
- Sorbo, M.C.; Cento, V.; Di Maio, V.C.; Howe, A.Y.M.; Garcia, F.; Perno, C.F.; Ceccherini-Silberstein, F. Hepatitis C virus drug resistance associated substitutions and their clinical relevance: Update 2018. Drug Resist. Update 2018, 37, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Fourati, S.; Pawlotsky, J.M. Virologic Tools for HCV Drug Resistance Testing. Viruses 2015, 7, 6346–6359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspareto, K.V.; Ribeiro, R.M.; de Mello Malta, F.; Gomes-Gouvêa, M.S.; Muto, N.H.; Romano, C.M.; Mendes-Correa, M.C.; Carrilho, F.J.; Sabino, E.C.; Rebello Pinho, J.R. Resistance-associated variants in HCV subtypes 1a and 1b detected by Ion Torrent sequencing platform. Antivir. Ther. 2016, 21, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, L.N.; Lyra, A.C. Predictive factors associated with hepatitis C antiviral therapy response. World J. Hepatol. 2015, 7, 1617–1631. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, S.; Hayes, C.N.; Ochi, H.; Uchida, T.; Kan, H.; Murakami, E.; Abe, H.; Tsuge, M.; Miki, D.; Akiyama, R.; et al. Association between variants in the interferon lambda 4 locus and substitutions in the hepatitis C virus non-structural protein 5A. J. Hepatol. 2015, 63, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Itakura, J.; Kurosaki, M.; Takada, H.; Nakakuki, N.; Matsuda, S.; Gondou, K.; Asano, Y.; Hattori, N.; Itakura, Y.; Tamaki, N.; et al. Naturally occurring, resistance-associated hepatitis C virus NS5A variants are linked to interleukin-28B genotype and are sensitive to interferon-based therapy. Hepatol. Res. 2015, 45, E115–E121. [Google Scholar] [CrossRef] [Green Version]
- Peiffer, K.H.; Sommer, L.; Susser, S.; Vermehren, J.; Herrmann, E.; Döring, M.; Dietz, J.; Perner, D.; Berkowski, C.; Zeuzem, S.; et al. Interferon lambda 4 genotypes and resistance-associated variants in patients infected with hepatitis C virus genotypes 1 and 3. Hepatology 2016, 63, 63–73. [Google Scholar] [CrossRef]
- Chen, Z.W.; Li, H.; Ren, H.; Hu, P. Global prevalence of pre-existing HCV variants resistant to direct-acting antiviral agents (DAAs): Mining the GenBank HCV genome data. Sci. Rep. 2016, 6, 20310. [Google Scholar] [CrossRef]
- Plaza, Z.; Soriano, V.; Vispo, E.; del Mar Gonzalez, M.; Barreiro, P.; Seclén, E.; Poveda, E. Prevalence of natural polymorphisms at the HCV NS5A gene associated with resistance to daclatasvir, an NS5A inhibitor. Antivir. Ther. 2012, 17, 921–926. [Google Scholar] [CrossRef]
- Treviño, A.; de Mendoza, C.; Parra, P.; Rodríguez, C.; Madejón, A.; Plaza, Z.; del Romero, J.; Poveda, E.; Soriano, V. Natural polymorphisms associated with resistance to new antivirals against HCV in newly diagnosed HIV-HCV-coinfected patients. Antivir. Ther. 2011, 16, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.P.; Culasso, A.C.A.; Pérez, P.S.; Romano, V.; Campos, R.H.; Ridruejo, E.; García, G.; Di Lello, F.A. Polymorphisms associated with resistance to protease inhibitors in naïve patients infected with hepatitis C virus genotype 1 in Argentina: Low prevalence of Q80K. Virus Res. 2017, 240, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, R.D. Visualizing phylogenetic trees using TreeView. Curr. Protoc. Bioinform. 2002. [Google Scholar] [CrossRef] [PubMed]
- Beerenwinkel, N.; Günthard, H.F.; Roth, V.; Metzner, K.J. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. Front. Microbiol. 2012, 3, 329. [Google Scholar] [CrossRef] [Green Version]
