Host Range Evolution of Potyviruses: A Global Phylogenetic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collating Host Range Data
2.2. Phylogenetic Analyses
2.3. Determination of Ancestral Host/Non-Host States in Potyvirus Phylogenetic Tree
3. Results
3.1. Building a Potyvirus and Rymovirus Phylogenetic Tree
3.2. Frequent Host Range Changes during Potyvirus Evolution
3.3. Distribution of Host Range Changes across Plant Families and Potyvirus Clades
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Use of Random Simulations to Establish a Threshold Value to Infer the Host Status of the Considered Plant Species for the Potyvirus Most Recent Common Ancestor (MRCA)
Simulation Batch (10,000 Each) | Simulated Datasets | Results of Simulations for the Host Status of the Plant Species for the Potyvirus MRCA | ||||
---|---|---|---|---|---|---|
Number of Host or Non-Host Statuses (N) | Number of Missing Data (62-2 × N) | Mean P64 | N1: Number of Simulations with P64 > 0.65 | N2: Number of Simulations with (1 − P64) > 0.65 | N1 + N2 | |
1 | 6 | 50 | 0.5 | 75 | 92 | 167 |
2 | 12 | 38 | 0.5 | 74 | 107 | 181 |
3 | 18 | 26 | 0.5 | 68 | 44 | 112 |
4 | 24 | 14 | 0.5 | 38 | 52 | 90 |
5 | 27 | 8 | 0.5 | 49 | 30 | 79 |
References
- Woolhouse, M.E.J.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef]
- Fabre, F.; Rousseau, E.; Mailleret, L.; Moury, B. Durable strategies to deploy plant resistance in agricultural landscapes. New Phytol. 2012, 193, 1064–1075. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.E.; Moury, B. Revisiting the concept of host range of plant pathogens. Annu. Rev. Phytopathol. 2019, 57, 63–90. [Google Scholar] [CrossRef] [PubMed]
- Rimbaud, L.; Papaïx, J.; Barrett, L.G.; Burdon, J.J.; Thrall, P.H. Mosaics, mixtures, rotations or pyramiding: What is the optimal strategy to deploy major gene resistance? Evol. Appl. 2018, 11, 1791–1810. [Google Scholar] [CrossRef] [PubMed]
- McLeish, M.; Sacristan, S.; Fraile, A.; Garcia-Arenal, F. Scale dependencies and generalism in host use shape virus prevalence. Proc. R. Soc. B 2017, 284, 20172066. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.C.; Chiang, C.H.; Raja, J.A.; Liu, F.L.; Tai, C.H.; Yeh, S.D. A single amino acid of NIaPro of Papaya ringspot virus determines host specificity for infection of papaya. Mol. Plant-Microbe Interact. 2008, 21, 1046–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dombrovsky, A.; Tran-Nguyen, L.T.T.; Jones, R.A.C. Cucumber green mottle mosaic virus, Rapidly increasing global distribution, etiology, epidemiology, and management. Annu. Rev. Phytopathol. 2017, 55, 231–256. [Google Scholar] [CrossRef]
- Gibbs, A.J.; Wood, J.; García-Arenal, F.; Ohshima, K.; Armstrong, J.S. Tobamoviruses have probably co-diverged with their eudicotyledonous hosts for at least 110 million years. Virus Evol. 2015, 1, vev019. [Google Scholar] [CrossRef] [Green Version]
- Hilf, M.E.; Dawson, W.O. The tobamovirus capsid protein functions as a host specific determinant of long distance movement. Virology 1993, 193, 106–114. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Tomitaka, Y.; Ho, S.Y.; Duchêne, S.; Vetten, H.J.; Lesemann, D.; Walsh, J.A.; Gibbs, A.J.; Ohshima, K. Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago. PLoS ONE 2013, 8, e55336. [Google Scholar] [CrossRef]
- Poulicard, N.; Pinel-Galzi, A.; Traoré, O.; Vignols, F.; Ghesquière, A.; Konate, G.; Hébrard, E.; Fargette, D. Historical contingencies modulate the adaptability of Rice yellow mottle virus. PLoS Pathog. 2012, 8, e1002482. [Google Scholar] [CrossRef] [Green Version]
- Ryu, K.H.; Kim, C.H.; Palukaitis, P. The coat protein of cucumber mosaic virus is a host range determinant for infection of maize. Mol. Plant-Microbe Interact. 1998, 11, 351–357. [Google Scholar] [CrossRef]
- Schoelz, J.E.; Shepherd, R.J. Host range control of cauliflower mosaic virus. Virology 1988, 162, 30–37. [Google Scholar] [CrossRef]
- Suehiro, N.; Natsuaki, T.; Watanabe, T.; Okuda, S. An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. J. Gen. Virol. 2004, 85, 2087–2098. [Google Scholar] [CrossRef]
- Tatineni, S.; Robertson, C.J.; Garnsey, S.M.; Dawson, W.O. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proc. Nat. Acad. Sci. USA 2011, 108, 17366–17371. [Google Scholar] [CrossRef] [Green Version]
- Vassilakos, N.; Simon, V.; Tzima, A.; Johansen, E.; Moury, B. Genetic determinism and evolutionary reconstruction of a host jump in a plant virus. Mol. Biol. Evol. 2016, 33, 541–553. [Google Scholar] [CrossRef] [Green Version]
- ICTV. Available online: https://talk.ictvonline.org/taxonomy (accessed on 16 October 2019).
