Human Polyclonal Antibodies Produced from Transchromosomal Bovine Provides Prophylactic and Therapeutic Protections Against Zika Virus Infection in STAT2 KO Syrian Hamsters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus
2.2. Production of Anti-ZIKV Human Polyclonal Antibodies SAB-155 from Transchromosomal Bovine
2.3. STAT2 KO Golden Syrian Hamsters
2.4. Serum and Tissue Collection
2.5. ZIKV Plaque Reduction Neutralization Test (PRNT)
2.6. ZIKV RT-PCR
2.7. Immunohistochemistry (IHC) and Histology
2.8. Ethics Statement
3. Results
3.1. ZIKV Infection in STAT2 KO Hamsters
3.2. Prophylactic Treatment by SAB-155 of ZIKV Infection in STAT2 KO Hamsters
3.3. Therapeutic Treatment by SAB-155 of ZIKV Infection in STAT2 KO Hamsters and Identifying the Effective Treatment Time Windows
3.4. Dose Titration of Therapeutic Treatment with SAB-155 against ZIKV Infection
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brasil, P.; Pereira, J.P., Jr.; Moreira, M.E.; Ribeiro Nogueira, R.M.; Damasceno, L.; Wakimoto, M.; Rabello, R.S.; Valderramos, S.G.; Halai, U.A.; Salles, T.S.; et al. Zika Virus Infection in Pregnant Women in Rio de Janeiro. N. Engl. J. Med. 2016, 375, 2321–2334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvet, G.; Aguiar, R.S.; Melo, A.S.; Sampaio, S.A.; de Filippis, I.; Fabri, A.; Araujo, E.S.; de Sequeira, P.C.; de Mendonca, M.C.; de Oliveira, L.; et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: A case study. Lancet Infect. Dis. 2016, 16, 653–660. [Google Scholar] [CrossRef]
- Satterfield-Nash, A.; Kotzky, K.; Allen, J.; Bertolli, J.; Moore, C.A.; Pereira, I.O.; Pessoa, A.; Melo, F.; Santelli, A.; Boyle, C.A.; et al. Health and Development at Age 19-24 Months of 19 Children Who Were Born with Microcephaly and Laboratory Evidence of Congenital Zika Virus Infection During the 2015 Zika Virus Outbreak—Brazil, 2017. MMWR Morb. Mortal Wkly. Rep. 2017, 66, 1347–1351. [Google Scholar] [CrossRef] [PubMed]
- Sano, A.; Matsushita, H.; Wu, H.; Jiao, J.A.; Kasinathan, P.; Sullivan, E.J.; Wang, Z.; Kuroiwa, Y. Physiological level production of antigen-specific human immunoglobulin in cloned transchromosomic cattle. PLoS ONE 2013, 8, e78119. [Google Scholar] [CrossRef] [PubMed]
- Luke, T.; Wu, H.; Zhao, J.; Channappanavar, R.; Coleman, C.M.; Jiao, J.A.; Matsushita, H.; Liu, Y.; Postnikova, E.N.; Ork, B.L.; et al. Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Sci. Transl. Med. 2016, 8, 326ra21. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.R.; Golden, J.W.; Griffin, B.D.; Warner, B.M.; Ranadheera, C.; Scharikow, L.; Sloan, A.; Frost, K.L.; Kobasa, D.; Booth, S.A.; et al. Human polyclonal antibodies produced in transchromosomal cattle prevent lethal Zika virus infection and testicular atrophy in mice. Antiviral Res. 2017. [Google Scholar] [CrossRef]
- Fan, Z.; Li, W.; Lee, S.R.; Meng, Q.; Shi, B.; Bunch, T.D.; White, K.L.; Kong, I.K.; Wang, Z. Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system. PLoS ONE 2014, 9, e109755. [Google Scholar] [CrossRef]
- Sejvar, J.J. West Nile Virus Infection. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Valderrama, A.; Diaz, Y.; Lopez-Verges, S. Interaction of Flavivirus with their mosquito vectors and their impact on the human health in the Americas. Biochem. Biophys. Res. Commun. 2017, 492, 541–547. [Google Scholar] [CrossRef]
