Chickpea chlorotic dwarf virus: An Emerging Monopartite Dicot Infecting Mastrevirus
Abstract
:1. Introduction
2. Disease Symptoms
3. Genome Organization and Protein Functions
3.1. Genome Organization
3.2. The Rep Protein Complex
3.3. The Capsid Protein (V1) and Movement Protein (V2)
4. Genetic Diversity, Host Range, and Evolution
4.1. Variants of CpCDV
4.2. Host Range
Infectivity of Cloned Components
4.3. Phylogenetic Relationships and Detection of Recombination
4.4. Biology and Interaction of Begomoviruses and Satellite Molecules with CpCDV
5. Virus–Vector Interactions
6. Detection and Diagnosis
7. Management Strategies
7.1. Host Plant Resistance
7.2. Genetic Engineering Approaches
8. Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nene, Y.; Reddy, M.V. Chickpea diseases and their control. In The Chickpea, 2nd ed.; Saxena, M.C., Singh, K.B., Eds.; C.A.B. International: Oxon, UK, 1987; pp. 233–270. [Google Scholar]
- Leonetti, P.; Accotto, G.P.; Hanafy, M.S.; Pantaleo, V. Viruses and phytoparasitic nematodes of Cicer arietinum L.: Biotechnological approaches in interaction studies and for sustainable control. Front. Plant Sci. 2018, 9, 319. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, W.J.; Ghanekar, S.M.; Nene, Y.L.; Rao, B.S.; Anjaiah, V. Viral diseases of chickpea. In ICRISAT (International Crops Research Institute for the Semi-Arid Tropics) Chickpea in the Nineties, Proceedings of the Second International Workshop on Chickpea Improvement, Hyderabad, India, 4–8 December 1990; ICRISAT: Hyderabad, India, 1990; pp. 139–142. [Google Scholar]
- Horn, N.M. Viruses Involved in Chickpea Stunt; Wageningen Agricultural University: Wageningen, The Netherlands, 1994; p. 139. [Google Scholar]
- Kaiser, W.J.; Danesh, D. Biology of four viruses affecting Cicer arietinum in Iran. Phytopathology 1971, 61, 372–375. [Google Scholar] [CrossRef]
- Randles, J.W.; Rathjen, J.P. Genus Luteovirus. In Virus taxonomy. Sixth report of the International Committee on Taxonomy of Viruses, 2nd ed.; Murphy, F.A., Fauquet, C.M., Bishop, D.H.L., Ghabrial, S.A., Jarvis, A.W., Martelli, G.P., Mayo, M.A., Summers, M.D., Eds.; Springer: Verlag, Austria, 1995; pp. 379–383. [Google Scholar]
- Bosque-Perez, N.A.; Buddenhagen, I.W. Studies on epidemiology of virus disease of chickpea in California. Plant Dis. 1990, 74, 372–378. [Google Scholar] [CrossRef]
- Carazo, G.; de Blas, C.; Saiz, M.; Romero, J.; Castro, S. Virus diseases of chickpea in Spain. Plant Dis. 1993, 77, 210. [Google Scholar] [CrossRef]
- Horn, N.M.; Reddy, S.V.; Reddy, D.V.R. Virus-vector relationships of chickpea chlorotic dwarf geminivirus and the leafhopper Orosius orientalis (Hemiptera: Cicadellidae). Ann. Appl. Biol. 1994, 124, 441–450. [Google Scholar] [CrossRef]
- Horn, N.M.; Reddy, S.V.; Reddy, D.V.R. Assessment of yield losses caused by chickpea chlorotic dwarf geminivirus in chickpea (Cicer arietinum) in India. Eur. J. Plant Pathol. 1995, 101, 221–224. [Google Scholar] [CrossRef]
- Horn, N.M.; Reddy, S.V.; Roberts, I.M.; Reddy, D.V.R. Chickpea chlorotic dwarf virus, a new leafhopper transmitted geminivirus of chickpea in India. Ann. Appl. Biol. 1993, 122, 467–479. [Google Scholar] [CrossRef]
- Horn, N.M.; Reddy, S.V.; van den Huevel, J.F.J.M.; Reddy, D.V.R. Survey of chickpea (Cicer arietinum L.) for chickpea stunt disease and associated viruses in India and Pakistan. Plant Dis. 1996, 80, 286–290. [Google Scholar] [CrossRef]