- Brunt, A.; Crabtree, K.; Dallwitz, M.; Gibbs, A.; Watson, L. Viruses of Plants: Descriptions and Lists from the VIDE Database; C.A.B. International: Wallingford, UK, 1996; 1484p. [Google Scholar]
- Gibbs, A.; Ohshima, K. Potyviruses and the digital revolution. Annu. Rev. Phytopathol. 2010, 48, 205–223. [Google Scholar] [CrossRef]
- Edwardson, J.R.; Christie, R.G. The potyviruses. Fla. Agric. Exp. Stat. Monogr. Ser. 1991. [Google Scholar]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service, multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2017, 20, 1160–1166. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7, Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Pagel, M. Detecting correlated evolution on phylogenies, a general method for the comparative analysis of discrete characters. Proc. R. Soc. B 1994, 255, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Paradis, E.; Schliep, K. ape 5.0, an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2018, 35, 526–528. [Google Scholar] [CrossRef]
- R, A Language and Environment for Statistical Computing. Available online: https://www.R-project.org (accessed on 27 September 2019).
- Le, S.Q.; Gascuel, O. LG, An improved, general amino-acid replacement matrix. Mol. Biol. Evol. 2008, 25, 1307–1320. [Google Scholar] [CrossRef] [Green Version]
- Pagán, I. The diversity, evolution and epidemiology of plant viruses: A phylogenetic view. Inf. Genet. Evol. 2018, 65, 187–199. [Google Scholar] [CrossRef]
- Gibbs, A.J.; Ohshima, K.; Phillips, M.J.; Gibbs, M.J. The prehistory of potyviruses: Their initial radiation was during the dawn of agriculture. PLoS ONE 2008, 3, e2523. [Google Scholar] [CrossRef] [Green Version]
- Desbiez, C.; Wipf-Scheibel, C.; Millot, P.; Verdin, E.; Dafalla, G.; Lecoq, H. New species in the papaya ringspot virus cluster, Insights into the evolution of the PRSV lineage. Virus Res. 2017, 241, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, A.J.; Fargette, D.; Garcia-Arenal, F.; Gibbs, M.J. Time—the emerging dimension of plant virus studies. J. Gen. Virol. 2010, 91, 13–22. [Google Scholar] [CrossRef]
- Yasaka, R.; Fukagawa, H.; Ikematsu, M.; Soda, H.; Korkmaz, S.; Golnaraghi, A.; Katis, N.; Ho, S.Y.W.; Gibbs, A.J.; Ohshima, K. The timescale of emergence and spread of turnip mosaic potyvirus. Sci. Rep. 2017, 7, 4240. [Google Scholar] [CrossRef] [Green Version]
- Kehoe, M.A.; Coutts, B.A.; Buirchell, B.J.; Jones, R.A.C. Hardenbergia mosaic virus: Crossing the barrier between native and introduced plant species. Virus Res. 2014, 184, 87–92. [Google Scholar] [CrossRef]
- Crisp, M.D.; Cook, L.G. Do early branching lineages signify ancestral traits? Trends Ecol. Evol. 2005, 20, 122–128. [Google Scholar] [CrossRef]