- Vandenbroucke, I.; Van Marck, H.; Mostmans, W.; Van Eygen, V.; Rondelez, E.; Thys, K.; Van Baelen, K.; Fransen, K.; Vaira, D.; Kabeya, K.; et al. HIV-1 V3 envelope deep sequencing for clinical plasma specimens failing in phenotypic tropism assays. AIDS Res. Ther. 2010, 7, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagordi, O.; Bhattacharya, A.; Eriksson, N.; Beerenwinkel, N. ShoRAH: Estimating the genetic diversity of a mixed sample from next-generation sequencing data. BMC Bioinform. 2011, 12, 119. [Google Scholar] [CrossRef] [PubMed]
- Cabot, B.; Martell, M.; Esteban, J.I.; Sauleda, S.; Otero, T.; Esteban, R.; Guàrdia, J.; Gómez, J. Nucleotide and Amino Acid Complexity of Hepatitis C Virus Quasispecies in Serum and Liver. J. Virol. 2000, 74, 805–811. [Google Scholar] [CrossRef] [Green Version]
- Dietz, J.; Susser, S.; Berkowski, C.; Perner, D.; Zeuzem, S.; Sarrazin, C. Consideration of viral resistance for optimization of direct antiviral therapy of hepatitis C virus genotype 1-infected patients. PLoS ONE 2015, 10, e0134395. [Google Scholar] [CrossRef]
- Simmonds, P. Genetic diversity and evolution of hepatitis C virus—15 years on. J. Gen. Virol. 2004, 85, 3173–3188. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, A.; Sorbo, M.C.; Aragri, M.; Lenci, I.; Teti, E.; Polilli, E.; Di Maio, V.C.; Gianserra, L.; Biliotti, E.; Masetti, C.; et al. Prevalence of Single and Multiple Natural NS3, NS5A and NS5B Resistance-Associated Substitutions in Hepatitis C Virus Genotypes 1-4 in Italy. Sci. Rep. 2018, 8, 8988. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, I.M.; Alves, R.; de Souza, P.A.; da Silva, E.F.; Mazo, D.; Carrilho, F.J.; Queiroz, A.T.; Pessoa, M.G. Protease inhibitor resistance mutations in untreated Brazilian patients infected with HCV: Novel insights about targeted genotyping approaches. J. Med. Virol. 2014, 86, 1714–1721. [Google Scholar] [CrossRef] [PubMed]
- Peres-da-Silva, A.; Almeida, A.J.; Lampe, E. Genetic diversity of NS3 protease from Brazilian HCV isolates and possible implications for therapy with direct-acting antiviral drugs. Mem. Inst. Oswaldo Cruz 2012, 107, 254–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.; Omata, M.; Lim, Y.S.; Xie, Q.; Hou, J.L.; Jia, J.; Hedskog, C.; Martin, R.; Doehle, B.; Yang, J.; et al. HCV phylogenetic signature and prevalence of pretreatment NS5A and NS5B NI-Resistance associated substitutions in HCV-Infected patients in Mainland China. Antivir. Res. 2018, 158, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, P.; Schnell, G.; Tripathi, R.; Beyer, J.; Reisch, T.; Zhang, X.; Setze, C.; Rodrigues, L., Jr.; Burroughs, M.; Redman, R.; et al. Analysis of hepatitis C virus genotype 1b resistance variants in Japanese patients treated with Paritaprevir-Ritonavir and Ombitasvir. Antimicrob. Agents Chemother. 2016, 60, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Di Giambenedetto, S.; Lo Presti, A.; Sierra, S.; Prosperi, M.; Cella, E.; Giovanetti, M.; Torti, C.; Caudai, C.; Vicenti, I.; et al. Two distinct hepatitis C virus genotype 1a clades have different geographical distribution and association with natural resistance to NS3 protease inhibitors. Open Forum Infect. Dis. 2015, 2, ofv043. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, R.M.; Liang, R.H.; Joy, J.B.; Krajden, M.; Montaner, J.S.; Harrigan, P.R.; Poon, A.F. Global origin and transmission of hepatitis C virus nonstructural protein 3 Q80K polymorphism. J. Infect. Dis. 2015, 211, 1288–1295; [Google Scholar] [CrossRef]
