Population- and Variant-Based Genome Analyses of Viruses from Vaccine-Derived Rabies Cases Demonstrate Product Specific Clusters and Unique Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Nucleic Acid Extraction, Sample Processing, and Sequencing
2.3. Population-Based Analysis, Sequence Assembly, and In-Depth Variant Analysis
3. Results
3.1. Viruses from Vaccines Form Product Specific Clusters in Population Analysis
3.2. ERA-Derived Subclusters Comprise Unique Patterns of Base Exchanges
3.3. SAD Bernorig-Derived Cases are Defined by High Sequence Identities Relative to Their Related Vaccines
3.4. Known Antigenic Sites Are Rarely Affected by Amino Acid Exchanges in Vaccine-Induced Cases
3.5. Viruses from Vaccine-Induced Cases Can Clearly Be Distinguished from Field RABV Viruses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Müller, T.; Bätza, H.-J.; Beckert, A.; Bunzenthal, C.; Cox, J.H.; Freuling, C.M.; Fooks, A.R.; Frost, J.; Geue, L.; Hoeflechner, A.; et al. Analysis of vaccine-virus-associated rabies cases in red foxes (Vulpes vulpes) after oral rabies vaccination campaigns in Germany and Austria. Arch. Virol. 2009, 154, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Freuling, C.M.; Hampson, K.; Selhorst, T.; Schröder, R.; Meslin, F.X.; Mettenleiter, T.C.; Müller, T. The elimination of fox rabies from Europe: Determinants of success and lessons for the future. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacInnes, C.D.; Smith, S.M.; Tinline, R.R.; Ayers, N.R.; Bachmann, P.; Ball, D.G.; Calder, L.A.; Crosgrey, S.J.; Fielding, C.; Hauschildt, P.; et al. Elimination of rabies from red foxes in eastern Ontario. J. Wildl. Dis. 2001, 37, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, C.E.; Plotkin, S.A. Rabies vaccines. In Vaccines, 6th ed.; Offit, P.A., Plotkin, S.A., Orenstein, W.A., Eds.; Elsevier Saunders: Saint Louis, MO, USA, 2013; pp. 646–668. ISBN 9781455700905. [Google Scholar]
- Abelseth, M.K. An Attenuated Rabies Vaccine for Domestic Animals Produced in Tissue Culture. Can. Vet. J. 1964, 5, 279–286. [Google Scholar]
- Abelseth, M.K. Propagation of Rabies Virus in Pig Kidney Cell Culture. Can. Vet. J. 1964, 5, 84–87. [Google Scholar]
- Fehlner-Gardiner, C.; Nadin-Davis, S.; Armstrong, J.; Muldoon, F.; Bachmann, P.; Wandeler, A. Era vaccine-derived cases of rabies in wildlife and domestic animals in Ontario, Canada, 1989–2004. J. Wildl. Dis. 2008, 44, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Müller, T.F.; Schröder, R.; Wysocki, P.; Mettenleiter, T.C.; Freuling, C.M. Spatio-temporal Use of Oral Rabies Vaccines in Fox Rabies Elimination Programmes in Europe. PLoS Negl. Trop. Dis. 2015, 9, e0003953. [Google Scholar] [CrossRef] [Green Version]
- Artois, M.; Guittré, C.; Thomas, I.; Leblois, H.; Brochier, B.; Barrat, J. Potential pathogenicity for rodents of vaccines intended for oral vaccination against rabies: A comparison. Vaccine 1992, 10, 524–528. [Google Scholar] [CrossRef]
- Vos, A.; Neubert, A.; Aylan, O.; Schuster, P.; Pommerening, E.; Müller, T.; Chivatsi, D.C. An update on safety studies of SAD B19 rabies virus vaccine in target and non-target species. Epidemiol. Infect. 1999, 123, 165–175. [Google Scholar] [CrossRef]
- Schneider, L.; Cox, J.H. Ein Feldversuch zur oralen Immunisierung von Füchsen gegen die Tollwut in der Bundesrepubik Deutschland: Unschädlichkeit, Wirksamkeit und Stabilität der Vakzine SAD B 19. Tierarztliche Umschau 1983, 1983, 315–324. [Google Scholar]
- Güzel, T.; Aylan, O.; Vos, A. Innocuity tests with SAD B19 in Turkish non-target species. J. Etlik Vet. Microbiol. 1998, 1998, 103–112. [Google Scholar]