- Nahid, N.; Amin, I.; Mansoor, S.; Rybicki, E.P.; van der Walt, E.; Briddon, R.W. Two dicot-infecting mastreviruses, family Geminiviridae occur in Pakistan. Arch. Virol. 2008, 153, 1441–1451. [Google Scholar] [CrossRef]
- Kanakala, S.; Sakhare, A.; Verma, H.N.; Malathi, V.G. Infectivity and the phylogenetic relationship of a mastrevirus causing chickpea stunt disease in India. Eur. J. Plant Pathol. 2012, 135, 429–438. [Google Scholar] [CrossRef]
- Harrison, B.D.; Barker, H.; Bock, K.R.; Guthrie, E.J.; Meredith, G.; Atkinson, M. Plant viruses with circular single-stranded DNA. Nature 1977, 270, 760–762. [Google Scholar] [CrossRef]
- Zerbini, F.M.; Briddon, R.W.; Idris, A.; Martin, D.P.; Moriones, E.; Navas-Castillo, J.; Rivera-Bustamante, R.; Roumagnac, P.; Varsani, A. ICTV virus taxonomy profile: Geminiviridae. J. Gen. Virol. 2017, 98, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Kumar, J.; Singh, S.P.; Tuli, R. Association of satellites with a mastrevirus in natural infection: Complexity of Wheat dwarf India virus disease. J. Virol. 2014, 88, 7093–7104. [Google Scholar] [CrossRef] [PubMed]
- Hamza, M.; Tahir, M.N.; Mustafa, R.; Kamal, H.; Khan, M.Z.; Mansoor, S.; Briddon, R.W.; Amin, I. Identification of a dicot infecting mastrevirus along with alpha-and betasatellite associated with leaf curl disease of spinach (Spinacia oleracea) in Pakistan. Virus Res. 2018, 256, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.E.; Bowyer, J.W. Tobacco yellow dwarf virus. In CMI/AAB Descriptions of Plant Viruses; Commonwealth Mycological Institute: London, UK, 1984; p. 4. [Google Scholar]
- Muhire, B.; Martin, D.P.; Brown, J.K.; Navas-Castillo, J.; Moriones, E.; Zerbini, M.; Rivera-Bustamante, R.F.; Malathi, V.G.; Briddon, R.W.; Varsani, A. A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Arch. Virol. 2013, 158, 1411–1424. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; van Tonder, T.; Pietersen, G.; Davies, J.W.; Stanley, J. Molecular characterization of a subgroup I geminivirus from a legume in South Africa. J. Gen. Virol. 1997, 78, 2113–2117. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.S.; Kil, E.J.; Kim, S.; Hwang, H.; Lee, J.H.; Chung, Y.J.; Lee, S. First Report of Chickpea chlorotic dwarf virus infecting hot pepper in India. Plant Dis. 2014, 98, 1590. [Google Scholar] [CrossRef]
- Fahmy, I.F.; Taha, O.; El-Ashry, A.N. First genome analysis and molecular characterization of Chickpea chlorotic dwarf virus Egyptian isolate infecting squash. Virus Dis. 2015, 26, 33–41. [Google Scholar] [CrossRef]
- Zaagueri, T.; Miozzi, L.; Mnari-Hattab, M.; Noris, E.; Accotto, G.P.; Vaira, A.M. Deep sequencing data and infectivity assays indicate that chickpea chlorotic dwarf virus is the etiological agent of the “hard fruit syndrome” of watermelon. Viruses 2017, 9, 311. [Google Scholar] [CrossRef]
- Ouattara, A.; Tiendrébéogo, F.; Lefeuvre, P.; Hoareau, M.; Claverie, S.; Traoré, E.V.; Barro, N.; Traoré, O.; Varsani, A.; Lett, J.M. New strains of Chickpea chlorotic dwarf virus discovered on diseased papaya and tomato plants in Burkina Faso. Arch. Virol. 2017, 162, 1791–1794. [Google Scholar] [CrossRef]
- Boulton, M.I. Functions and interactions of mastrevirus gene products. Physiol. Mol. Plant Pathol. 2002, 60, 243–255. [Google Scholar] [CrossRef]
- Palmer, K.E.; Rybicki, E.P. The molecular biology of mastreviruses. Adv. Virus Res. 1998, 50, 183–234. [Google Scholar] [PubMed]