- Paolucci, S.; Fiorina, L.; Mariani, B.; Gulminetti, R.; Novati, S.; Barbarini, G.; Bruno, R.; Baldanti, F. Naturally occurring resistance mutations to inhibitors of HCV NS5A region and NS5B polymerase in DAA treatment-naïve patients. Virol. J. 2013, 10, 355. [Google Scholar] [CrossRef] [Green Version]
- Morel, V.; Duverlie, G.; Brochot, E. Patients eligible for treatment with simeprevir in a French center. J. Clin. Virol. 2014, 61, 149–151. [Google Scholar] [CrossRef]
- Sarrazin, C.; Lathouwers, E.; Peeters, M.; Daems, B.; Buelens, A.; Witek, J.; Wyckmans, Y.; Fevery, B.; Verbinnen, T.; Ghys, A.; et al. Prevalence of the hepatitis C virus NS3 polymorphism Q80K in genotype 1 patients in the European region. Antivir. Res. 2015, 116, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Peres-da-Silva, A.; Almeida, A.J.; Lampe, E. Mutations in hepatitis C virus NS3 protease domain associated with resistance to specific protease inhibitors in antiviral therapy naïve patients. Arch. Virol. 2010, 155, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, L.; Ramos, J.A.; Souza, E.V.; Araújo Ramos, A.L.; Villela-Nogueira, C.A.; Urményi, T.P.; Tanuri, A.; Rondinelli, E.; Silva, R. Dynamics of resistance mutations to NS3 protease inhibitors in a cohort of Brazilian patients chronically infected with hepatitis C virus (genotype 1) treated with pegylated interferon and ribavirin: A prospective longitudinal study. Virol. J. 2013, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Noble, C.F.; Malta, F.; Lisboa-Neto, G.; Gomes-Gouvêa, M.S.; Leite, A.G.B.; de Castro, V.F.D.; Santana, R.A.F.; Carrilho, F.J.; Mendes-Correa, M.C.; Pinho, J.R.R. Natural occurrence of NS5B inhibitor resistance-associated variants in Brazilian patients infected with HCV or HCV and HIV. Arch. Virol. 2017, 162, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Malta, F.; Gaspareto, K.V.; Lisboa-Neto, G.; Carrilho, F.J.; Mendes-Correa, M.C.; Pinho, J.R.R. Prevalence of naturally occurring NS5A resistance-associated substitutions in patients infected with hepatitis C virus subtype 1a, 1b, and 3a, co-infected or not with HIV in Brazil. BMC Infect. Dis. 2017, 17, 716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margeridon-Thermet, S.; Le Pogam, S.; Li, L.; Liu, T.F.; Shulman, N.; Shafer, R.W.; Najera, I. Similar prevalence of low-abundance drug-resistant variants in treatment-naïve patients with genotype 1a and 1b hepatitis C virus infections as determined by ultradeep pyrosequencing. PLoS ONE 2014, 9, e105569. [Google Scholar] [CrossRef] [PubMed]
- Larrat, S.; Vallet, S.; David-Tchouda, S.; Caporossi, A.; Margier, J.; Ramière, C.; Scholtes, C.; Haïm-Boukobza, S.; Roque-Afonso, A.M.; Besse, B.; et al. Naturally Occurring Resistance-Associated Variants of Hepatitis C Virus Protease Inhibitors in Poor Responders to Pegylated Interferon- Ribavirin. J. Clin. Microbiol. 2015, 53, 2195–2202. [Google Scholar] [CrossRef] [PubMed]