- Desbiez, C.; Lecoq, H. The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5’ part of the genome. Arch. Virol. 2004, 149, 1619–1632. [Google Scholar] [CrossRef]
- Moury, B.; Fabre, F.; Hébrard, E.; Froissart, R. Determinants of host species range in plant viruses. J. Gen. Virol. 2017, 98, 862–873. [Google Scholar] [CrossRef]
- Bernardo, P.; Charles-Dominique, T.; Barakat, M.; Ortet, P.; Fernandez, E.; Filloux, D.; Hartnady, P.; Rebelo, T.A.; Cousins, S.R.; Mesleard, F.; et al. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. ISME J. 2018, 12, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Revers, F.; Garcia, J.A. Molecular biology of potyviruses. Adv. Virus Res. 2015, 92, 101–199. [Google Scholar] [CrossRef]
- Wang, A. Dissecting the molecular network of virus-plant interactions: The complex roles of host factors. Annu. Rev. Phytopathol. 2015, 53, 45–66. [Google Scholar] [CrossRef]
- Wu, X.Y.; Valli, A.; Garcia, J.A.; Zhou, X.P.; Cheng, X.F. The tug-of-war between plants and viruses: Great progress and many remaining questions. Viruses 2019, 11, 25. [Google Scholar] [CrossRef] [Green Version]
Plant Species | Viruses with Host/Non-Host Status | LRT (p Value) 1 | Potyvirus Ancestral State Inference 2 | Permutation Test (p Value) 3 | Non-Host to Host Changes 4 | Host to Non-Host Changes 4 | Number of Changes 4 |
---|---|---|---|---|---|---|---|
Allium cepa | 12 | 0.293 | 0.17 | 0.9 | 2 | 0 | 2 |
Apium graveolens | 16 | 0.132 | 0.05 | 0.82 | 2 | 0 | 2 |
Avena sativa | 14 | 0.824 | 0.36 | 0.56 | 2 * | 0.5 * | 2.5 |
Beta vulgaris | 31 | 0.224 | 0.04 | 0.048 | 8 | 0 | 8 |
Brassica campestris | 17 | 0.202 | 0.03 | 0.62 | 2 | 0 | 2 |
Brassica oleracea | 23 | 0.303 | 0 | 0.56 | 2 | 0 | 2 |
Capsicum annuum | 34 | 0.034 | 0.01 | 0.13 | 3.5 * | 2.5 * | 6 |
Capsicum frutescens | 19 | 0.343 | 0.10 | 0.022 | 3 | 1 | 4 |
Catharanthus roseus | 17 | NA | 0.16 | 0.93 | 4 | 0 | 4 |
Chenopodium amaranticolor | 50 | 0.894 | 0.95 | 0.47 | 0 | 7.5 * | 7.5 |
Chenopodium quinoa | 51 | 0.38 | 0.91 | 0.70 | 0 | 9 | 9 |
Citrullus lanatus | 15 | 0.77 | 0.20 | 0.017 | 3 | 0 | 3 |
Cucumis melo | 19 | 0.48 | 0.04 | 0.15 | 3 | 0 | 3 |
Cucumis sativus | 47 | 0.043 | 0.04 | 0.13 | 9 | 1 | 10 |
Datura stramonium | 48 | 0.090 | 0.01 | 0.3 | 6 | 0 | 6 |
Glycine max | 28 | 0.431 | 0.13 | 0.016 | 4 | 1 | 5 |
Hordeum vulgare | 15 | 0.074 | 0.06 | 0.58 | 2 | 0 | 2 |
Lactuca sativa | 22 | 0.047 | 0.08 | 0.83 | 4 | 0 | 4 |
Lathyrus odoratus | 14 | 0.189 | 0.68 | 0.61 | 0 | 3 | 3 |
Lupinus albus | 13 | 0.363 | 0.96 | 0.94 | 0 | 1 | 1 |
Medicago sativa | 18 | 0.179 | 0.10 | 0.25 | 3 | 0 | 3 |
Nicotiana benthamiana | 31 | 0.864 | 0.70 | 0.96 | 0 | 6.5 * | 6.5 |
Nicotiana clevelandii | 48 | 0.857 | 0.82 | 0.88 | 0 | 11 | 11 |
Nicotiana glutinosa | 51 | 0.146 | 0.04 | 0.003 | 11 | 2 | 13 |