- Ilyina, T.V.; Koonin, E.V. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res. 1992, 20, 3279–3285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koonin, E.V.; Ilyina, T.V. Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA replication initiator proteins. J. Gen. Virol. 1992, 73, 2763–2766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, J.E.; Saraste, M.; Runswick, M.J.; Gay, N.J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1982, 1, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Argüello-Astorga, G.R.; Ruiz-Medrano, R. An iteron-related domain is associated to motif 1 in the replication proteins of geminiviruses: Identification of potential interacting amino acid base pairs by a comparative approach. Arch. Virol. 2001, 146, 1465–1485. [Google Scholar] [CrossRef]
- Boulton, M.I.; Steinkellner, H.; Donson, J.; Markham, P.G.; King, D.I.; Davies, J.W. Mutational analysis of the virion-sense genes of maize streak virus. J. Gen. Virol. 1989, 70, 2309–2323. [Google Scholar] [CrossRef]
- Fiallo-Olivé, E.; Mohammed, I.U.; Turaki, A.A.; Muhammad, A.; Navas-Castillo, J.A. Novel Strain of the mastrevirus Chickpea chlorotic dwarf virus infecting papaya in Nigeria. Plant Dis. 2017, 101, 1684. [Google Scholar] [CrossRef]
- Kraberger, S.; Kumari, S.G.; Hamed, A.A.; Gronenborn, B.; Thomas, J.E.; Sharman, M.; Harkins, G.W.; Muhire, B.M.; Martin, D.P.; Varsani, A. Molecular diversity of Chickpea chlorotic dwarf virus in Sudan: High rates of intra-species recombination—A driving force in the emergence of new strains. Infect. Genet. Evol. 2015, 29, 203–215. [Google Scholar] [CrossRef]
- Kraberger, S.; Harkins, G.W.; Kumari, S.G.; Thomas, J.E.; Schwinghamer, M.W.; Sharman, M.; Collings, D.A.; Briddon, R.W.; Martin, D.P.; Varsani, A. Evidence that dicot-infecting mastreviruses are particularly prone to inter-species recombination and have likely been circulating in Australia for longer than in Africa and the Middle East. Virology 2013, 444, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Kraberger, S.; Mumtaz, H.; Claverie, S.; Martin, D.P.; Briddon, R.W.; Varsani, A. Identification of an Australian-like dicot-infecting mastrevirus in Pakistan. Arch. Virol. 2015, 160, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Malathi, V.G.; Kanakala, S. Diversity and pathogenesis of mastreviruses in India. In A Century of Plant Virology in India, 2nd ed.; Mandal, B., Rao, G.P., Baranwal, V., Jain, R., Eds.; Springer: Singapore, 2017; pp. 341–349. [Google Scholar]
- Morris, B.A.M.; Richardson, K.A.; Haley, A.; Zhan, X.; Thomas, J.E. The nucleotide sequence of the infectious cloned DNA component of tobacco yellow dwarf virus reveals features of geminiviruses infecting monocotyledonous plants. Virology 1992, 187, 633–642. [Google Scholar] [CrossRef]
- Hill, A.V.; Allan, M.A. Yellow dwarf of tobacco in Australia. III. Occurrence and agronomic practices. J. Sci. Ind. Res. 1942, 15, 1–13. [Google Scholar]
- Ballantyne, B.; Sumeghy, J.B.; Pulver, R.J. Reaction of bean varieties to summer death. Agric. Gaz. New South Wales 1969, 430–433. [Google Scholar]
- Trebicki, P.; Harding, RM.; Rodoni, B.; Baxter, G.; Powell, K.S. Vectors and alternative hosts of Tobacco yellow dwarf virus in southeastern Australia. Ann. Appl. Biol. 2010, 157, 13–24. [Google Scholar] [CrossRef]
- Rybicki, E.P.; Pietersen, G. Plant virus disease problems in the developing world. Adv. Virus Res. 1999, 53, 127–175. [Google Scholar] [PubMed]