- Vuta, V.; Picard-Meyer, E.; Robardet, E.; Barboi, G.; Motiu, R.; Barbuceanu, F.; Vlagioiu, C.; Cliquet, F. Vaccine-induced rabies case in a cow (Bos taurus): Molecular characterisation of vaccine strain in brain tissue. Vaccine 2016, 34, 5021–5025. [Google Scholar] [CrossRef] [PubMed]
- Höper, D.; Freuling, C.M.; Müller, T.; Hanke, D.; von Messling, V.; Duchow, K.; Beer, M.; Mettenleiter, T.C. High definition viral vaccine strain identity and stability testing using full-genome population data--The next generation of vaccine quality control. Vaccine 2015, 33, 5829–5837. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, F.; Müller, T.; Freuling, C.M.; Fehlner-Gardiner, C.; Nadin-Davis, S.; Robardet, E.; Cliquet, F.; Vuta, V.; Hostnik, P.; Mettenleiter, T.C.; et al. In-depth genome analyses of viruses from vaccine-derived rabies cases and corresponding live-attenuated oral rabies vaccines. Vaccine 2019, 37, 4758–4765. [Google Scholar] [CrossRef]
- Wylezich, C.; Papa, A.; Beer, M.; Höper, D. A Versatile Sample Processing Workflow for Metagenomic Pathogen Detection. Sci. Rep. 2018, 8, 13108. [Google Scholar] [CrossRef] [Green Version]
- Nadin-Davis, S.A.; Colville, A.; Trewby, H.; Biek, R.; Real, L. Application of high-throughput sequencing to whole rabies viral genome characterisation and its use for phylogenetic re-evaluation of a raccoon strain incursion into the province of Ontario. Virus Res. 2017, 232, 123–133. [Google Scholar] [CrossRef]
- Hostnik, P.; Picard-Meyer, E.; Rihtarič, D.; Toplak, I.; Cliquet, F. Vaccine-induced rabies in a red fox (Vulpes vulpes): Isolation of vaccine virus in brain tissue and salivary glands. J. Wildl. Dis. 2014, 50, 397–401. [Google Scholar] [CrossRef]
- Brzózka, K.; Finke, S.; Conzelmann, K.-K. Inhibition of interferon signaling by rabies virus phosphoprotein P: Activation-dependent binding of STAT1 and STAT2. J. Virol. 2006, 80, 2675–2683. [Google Scholar] [CrossRef] [Green Version]
- Faber, M.; Faber, M.-L.; Papaneri, A.; Bette, M.; Weihe, E.; Dietzschold, B.; Schnell, M.J. A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J. Virol. 2005, 79, 14141–14148. [Google Scholar] [CrossRef] [Green Version]
- Gholami, A.; Kassis, R.; Real, E.; Delmas, O.; Guadagnini, S.; Larrous, F.; Obach, D.; Prevost, M.-C.; Jacob, Y.; Bourhy, H. Mitochondrial dysfunction in lyssavirus-induced apoptosis. J. Virol. 2008, 82, 4774–4784. [Google Scholar] [CrossRef] [Green Version]
- Kgaladi, J.; Wright, N.; Coertse, J.; Markotter, W.; Marston, D.; Fooks, A.R.; Freuling, C.M.; Müller, T.F.; Sabeta, C.T.; Nel, L.H. Diversity and epidemiology of Mokola virus. PLoS Negl. Trop. Dis. 2013, 7, e2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langevin, C.; Tuffereau, C. Mutations conferring resistance to neutralization by a soluble form of the neurotrophin receptor (p75NTR) map outside of the known antigenic sites of the rabies virus glycoprotein. J. Virol. 2002, 76, 10756–10765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lentz, T.L.; Wilson, P.T.; Hawrot, E.; Speicher, D.W. Amino acid sequence similarity between rabies virus glycoprotein and snake venom curaremimetic neurotoxins. Science 1984, 226, 847–848. [Google Scholar] [CrossRef] [PubMed]
- Masatani, T.; Ito, N.; Shimizu, K.; Ito, Y.; Nakagawa, K.; Abe, M.; Yamaoka, S.; Sugiyama, M. Amino acids at positions 273 and 394 in rabies virus nucleoprotein are important for both evasion of host RIG-I-mediated antiviral response and pathogenicity. Virus Res. 2011, 155, 168–174. [Google Scholar] [CrossRef]