- Siddharthan, V.; Van Wettere, A.J.; Li, R.; Miao, J.; Wang, Z.; Morrey, J.D.; Julander, J.G. Zika virus infection of adult and fetal STAT2 knock-out hamsters. Virology 2017, 507, 89–95. [Google Scholar] [CrossRef]
- Hooper, J.W.; Brocato, R.L.; Kwilas, S.A.; Hammerbeck, C.D.; Josleyn, M.D.; Royals, M.; Ballantyne, J.; Wu, H.; Jiao, J.A.; Matsushita, H.; et al. DNA vaccine-derived human IgG produced in transchromosomal bovines protect in lethal models of hantavirus pulmonary syndrome. Sci. Transl. Med. 2014, 6, 264ra162. [Google Scholar] [CrossRef] [PubMed]
- Julander, J.G.; Siddharthan, V.; Evans, J.; Taylor, R.; Tolbert, K.; Apuli, C.; Stewart, J.; Collins, P.; Gebre, M.; Neilson, S.; et al. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Res. 2016, 137, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.S.; Van Wettere, A.J.; Siddharthan, V.; Morrey, J.D.; Julander, J.G. Comparative Histopathologic Lesions of the Male Reproductive Tract during Acute Infection of Zika Virus in AG129 and IFNAR(−/−) Mice. Am. J. Pathol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Li, S.; Ma, S.; Jia, L.; Zhang, F.; Zhang, Y.; Zhang, J.; Wong, G.; Zhang, S.; Lu, X.; et al. Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. Cell 2016. [Google Scholar] [CrossRef]
- Sheng, Z.Y.; Gao, N.; Wang, Z.Y.; Cui, X.Y.; Zhou, D.S.; Fan, D.Y.; Chen, H.; Wang, P.G.; An, J. Sertoli Cells Are Susceptible to ZIKV Infection in Mouse Testis. Front. Cell. Infect. Microbiol. 2017, 7, 272. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, H.S.; Calisher, C.H.; Mathews, J.H. Serum dilution neutralization test for California group virus identification and serology. J. Clin. Microbiol. 1976, 4, 503–510. [Google Scholar] [PubMed]
- Siddharthan, V.; Wang, H.; Davies, C.J.; Hall, J.O.; Morrey, J.D. Inhibition of west nile virus by calbindin-d28k. PLoS ONE 2014, 9, e106535. [Google Scholar] [CrossRef]
- Tripathi, S.; Balasubramaniam, V.R.; Brown, J.A.; Mena, I.; Grant, A.; Bardina, S.V.; Maringer, K.; Schwarz, M.C.; Maestre, A.M.; Sourisseau, M.; et al. A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathog. 2017, 13, e1006258. [Google Scholar] [CrossRef]
- Julander, J.G.; Siddharthan, V. Small-Animal Models of Zika Virus. J. Infect. Dis. 2017, 216, S919–S927. [Google Scholar] [CrossRef] [Green Version]
- Zmurko, J.; Marques, R.E.; Schols, D.; Verbeken, E.; Kaptein, S.J.; Neyts, J. The Viral Polymerase Inhibitor 7-Deaza-2′-C-Methyladenosine Is a Potent Inhibitor of In Vitro Zika Virus Replication and Delays Disease Progression in a Robust Mouse Infection Model. PLoS Negl. Trop. Dis. 2016, 10, e0004695. [Google Scholar] [CrossRef]
- Deng, Y.Q.; Zhang, N.N.; Li, C.F.; Tian, M.; Hao, J.N.; Xie, X.P.; Shi, P.Y.; Qin, C.F. Adenosine Analog NITD008 Is a Potent Inhibitor of Zika Virus. Open Forum Infect. Dis. 2016, 3, ofw175. [Google Scholar] [CrossRef] [PubMed]
- Bullard-Feibelman, K.M.; Govero, J.; Zhu, Z.; Salazar, V.; Veselinovic, M.; Diamond, M.S.; Geiss, B.J. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral Res. 2017, 137, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Yang, H.; Liu, X.; Dai, L.; Ma, T.; Qi, J.; Wong, G.; Peng, R.; Liu, S.; Li, J.; et al. Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Sci. Transl. Med. 2016, 8, 369ra179. [Google Scholar] [CrossRef] [PubMed]