- Schwinghamer, M.W.; Thomas, J.E.; Schilg, M.A.; Parry, J.N.; Dann, E.K.; Moore, K.J.; Kumari, S.G. Mastreviruses in chickpea, Cicer arietinum and other dicotyledonous crops and weeds in Queensland and northern New South Wales, Australia. Aust. Plant Path 2010, 39, 551–561. [Google Scholar] [CrossRef]
- Thomas, J.E.; Parry, J.N.; Schwinghamer, M.W.; Dann, E.K. Two novel mastrevirus species from chickpea (Cicer arietinum) in Australia. Arch. Virol. 2010, 155, 1777–1788. [Google Scholar] [CrossRef]
- Hadfield, J.; Thomas, J.E.; Schwinghamer, M.W.; Kraberger, S.; Stainton, D.; Dayaram, A.; Parry, J.N.; Pande, D.; Martin, D.P.; Varsani, A. Molecular characterisation of dicot-infecting mastreviruses from Australia. Virus Res. 2012, 166, 13–22. [Google Scholar] [CrossRef]
- Farzadfar, S.H.; Pourrahim, R.; Golnaraghi, A.R.; Ahoonmanesh, A. PCR detection and partial molecular characterization of Chickpea chlorotic dwarf virus in naturally infected sugar beet plants in Iran. J. Plant Pathol. 2008, 90, 247–251. [Google Scholar]
- Manzoor, M.T.; Ilyas, M.; Shafiq, M.; Haider, M.S.; Shahid, A.A.; Briddon, R.W. A distinct strain of Chickpea chlorotic dwarf virus (genus Mastrevirus, family Geminiviridae) identified in cotton plants affected by leaf curl disease. Arch. Virol. 2014, 159, 1217–1221. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Khan, A.J.; Briddon, R.W. A distinct strain of Chickpea chlorotic dwarf virus infecting pepper in Oman. Plant Dis. 2014, 98, 286. [Google Scholar] [CrossRef]
- Mubin, M.; Mansoor, S.; Briddon, R.W. Letter to the Editor: Mastrevirus sequences in a begomovirus-infected plant. Virus Genes 2012, 44, 536–538. [Google Scholar] [CrossRef] [PubMed]
- Zia-Ur-Rehman, M.; Hameed, U.; Herrmann, H.W.; Iqbal, M.J.; Haider, M.S.; Brown, J.K. First report of Chickpea chlorotic dwarf virus infecting tomato crops in Pakistan. Plant Dis. 2015, 99, 1287. [Google Scholar] [CrossRef]
- Zia-Ur-Rehman, M.; Hameed, U.; Ali, C.A.; Haider, M.S.; Brown, J.K. First Report of Chickpea chlorotic dwarf virus Infecting Okra in Pakistan. Plant Dis. 2017, 101, 1336. [Google Scholar] [CrossRef]
- Hameed, U.; Zia-Ur-Rehman, M.; Ali, S.A.; Haider, M.S.; Brown, J.K. Invasion of previously unreported dicot plant hosts by Chickpea chlorotic dwarf virus in Pakistan. Virus Dis. 2018, 1–6. [Google Scholar] [CrossRef]
- Ali, M.A.; Kumari, S.G.; Makkouk, K.H.; Hassan, M.M. Chickpea chlorotic dwarf virus, CpCDV naturally infects phaseolus bean and other wild species in the Gezira region of Sudan. Arab. J. Plant Protect. 2004, 22, 96. [Google Scholar]
- Grimsley, N.H.; Hohn, T.; Davies, J.W.; Hohn, B. Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature 1987, 325, 177–179. [Google Scholar] [CrossRef]
- Mumtaz, H.; Kumari, S.G.; Mansoor, S.; Martin, D.P.; Briddon, R.W. Analysis of the sequence of a dicot-infecting mastrevirus, family Geminiviridae originating from Syria. Virus Genes 2011, 42, 422–428. [Google Scholar] [CrossRef]
- Kanakala, S.; Verma, H.N.; Vijay, P.; Saxena, D.R.; Malathi, V.G. Response of chickpea genotypes to Agrobacterium-mediated delivery of Chickpea chlorotic dwarf virus (CpCDV) genome and identification of resistance source. Appl. Microbiol. Biotechnol. 2013, 97, 9491–9501. [Google Scholar] [CrossRef]
- Martin, D.P.; Biagini, P.; Lefeuvre, P.; Golden, M.; Roumagnac, P.; Varsani, A. Recombination in eukaryotic single stranded DNA viruses. Viruses 2011, 3, 1699–1738. [Google Scholar] [CrossRef] [PubMed]