Nicotiana megalosiphon | 22 | 0.705 | 0.33 | 0 | 2 | 1.5 * | 3.5 |
Nicotiana sylvestris | 13 | 0.164 | 0.93 | 0.81 | 0 | 2 | 2 |
Nicotiana tabacum | 53 | 0.167 | 0.33 | NA | NA | NA | NA |
Phaseolus vulgaris | 49 | 0.413 | 0.15 | 0.11 | 7.5 * | 2 | 9.5 |
Raphanus sativus | 20 | 0.2 | 0 | 0.42 | 1 | 0 | 1 |
Solanum lycopersicum | 43 | 0.201 | 0.09 | 0.039 | 8 | 0 | 8 |
Solanum melongena | 20 | 0.040 | 0.02 | 0.43 | 3 | 0 | 3 |
Solanum tuberosum | 20 | NA | 0.19 | 0.29 | 5 | 0 | 5 |
Trifolium pratense | 22 | 0.082 | 0 | 0.013 | 3 | 0 | 3 |
Trifolium repens | 20 | 0.452 | 0.04 | 0.6 | 2 | 0 | 2 |
Trigonella foenum-graecum | 14 | 0.186 | 0.92 | 0.93 | 0 | 2 | 2 |
Triticum aestivum | 15 | 0.657 | 0.19 | 0.59 | 1 | 0 | 1 |
Vicia faba | 33 | 0.385 | 0.09 | 0.004 | 5 | 2 | 7 |
Vigna unguiculata | 44 | 0.131 | 0.06 | 0.26 | 6.5 * | 1 | 7.5 |
Zea mays | 25 | 0.742 | 0 | 0.046 | 1 | 0 | 1 |
Average per plant species | - | - | - | - | 3.12 | 1.49 | 4.61 |
Family | Crop | Wild | Total |
---|---|---|---|
Amaranthaceae | 2 | 1 | 3 |
Poaceae | 4 | 0 | 4 |
Brassicaceae | 3 | 0 | 3 |
Solanaceae | 6 | 6 | 12 |
Cucurbitaceae | 3 | 0 | 3 |
Fabaceae | 10 | 0 | 10 |
Others | 3 | 1 | 4 |
Plant Species 1 | Plant Species 2 | Branch Name or Number (Figure 1) | Independent Host Gain Co-Occurrences | Plant Species 1 and 2 Belong to the Same Family | Plant Species 1 and 2 Belong to the Same Continent of Origin 1 |
---|---|---|---|---|---|
Beta vulgaris | Brassica campestris | PSbMV, TuMV | 2 | NO | YES (EU) |
Beta vulgaris | Brassica oleracea | PSbMV, TuMV | 2 | NO | YES (EU) |
Beta vulgaris | Cucumis sativus | PVY, TuMV, 82 | 3 | NO | YES (EU) |
Beta vulgaris | Lactuca sativa | LMV, TuMV | 2 | NO | YES (EU) |
Beta vulgaris | Medicago sativa | PSbMV, 82 | 2 | NO | YES (EU) |
Beta vulgaris | Nicotiana glutinosa | BtMV, TEV, TuMV, 82 | 4 | NO | NO |
Beta vulgaris | Phaseolus vulgaris | LMV, 82 | 2 | NO | NO |
Beta vulgaris | Solanum lycopersicum | PVY, TEV | 2 | NO | NO |
Beta vulgaris | Solanum melongena | PVY, TEV | 2 | NO | YES (EU) |
Beta vulgaris | Solanum tuberosum | PVY, TEV | 2 | NO | NO |
Beta vulgaris | Vicia faba | PSbMV, TuMV, 82 | 3 | NO | YES (EU) |
Beta vulgaris | Vigna unguiculata | PVY, 82 | 2 | NO | NO |
Brassica campestris | Brassica oleracea | PSbMV, TuMV | 2 | YES | YES (EU) |
Brassica campestris | Vicia faba | PSbMV, TuMV | 2 | NO | YES (EU) |
Brassica oleracea | Vicia faba | PSbMV, TuMV | 2 | NO | YES (EU) |
Capsicum annuum | Solanum lycopersicum | TEV, 100 | 2 | YES | YES (AM) |
Capsicum annuum | Solanum tuberosum | TEV, 100 | 2 | YES | YES (AM) |
Capsicum frutescens | Nicotiana glutinosa | TEV, 72 | 2 | YES | YES (AM) |
Catharanthus roseus | Datura stramonium | PVMV, WMV | 2 | NO | NO |