- Echeverría, N.; Betancour, G.; Gámbaro, F.; Hernández, N.; López, P.; Chiodi, D.; Sánchez, A.; Boschi, S.; Fajardo, A.; Sóñora, M.; et al. Naturally occurring NS3 resistance-associated variants in hepatitis C virus genotype 1: Their relevance for developing countries. Virus Res. 2016, 223, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Aldunate, F.; Echeverría, N.; Chiodi, D.; López, P.; Sánchez-Cicerón, A.; Fajardo, A.; Soñora, M.; Cristina, J.; Hernández, N.; Moreno, P. Pretreatment Hepatitis C Virus NS5A/NS5B Resistance-Associated Substitutions in Genotype 1 Uruguayan Infected Patients. Dis. Markers 2018, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Culasso, A.C.; Farías, A.; Di Lello, F.A.; Golemba, M.D.; Ré, V.; Barbini, L.; Campos, R. Spreading of hepatitis C virus subtypes 1a and 1b through the central region of Argentina. Infect. Genet. Evol. 2014, 26, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Li, L.; Haines, K.; Najera, I. Identification of the NS5B S282T resistant variant and two novel amino acid substitutions that affect replication capacity in hepatitis C virus-infected patients treated with mericitabine and danoprevir. Antimicrob. Agents Chemother. 2014, 58, 3105–3114. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Doehle, B.; Rajyaguru, S.; Han, B.; Barauskas, O.; Feng, J.; Perry, J.; Dvory-Sobol, H.; Svarovskaia, E.S.; Miller, M.D.; et al. In vitro selection of resistance to sofosbuvir in HCV replicons of genotype-1 to -6. Antivir. Ther. 2017, 22, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Kinugasa, H.; Ikeda, F.; Takaguchi, K.; Mori, C.; Matsubara, T.; Shiraha, H.; Takaki, A.; Iwasaki, Y.; Toyooka, S.; Yamamoto, K. Low frequency of drug-resistant virus did not affect the therapeutic efficacy in daclatasvir plus asunaprevir therapy in patients with chronic HCV genotype-1 infection. Antivir. Ther. 2016, 21, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Watanabe, T.; Okuse, C.; Matsumoto, N.; Ishii, T.; Yamada, N.; Shigefuku, R.; Hattori, N.; Matsunaga, K.; Nakano, H.; et al. Impact of resistance associated variant dominancy on treatment in patients with HCV genotype 1b receiving daclatasvir/asunaprevir. J. Med. Virol. 2017, 89, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Perales, C.; Chen, Q.; Soria, M.E.; Gregori, J.; Garcia-Cehic, D.; Nieto-Aponte, L.; Castells, L.; Imaz, A.; Llorens-Revull, M.; Domingo, E.; et al. Baseline hepatitis C virus resistance-associated substitutions present at frequencies lower than 15% may be clinically significant. Infect. Drug Resist. 2018, 11, 2207–2210. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.B.; Chueca, N.; García, F. Resistance testing for the treatment of chronic hepatitis C with direct acting antivirals: When and for how long? Germs 2017, 7, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Trémeaux, P.; Caporossi, A.; Thélu, M.A.; Blum, M.; Leroy, V.; Morand, P.; Larrat, S. Hepatitis C virus whole genome sequencing: Current methods/issues and future challenges. Crit. Rev. Clin. Lab. Sci. 2016, 53, 341–351. [Google Scholar] [CrossRef]
- Arias, A.; López, P.; Sánchez, R.; Yamamura, Y.; Rivera-Amill, V. Sanger and Next Generation Sequencing Approaches to Evaluate HIV-1 Virus in Blood Compartments. Int. J. Environ. Res. Public Health 2018, 15, 1697. [Google Scholar] [CrossRef]
- Shafer, R.W.; Levee, D.J.; Winters, M.A.; Richmond, K.L.; Huang, D.; Merigan, T.C. Comparison of QIAamp HCV kit spin columns, silica beads, and phenol-chloroform for recovering human immunodeficiency virus type 1 RNA from plasma. J. Clin. Microbiol. 1997, 35, 520–522. [Google Scholar]
- American Society for Microbiology. Report on an American Academy of Microbiology Colloquium Held in Washington, DC in April 2015, 2016. Available online: https://www.asm.org/index.php/colloquium-reports/item/4462-applications-of-clinical-microbial-next-generation-sequencing (accessed on 11 December 2018).