- Varsani, A.; Shepherd, D.N.; Monjane, A.L.; Owor, B.E.; Erdmann, J.B.; Rybicki, E.P.; Peterschmitt, M.; Briddon, R.W.; Markham, P.G.; Oluwafemi, S.; et al. Recombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen. J. Gen. Virol. 2008, 89, 2063–2074. [Google Scholar] [CrossRef] [PubMed]
- Saunders, K.; Norman, A.; Gucciardo, S.; Stanley, J. The DNA β satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (βC1). Virology 2004, 324, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Kumar, J.; Singh, S.P.; Tuli, R. βC1 is a pathogenicity determinant: Not only for begomoviruses but also for a mastrevirus. Arch. Virol. 2014, 159, 3071–3076. [Google Scholar] [CrossRef] [PubMed]
- Storey, H.H. Transmission studies of maize streak disease. Ann. Appl. Biol. 1928, 15, 1–25. [Google Scholar] [CrossRef]
- Severin, H.H.P. Minimum incubation periods of causative agent of curly leaf in beet leafhopper and sugar beet. Phytopathology 1921, 11, 424–429. [Google Scholar]
- Severin, H.H.P. Modes of curly-top transmission by the beet leafhopper, Eutettix tenellus (Baker). Hilgardia 1931, 6, 8. [Google Scholar] [CrossRef]
- Bennett, C.W.; Wallace, H.E. Relation of the curly top virus to the vector, Eutettix tenellus. J. Agric. Res. 1938, 56, 0031–0051. [Google Scholar]
- Akhtar, K.P.; Ahmad, M.; Shah, T.M.; Atta, B.M. Transmission of Chickpea chlorotic dwarf virus in chickpea by the leafhopper Orosius albicinctus (Distant) in Pakistan. Plant Protect. Sci. 2011, 47, 1–4. [Google Scholar] [CrossRef]
- Kumari, S.G.; Makkouk, K.M.; Attar, N. An improved antiserum for sensitive serologic detection of Chickpea chlorotic dwarf virus. J. Phytopathol. 2006, 154, 29–133. [Google Scholar] [CrossRef]
- Haible, D.; Kober, S.; Jeske, H. Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J. Virol. Methods 2006, 135, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Pico, B.; Diez, M.J.; Fernando, N. Evaluation of whitefly-mediated inoculation techniques to screen Lycopersicon esculentum and wild relatives for resistance to Tomato yellow leaf curl virus. Euphytica 1998, 101, 259–271. [Google Scholar] [CrossRef]
- Akhtar, K.P.; Haider, S.; Khan, M.K.R.; Ahmad, M.; Sarwar, N.; Murtaza, M.A.; Aslam, M. Evaluation of Gossypium species for resistance to cotton leaf curl Burewala virus. Ann. Appl. Biol. 2010, 157, 135–147. [Google Scholar] [CrossRef]
- Sudarshana, M.R.; Roy, G.; Falk, B.W. Methods for engineering resistance to plant viruses. Methods Mol. Biol. 2007, 354, 183–195. [Google Scholar] [PubMed]
- Kanakala, S.; Ghanim, M. RNA interference in insect vectors for plant viruses. Viruses 2016, 8, 329. [Google Scholar] [CrossRef] [PubMed]
- Nahid, N.; Amin, I.; Briddon, R.W.; Mansoor, S. RNA interference-based resistance against a legume mastrevirus. Virol. J. 2011, 8, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltes, N.J.; Hummel, A.W.; Konecna, E.; Cegan, R.; Bruns, A.N.; Bisaro, D.M.; Voytas, D.F. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat. Plants 2015, 1, 15145. [Google Scholar] [CrossRef]
- Chen, Y.; Cassone, B.J.; Bai, X.; Redinbaugh, M.G.; Michel, A.P. Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of Maize fine streak rhabdovirus transmission. PLoS ONE 2012, 7, e40613. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Hattori, M. Gene silencing by parental RNA interference in the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae) Arch. Insect Biochem. Physiol. 2016, 91, 152–164. [Google Scholar] [CrossRef]