- Swanstrom, J.A.; Plante, J.A.; Plante, K.S.; Young, E.F.; McGowan, E.; Gallichotte, E.N.; Widman, D.G.; Heise, M.T.; de Silva, A.M.; Baric, R.S. Dengue Virus Envelope Dimer Epitope Monoclonal Antibodies Isolated from Dengue Patients Are Protective against Zika Virus. mBio 2016, 7, e01123-16. [Google Scholar] [CrossRef] [PubMed]
- Sapparapu, G.; Fernandez, E.; Kose, N.; Bin, C.; Fox, J.M.; Bombardi, R.G.; Zhao, H.; Nelson, C.A.; Bryan, A.L.; Barnes, T.; et al. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature 2016, 540, 443–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Yan, J.; Gao, G.F. Monoclonal Antibodies against Zika Virus: Therapeutics and Their Implications for Vaccine Design. J. Virol. 2017, 91, e01049-17. [Google Scholar] [CrossRef]
- Magnani, D.M.; Rogers, T.F.; Beutler, N.; Ricciardi, M.J.; Bailey, V.K.; Gonzalez-Nieto, L.; Briney, B.; Sok, D.; Le, K.; Strubel, A.; et al. Neutralizing human monoclonal antibodies prevent Zika virus infection in macaques. Sci. Transl. Med. 2017, 9, eaan8184. [Google Scholar] [CrossRef]
- Bounds, C.E.; Kwilas, S.A.; Kuehne, A.I.; Brannan, J.M.; Bakken, R.R.; Dye, J.M.; Hooper, J.W.; Dupuy, L.C.; Ellefsen, B.; Hannaman, D.; et al. Human Polyclonal Antibodies Produced through DNA Vaccination of Transchromosomal Cattle Provide Mice with Post-Exposure Protection against Lethal Zaire and Sudan Ebolaviruses. PLoS ONE 2015, 10, e0137786. [Google Scholar] [CrossRef] [PubMed]
- Dye, J.M.; Wu, H.; Hooper, J.W.; Khurana, S.; Kuehne, A.I.; Coyle, E.M.; Ortiz, R.A.; Fuentes, S.; Herbert, A.S.; Golding, H.; et al. Production of Potent Fully Human Polyclonal Antibodies against Ebola Zaire Virus in Transchromosomal Cattle. Sci. Rep. 2016, 6, 24897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, C.L.; Sun, C.; Luke, T.; Raviprakash, K.; Wu, H.; Jiao, J.A.; Sullivan, E.; Reed, D.S.; Ryman, K.D.; Klimstra, W.B. Antibody Preparations from Human Transchromosomic Cows Exhibit Prophylactic and Therapeutic Efficacy against Venezuelan Equine Encephalitis Virus. J. Virol. 2017, 91, JVI-00226. [Google Scholar] [CrossRef] [PubMed]
- Silver, J.N.; Ashbaugh, C.D.; Miles, J.J.; Wu, H.; Marecki, G.T.; Hwang, J.K.; Jiao, J.A.; Abrams, M.; Sullivan, E.J.; Wesemann, D.R. Deployment of Transchromosomal Bovine for Personalized Antimicrobial Therapy. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2017. [Google Scholar] [CrossRef] [PubMed]
- Beigel, J.H.; Voell, J.; Kumar, P.; Raviprakash, K.; Wu, H.; Jiao, J.A.; Sullivan, E.; Luke, T.; Davey, R.T., Jr. Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: A phase 1 randomised, double-blind, single-dose-escalation study. Lancet Infect. Dis. 2018. In press. [Google Scholar] [CrossRef]
Treatment Day | SAB-155 Antibody Dosage | Testis | |||||
---|---|---|---|---|---|---|---|
ZIKV RNA by RT-PCR | Morphological Diagnoses * | Immunohistochemistry | Lesions/Total No. of Male Hamster Necropsied | ||||
Identifying effective day of antibody treatment ** | SAB -155 treatment | −1 dpi | 100 mg/kg | Below the limit of detection (<105.5) | No significant lesions | 4/4 No ZIKV infected cells found | 0/4 |