- Trinks, J.; Caputo, M.; Hulaniuk, M.L.; Corach, D.; Flichman, D. Hepatitis C virus pharmacogenomics in Latin American populations: Implications in the era of direct-acting antivirals. Pharmgenomics Pers. Med. 2017, 10, 79–91. [Google Scholar] [CrossRef]
- Esposito, I.; Labarga, P.; Barreiro, P.; Fernandez-Montero, J.V.; de Mendoza, C.; Benítez-Gutiérrez, L.; Peña, J.M.; Soriano, V. Dual antiviral therapy for HIV and hepatitis C—Drug interactions and side effects. Expert Opin. Drug Saf. 2015, 14, 421–1434. [Google Scholar] [CrossRef] [PubMed]
- Soriano, V.; Labarga, P.; de Mendoza, C.; Fernández-Montero, J.V.; Esposito, I.; Benítez-Gutiérrez, L.; Peña, J.M.; Barreiro, P. New hepatitis C therapies for special patient populations. Expert Opin. Pharmacother. 2016, 17, 217–229. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All (n = 86) | HCV Subtype | p Value | |
---|---|---|---|---|
HCV GT1a (n = 33, 38.4%) | HCV GT1b (n = 53, 61.6%) | |||
HCV viral load, log10 copies/mL, mean ± SD | 6.1 ± 3.8 | 6.2 ± 3.9 | 6.1 ± 3.5 | 0.71 |
Age, years, mean ± SD | 54.7 ± 11.0 | 50.6 ± 8.9 | 57.3 ± 11.5 | 0.005 |
Male, no. (%) | 52 (60.5) | 24 (72.7) | 28 (52.8) | 0.07 |
METAVIR Score, no. (%) | ||||
F0/F1 | 38 (44.2) | 11 (33.3) | 27 (50.9) | |
F2 | 18 (20.9) | 10 (30.3) | 8 (15.1) | 0.1 |
F3 | 10 (11.6) | 6 (18.2) | 4 (7.5) | |
F4 | 20 (23.3) | 6 (18.2) | 14 (26.5) | |
HIV co-infection, no. (%) | 5 (5.8) | 3 (9.1) | 2 (3.7) | 0.37 |
Previous failure to PegIFN/RBV treatment, no. (%) | 31 (36.1) | 12 (36.4) | 19 (35.9) | 1 |
IFNL3 SNP rs12979860, no. (%) | ||||
CC | 18 (20.9) | 9 (27.3) | 9 (17) | |
CT | 57 (66.3) | 19 (57.6) | 38 (71.7) | 0.39 |
TT | 11 (12.8) | 5 (15.1) | 6 (11.3) | |
IFNL4 SNP rs368234815, no. (%) | ||||
TT/TT | 18 (20.9) | 9 (27.3) | 9 (17) | |
TT/ΔG | 57 (66.3) | 19 (57.6) | 38 (71.7) | 0.39 |
ΔG/ΔG | 11 (12.8) | 5 (15.1) | 6 (11.3) |
Genotype | Reference NS5A Position | RASs | Frequency |
---|---|---|---|
K24 | R | - | |
M28 | A/G/T/S/V | M28V (1/33; 3%) | |
Q30 | D/E/G/H/K/L/N/R/Y | - | |
L31 | F/I/M/V | - | |
P32 | L | - | |
1a | S38 | F | - |
H58 | D | - | |
A92 | K/T | - | |
Y93 | C/F/H/L/N/R/S/T/W | - | |
Q24 | K | - | |
L28 | M/T | L28M (1/51; 2%) | |
R30 | G/H/Q/S | R30Q (7/51; 13.7%) | |
1b | L31 | F/I/M/V | L31M (1/51; 2%) L31F (1/51; 2%) |
P58 | A/D/L/R/S/T | P58R (1/51; 2%) P58T (1/51; 2%) | |
A92 | K/T | A92T (1/51; 2%) | |
Y93 | C/H/I/N/R/S/T | - |
Genotype | Reference NS5B Position | RASs | Frequency |
---|---|---|---|
L159 | F | - | |
1a | E237 | G | - |
S282 | R/T | - | |
1b | L159 | F | L159F (5/49; 10.2%) |
S282 | G/T | S282G (2/49; 4.1%) |
Genotype | Reference NS3 Position | RASs | Frequency |
---|---|---|---|
V36 | A/G/M/L | V36L (1/29; 3.4%) | |
Q41 | R | - | |
F43 | S | - | |
T54 | A/S | T54S (1/29; 3.4%) | |
Y56 | F/H | - | |
1a | Q80 | K/R | Q80K (1/29; 3.4%) |
S122 | R | - | |
R155 | I/G/K/N/Q/S/T/W | - | |
A156 | G/L/M/S/T/V | - | |
V158 | A | - | |