- Ali, Z.; Abul-Faraj, A.; Li, L.; Ghosh, N.; Piatek, M.; Mahjoub, A.; Aouida, M.; Piatek, A.; Baltes, N.J.; Voytas, D.F.; et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant 2015, 8, 1288–1291. [Google Scholar] [CrossRef]
- Ali, Z.; Ali, S.; Tashkandi, M.; Zaidi, S.S.E.A.; Mahfouz, M.M. CRISPR/Cas9-mediated immunity to geminiviruses: Differential interference and evasion. Sci. Rep. 2016, 6, e26912. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Zhang, H.; Zhang, Y.; Wang, Y.; Gao, C. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants 2015, 1, e1514. [Google Scholar] [CrossRef] [PubMed]
Dicot Infecting Mastreviruses | Countries | Host Plant Species | Reference |
---|---|---|---|
CpCV | |||
CpCV-A | Australia | C. arietinum | [35,44] |
CpCV-B | Australia | C. arietinum | [35,45] |
CpCV-C | Australia | C. arietinum | [45] |
CpCV-E | Australia | C. arietinum, P. vulgaris | [35,45] |
CpCV-F | Australia | C. arietinum | [35] |
CpCAV | Australia | C. arietinum, P. vulgaris | [45] |
CpCDV | |||
CpCDV-A | Syria, Iran, Turkey, Tunisia, Egypt | C. arietinum,C. lanatus, Squash, P. sativum | [23,24,35,44,45] |
CpCDV-B | Pakistan, South Africa | P. vulgaris, C. arietinum | [13,21] |
CpCDV-C | India, Sudan, Pakistan | C. arietinum, cucumber, G. hirsutum, G. arboretum, Okra, C. annuum, V. faba, L. culinaris, S. lycopersicum, Spinach (S. oleracea) | [11,13,14,18,22,34,35,50,51,52] |
CpCDV-D | India, Pakistan, Sudan, Morocco | C. arietinum, P. sativum,L. culinaris | [35] |
CpCDV-E | Sudan | C. arietinum, V. faba | [34] |
CpCDV-F | Sudan, Pakistan, Syria, Yemen, Oman, Eritrea | C. arietinum, Pepper, L. culinaris, V. faba | [34,35,48] |
CpCDV-G | Eritrea | C. arietinum | [35] |
CpCDV-H | Sudan, Pakistan, Eritrea, Tunisia | C. arietinum, P. sativum, L. culinaris, V. faba | [34] |
CpCDV-I | Sudan, Eritrea | C. arietinum | [34] |
CpCDV-J | Eritrea | C. arietinum | [34] |
CpCDV-K | Sudan, Eritrea | C. arietinum | [34] |
CpCDV-L | Pakistan | G. hirsutum, G. arboreum | [47] |
CpCDV-M | Sudan | C. arietinum | [34] |
CpCDV-N | Sudan | C. arietinum | [34] |
CpCDV-O | Sudan | C. arietinum | [34] |
CpCDV-P | Sudan | C. arietinum | [34] |
CpCDV-Q | Burkina Faso | C. papaya | [25] |
CpCDV-R | Burkina Faso | S. lycopersicum | [25] |
CpCDV-S | Nigeria | C. papaya | [33] |
CpYDV | Pakistan | C. arietinum | [36] |
CpRLV | Australia | C. arietinum | [44] |
CpYV | Australia | C. arietinum | [45] |
TYDV | Australia | Tobacco, Wild radish, P. vulgaris, C. arietinum, Turnip weed (R. rugosum) | [35,38,44] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanakala, S.; Kuria, P. Chickpea chlorotic dwarf virus: An Emerging Monopartite Dicot Infecting Mastrevirus. Viruses 2019, 11, 5. https://doi.org/10.3390/v11010005
Kanakala S, Kuria P. Chickpea chlorotic dwarf virus: An Emerging Monopartite Dicot Infecting Mastrevirus. Viruses. 2019; 11(1):5. https://doi.org/10.3390/v11010005
Chicago/Turabian StyleKanakala, Surapathrudu, and Paul Kuria. 2019. "Chickpea chlorotic dwarf virus: An Emerging Monopartite Dicot Infecting Mastrevirus" Viruses 11, no. 1: 5. https://doi.org/10.3390/v11010005
APA StyleKanakala, S., & Kuria, P. (2019). Chickpea chlorotic dwarf virus: An Emerging Monopartite Dicot Infecting Mastrevirus. Viruses, 11(1), 5. https://doi.org/10.3390/v11010005