3 dpi | 100 mg/kg | Below the limit of detection (<105.5) | No significant lesions | 4/4 No ZIKV infected cells found | 0/4 | ||
4.5 dpi | 100 mg/kg | 106–1010 | Pyogranulomatous inflammatory exudate infiltrates. | 1/4 animal had ZIKV antigen in ST. | 1/4 | ||
Negativecontrols | 1 dpi | Irrelevant Ab. 100 mg/kg | 109 | Diffusely pyogranulomatous inflammatory exudate infiltrates expand and replaces the interstitium of ST. | 2/4 animal had ZIKV antigen in ST. 2/4 animal died before 21 dpi. | 2/2 | |
Uninfected controls ** | 1 dpi | 100 mg/kg | Below the limit of detection (<105.5) | No significant lesions | No ZIKV infected cells found | 0/4 | |
1 dpi | Irrelevant Ab. 100 mg/kg | Below the limit of detection (<105.5) | No significant lesions | No ZIKV infected cells found | 0/4 | ||
Identifying effective dose of antibody treatment *** | SAB-155treatment | 4.5 dpi | 200 mg/kg | 106–1011 | 1/6 with a minimal pyogranulomatous orchitis.4/6 with a severe pyogranulomatous orchitis | 6/6 animals had ZIKV antigen in ST. | 6/6 |
4.5 dpi | 400 mg/kg | 105–108 | 1/6 with a severe pyogranulomatous orchitis. | 6/6 animals had ZIKV antigen in ST. | 6/6 | ||
Negative controls | 4.5 dpi | Irrelevant Ab. 400 mg/kg | 106–1010 | 5/6 with a severe pyogranulomatous orchitis. | 5/6 animals had ZIKV antigen in ST.1/6 animal had coagulative necrotic testis. 1/6 animal died before 21 dpi. | 5/6 | |
1 dpi | Irrelevant Ab. 100 mg/kg | 108 | 3/4 animal died before necropsy. One animal survived with severe pyogranulomatous orchitis. | 3/4 animal died before necropsy.1/4 animal with heavy ZIKV+ve ST. | 1/1 | ||
UninfectedControls *** | 1 dpi | 100 mg/kg | Below the limit of detection (<105.5) | No significant lesions | No ZIKV infected cells found | 0/6 | |
1 dpi | Irrelevant Ab. 400 mg/kg | Below the limit of detection (<105.5) | No significant lesions | No ZIKV infected cells found | 0/6 | ||
1 dpi | Vehicle | Below the limit of detection (<105.5) | No significant lesions | No ZIKV infected cells found | 0/6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddharthan, V.; Miao, J.; Van Wettere, A.J.; Li, R.; Wu, H.; Sullivan, E.; Jiao, J.; Hooper, J.W.; Safronetz, D.; Morrey, J.D.; et al. Human Polyclonal Antibodies Produced from Transchromosomal Bovine Provides Prophylactic and Therapeutic Protections Against Zika Virus Infection in STAT2 KO Syrian Hamsters. Viruses 2019, 11, 92. https://doi.org/10.3390/v11020092
Siddharthan V, Miao J, Van Wettere AJ, Li R, Wu H, Sullivan E, Jiao J, Hooper JW, Safronetz D, Morrey JD, et al. Human Polyclonal Antibodies Produced from Transchromosomal Bovine Provides Prophylactic and Therapeutic Protections Against Zika Virus Infection in STAT2 KO Syrian Hamsters. Viruses. 2019; 11(2):92. https://doi.org/10.3390/v11020092
Chicago/Turabian StyleSiddharthan, Venkatraman, Jinxin Miao, Arnaud J Van Wettere, Rong Li, Hua Wu, Eddie Sullivan, Jinan Jiao, Jay W. Hooper, David Safronetz, John D. Morrey, and et al. 2019. "Human Polyclonal Antibodies Produced from Transchromosomal Bovine Provides Prophylactic and Therapeutic Protections Against Zika Virus Infection in STAT2 KO Syrian Hamsters" Viruses 11, no. 2: 92. https://doi.org/10.3390/v11020092