D168 | A/C/E/F/G/H/I/K/L/N/R/S/T/V/Y | - | |
I170 | T/V | I170V (1/29; 3.4%) | |
V36 | A/G/M | - | |
Q41 | R | - | |
F43 | L/S/V | - | |
T54 | A/S | T54S (1/50; 2%) | |
V55 | A/I | - | |
Y56 | F/H | Y56F (8/50; 16%) | |
1b | Q80 | K/L/R | Q80K (1/50; 2%) Q80R (1/50; 2%) |
S122 | D/G/R/T | S122G (4/50; 8%) S122T (2/50; 4%) | |
R155 | K/G/L/T/Q/W | R155K (1/50; 2%) | |
A156 | G/S/T/V | - | |
D168 | A/C/E/F/G/H/I/K/N/Q/T/V/Y | - | |
V170 | A/T | - | |
M175 | L | - |
Genomic Region | RASs | Patient No. | HCV Subtype | Mutation Frequency in Viral Quasispecies |
---|---|---|---|---|
K24R | 87 | 1a | K24R (2%) | |
Q24K | 80 | 1b | Q24K (6.7%) | |
M28A/G/T/S/V | 4 | 1a | M28V (21%) | |
NS5A | R30G/H/Q/S | 10 | 1b | R30H (5.8%) |
L31F/I/M/V | 24 | 1b | L31M (5.3%) | |
P58A/D/L/R/S/T | 97 | 1b | P58S (3.4%) | |
A92K/T | 120 | 1b | A92T (4.2%) | |
Y93C/F/H/L/N/R/S/T/W | 4 | 1a | Y93H (3%) | |
F43L/S/V | 108 | 1b | F43S (2%) | |
T54A/S | 62 | 1b | T54S (3.5%) | |
Y56F/H | 106 | 1b | Y56F (3.9%) | |
90 | 1b | Y56F (7.3%) | ||
NS3 | 74 | 1b | Y56H (4.1%) | |
Q80K/L/R | 40 | 1b | Q80L (21%) | |
S122D/G/R/T | 49 | 1b | S122G (4.8%) | |
88 | 1b | S122G (12%) | ||
76 | 1b | S122T (3.9%) |
Genomic Regions | HCV Subtype (n=) | Mutations 1/Nucleotides Sequenced | Nucleotide Mutation Frequency 2 | p Value | Normalized Shannon Entropy 3 | p Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
1a | 1b | 1a | 1b | 1a | 1b | 1a | 1b | |||
NS5A | 32 | 44 | 50/711 | 75/715 | 0.07 | 0.1 | 0.002 | 0.011 | 0.017 | 0.11 |
NS5B | 30 | 42 | 73/916 | 78/945 | 0.08 | 0.08 | 0.86 | 0.014 | 0.017 | 0.85 |
NS3 | 29 | 43 | 74/1007 | 132/1300 | 0.07 | 0.1 | 0.002 | 0.015 | 0.017 | 0.19 |
Patients Characteristics | RASs (n = 14) | No RASs (n = 70) | Univariate Analysis | Multivariate Analysis | |
---|---|---|---|---|---|
p Value | p Value | OR (95% CI) | |||
Male gender, no. (%) | 9 (64.3) | 41 (58.6) | 0.77 | ||
Age (years), mean ± SD | 53.4 ± 5.1 | 56.5 ± 4.9 | 0.77 | ||
HCV viral load (log10), mean ± SD | 6.2 ± 3.2 | 6.1 ± 3.3 | 0.47 | ||
HCV subtype 1b, no. (%) | 13 (92.9) | 38 (54.3) | 0.007 | 0.03 | 16.2 (1.3–20.6) |
METAVIR Score F4, no. (%) | 6 (42.9) | 13 (18.6) | 0.07 | ||
HIV co-infection, no. (%) | 2 (14.3) | 3 (4.3) | 0.19 | ||
Previous failure to PegIFN/RBV treatment, no. (%) | 8 (57.1) | 23 (32.9) | 0.13 | ||
IFNL3 SNP (rs12979860) CC genotype a, no. (%) | 10 (71.4) | 8 (11.4) | 0.0001 | 0.0005 | 16.8 (3.4–8.2) |
Normalized Shannon Entropy b, mean ± SD (×1000) | 17 ± 8.7 | 10.3 ± 3.6 | 0.02 | 0.01 | 2.16 (1.3–4.6) |
Nucleotide Mutation Frequency b, mean ± SD (×1000) | 9.8 ± 4.5 | 6.3 ± 2.1 | 0.004 | 0.009 | 4.7 (1.4–15.2) |
Patients Characteristics | RASs (n = 7) | No RASs (n = 72) | Univariate Analysis | Multivariate Analysis | |
---|---|---|---|---|---|
p Value | p Value | OR (95% CI) | |||
Male gender, no. (%) | 5 (71.4) | 43 (59.7) | 0.7 | ||
Age (years), mean ± SD | 53.5 ± 5.4 | 50.3 ± 5.6 | 0.52 | ||