Catharanthus roseus | Nicotiana glutinosa | PVMV, WMV | 2 | NO | NO |
Citrullus lanatus | Cucumis sativus | 82, 104 | 2 | YES | NO |
Citrullus lanatus | Glycine max | 82, 105 | 2 | NO | NO |
Citrullus lanatus | Phaseolus vulgaris | 82, 105 | 2 | NO | NO |
Citrullus lanatus | Vigna unguiculata | 82, 105 | 2 | NO | YES (AF) |
Cucumis melo | Medicago sativa | BYMV, 108 | 2 | NO | NO |
Cucumis sativus | Datura stramonium | HiMV, TuMV, WMV | 3 | NO | NO |
Cucumis sativus | Nicotiana glutinosa | HiMV, PPV, TuMV, WMV, 82 | 5 | NO | NO |
Cucumis sativus | Solanum lycopersicum | HiMV, PPV, PVY | 3 | NO | NO |
Cucumis sativus | Trifolium pratense | PPV, WMV, 82 | 3 | NO | YES (EU) |
Cucumis sativus | Trifolium repens | PPV, 82 | 2 | NO | YES (EU) |
Cucumis sativus | Vicia faba | TuMV, 82 | 2 | NO | YES (EU) |
Cucumis sativus | Vigna unguiculata | PeMoV, PPV, PVY, 82, 109 | 5 | NO | NO |
Datura stramonium | Nicotiana glutinosa | HiMV, HMV, PVMV, TuMV, WMV | 5 | YES | YES (AM) |
Glycine max | Phaseolus vulgaris | SCMV, 82, 105 | 3 | YES | NO |
Glycine max | Vicia faba | 82, 105 | 2 | YES | YES (EU) |
Medicago sativa | Vicia faba | PSbMV, 82 | 2 | YES | YES (EU) |
Nicotiana glutinosa | Solanum lycopersicum | HiMV, PPV, TEV, 86 | 4 | YES | YES (AM) |
Nicotiana glutinosa | Solanum melongena | PVMV, TEV | 2 | YES | NO |
Nicotiana glutinosa | Trifolium pratense | PPV, WMV, 82 | 3 | NO | NO |
Nicotiana glutinosa | Trifolium repens | PPV, 82 | 2 | NO | NO |
Nicotiana glutinosa | Vigna unguiculata | PPV, 82 | 2 | NO | NO |
Phaseolus vulgaris | Vicia faba | 82, 105 | 2 | YES | NO |
Solanum lycopersicum | Solanum melongena | PVY, TEV | 2 | YES | NO |
Solanum lycopersicum | Solanum tuberosum | PVY, TEV, 100 | 3 | YES | YES (AM) |
Solanum lycopersicum | Vigna unguiculata | PPV, PVY | 2 | NO | NO |
Solanum melongena | Solanum tuberosum | PVY, TEV | 2 | YES | NO |
Trifolium pratense | Trifolium repens | PPV, 82 | 2 | YES | YES (EU) |
Trifolium pratense | Vigna unguiculata | PPV, 82 | 2 | YES | NO |
Trifolium repens | Vigna unguiculata | PPV, 82 | 2 | YES | NO |
Total | 119 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moury, B.; Desbiez, C. Host Range Evolution of Potyviruses: A Global Phylogenetic Analysis. Viruses 2020, 12, 111. https://doi.org/10.3390/v12010111
Moury B, Desbiez C. Host Range Evolution of Potyviruses: A Global Phylogenetic Analysis. Viruses. 2020; 12(1):111. https://doi.org/10.3390/v12010111
Chicago/Turabian StyleMoury, Benoît, and Cécile Desbiez. 2020. "Host Range Evolution of Potyviruses: A Global Phylogenetic Analysis" Viruses 12, no. 1: 111. https://doi.org/10.3390/v12010111
APA StyleMoury, B., & Desbiez, C. (2020). Host Range Evolution of Potyviruses: A Global Phylogenetic Analysis. Viruses, 12(1), 111. https://doi.org/10.3390/v12010111