HCV viral load (log10), mean ± SD | 6.1 ± 2.2 | 5.9 ± 2.6 | 0.88 | ||
HCV subtype 1b, no. (%) | 7 (100) | 42 (58.3) | 0.04 | 0.99 | 1.7 (0.40–1.41) |
METAVIR Score F4, no. (%) | 3 (42.9) | 17 (23.6) | 0.36 | ||
HIV co-infection, no. (%) | 1 (14.3) | 4 (5.55) | 0.38 | ||
Previous failure to PegIFN/RBV treatment, no. (%) | 5 (71.4) | 29 (40.3) | 0.13 | ||
IFNL3 SNP (rs12979860) CC genotype a, no. (%) | 2 (28.6) | 12 (16.7) | 0.6 | ||
Normalized Shannon Entropy b, mean ± SD (×1000) | 8.9 ± 2.3 | 9.6 ± 1.4 | 0.4 | ||
Nucleotide Mutation Frequency b, mean ± SD (×1000) | 6.2 ± 3.9 | 2.9 ± 3.1 | 0.03 | 0.98 | 1 (0.78–1.3) |
Patients Characteristics | RASs (n = 22) | No RASs (n = 57) | Univariate Analysis | Multivariate Analysis | |
---|---|---|---|---|---|
p Value | p Value | OR (95% CI) | |||
Male gender, no. (%) | 17 (77.2) | 36 (63.2) | 0.29 | ||
Age (years), mean ± SD | 55.1 ± 4.8 | 52.5 ± 6.1 | 0.59 | ||
HCV viral load (log10), mean ± SD | 6.2 ± 3.1 | 5.9 ± 1.9 | 0.27 | ||
HCV subtype 1b, no. (%) | 18 (81.8) | 32 (56.1) | 0.04 | 0.57 | 1.51 (0.36–6.4) |
METAVIR Score F4, no. (%) | 8 (36.4) | 12 (21.05) | 0.25 | ||
HIV co-infection, no. (%) | 2 (9.1) | 3 (5.3) | 0.61 | ||
Previous failure to PegIFN/RBV treatment, no. (%) | 10 (45.4) | 16 (28.1) | 0.18 | ||
IFNL3 SNP (rs12979860) CC genotype a, no. (%) | 12 (54.5) | 10 (17.5) | 0.002 | 0.01 | 6.3 (1.5–25.8) |
Normalized Shannon Entropy b, mean ± SD (×1000) | 21.2 ± 1.5 | 15.8 ± 2.9 | 0.33 | ||
Nucleotide Mutation Frequency b, mean ± SD (×1000) | 7.9 ± 2.6 | 6.8 ± 4.1 | 0.21 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, I.; Marciano, S.; Haddad, L.; Galdame, O.; Franco, A.; Gadano, A.; Flichman, D.; Trinks, J. Prevalence and Factors Related to Natural Resistance-Associated Substitutions to Direct-Acting Antivirals in Patients with Genotype 1 Hepatitis C Virus Infection. Viruses 2019, 11, 3. https://doi.org/10.3390/v11010003
Esposito I, Marciano S, Haddad L, Galdame O, Franco A, Gadano A, Flichman D, Trinks J. Prevalence and Factors Related to Natural Resistance-Associated Substitutions to Direct-Acting Antivirals in Patients with Genotype 1 Hepatitis C Virus Infection. Viruses. 2019; 11(1):3. https://doi.org/10.3390/v11010003
Chicago/Turabian StyleEsposito, Isabella, Sebastián Marciano, Leila Haddad, Omar Galdame, Alejandra Franco, Adrián Gadano, Diego Flichman, and Julieta Trinks. 2019. "Prevalence and Factors Related to Natural Resistance-Associated Substitutions to Direct-Acting Antivirals in Patients with Genotype 1 Hepatitis C Virus Infection" Viruses 11, no. 1: 3. https://doi.org/10.3390/v11010003
APA StyleEsposito, I., Marciano, S., Haddad, L., Galdame, O., Franco, A., Gadano, A., Flichman, D., & Trinks, J. (2019). Prevalence and Factors Related to Natural Resistance-Associated Substitutions to Direct-Acting Antivirals in Patients with Genotype 1 Hepatitis C Virus Infection. Viruses, 11(1), 3. https://doi.org/10.3390/v11010003