- Mita, T.; Shimizu, K.; Ito, N.; Yamada, K.; Ito, Y.; Sugiyama, M.; Minamoto, N. Amino acid at position 95 of the matrix protein is a cytopathic determinant of rabies virus. Virus Res. 2008, 137, 33–39. [Google Scholar] [CrossRef]
- Préhaud, C.; Wolff, N.; Terrien, E.; Lafage, M.; Mégret, F.; Babault, N.; Cordier, F.; Tan, G.S.; Maitrepierre, E.; Ménager, P.; et al. Attenuation of rabies virulence: Takeover by the cytoplasmic domain of its envelope protein. Sci. Signal 2010, 3, ra5. [Google Scholar] [CrossRef]
- Rieder, M.; Brzózka, K.; Pfaller, C.K.; Cox, J.H.; Stitz, L.; Conzelmann, K.-K. Genetic dissection of interferon-antagonistic functions of rabies virus phosphoprotein: Inhibition of interferon regulatory factor 3 activation is important for pathogenicity. J. Virol. 2011, 85, 842–852. [Google Scholar] [CrossRef] [Green Version]
- Takayama-Ito, M.; Ito, N.; Yamada, K.; Sugiyama, M.; Minamoto, N. Multiple amino acids in the glycoprotein of rabies virus are responsible for pathogenicity in adult mice. Virus Res. 2006, 115, 169–175. [Google Scholar] [CrossRef]
- Tian, D.; Luo, Z.; Zhou, M.; Li, M.; Yu, L.; Wang, C.; Yuan, J.; Li, F.; Tian, B.; Sui, B.; et al. Critical Role of K1685 and K1829 in the Large Protein of Rabies Virus in Viral Pathogenicity and Immune Evasion. J. Virol. 2016, 90, 232–244. [Google Scholar] [CrossRef] [Green Version]
- Tuffereau, C.; Leblois, H.; Bénéjean, J.; Coulon, P.; Lafay, F.; Flamand, A. Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology 1989, 172, 206–212. [Google Scholar] [CrossRef]
- Wirblich, C.; Tan, G.S.; Papaneri, A.; Godlewski, P.J.; Orenstein, J.M.; Harty, R.N.; Schnell, M.J. PPEY motif within the rabies virus (RV) matrix protein is essential for efficient virion release and RV pathogenicity. J. Virol. 2008, 82, 9730–9738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forró, B.; Marton, S.; Kecskeméti, S.; Hornyák, Á.; Bányai, K. Vaccine-associated rabies in red fox, Hungary. Vaccine 2019. [Google Scholar] [CrossRef] [PubMed]
- Rezelj, V.V.; Levi, L.I.; Vignuzzi, M. The defective component of viral populations. Curr. Opin. Virol. 2018, 33, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Guardeño, J.M.; Regla-Nava, J.A.; Nieto-Torres, J.L.; DeDiego, M.L.; Castaño-Rodriguez, C.; Fernandez-Delgado, R.; Perlman, S.; Enjuanes, L. Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine. PLoS Pathog. 2015, 11, e1005215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eloiflin, R.-J.; Boyer, M.; Kwiatek, O.; Guendouz, S.; Loire, E.; Servan de Almeida, R.; Libeau, G.; Bataille, A. Evolution of Attenuation and Risk of Reversal in Peste des Petits Ruminants Vaccine Strain Nigeria 75/1. Viruses 2019, 11, 724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzo, G.; Naylor, C.J.; Drigo, M.; Croville, G.; Ducatez, M.F.; Catelli, E.; Laconi, A.; Cecchinato, M. Subpopulations in aMPV vaccines are unlikely to be the only cause of reversion to virulence. Vaccine 2015, 33, 2438–2441. [Google Scholar] [CrossRef]
- Lokugamage, N.; Ikegami, T. Genetic stability of Rift Valley fever virus MP-12 vaccine during serial passages in culture cells. NPJ Vaccines 2017, 2. [Google Scholar] [CrossRef]
Sample ID | Animal | Origin | Date of Finding | Distributed Vaccine | Reference | Sample Material | Sequencing Method | RABV Reads | Mean Depth |
---|---|---|---|---|---|---|---|---|---|
C/POL/2017 | Red fox | Małopolska, Poland | Dec 2017 | SAD Bern | This Study | Brain | 1 | 8286 | 170 |
C/CAN/1992N8944 | Red fox | Carleton, Canada | 1992 | ERA | [7] | Brain | 2 | 49,610 | 1138 |
C/CAN/1992N8991 | Raccoon | Tyendinaga, Canada | 1992 | ERA | [7] | Brain | 2 | 50,587 | 1092 |
C/CAN/1994N6762-B | Cow | Gloucester, Canada | 1994 | ERA | [7] | Brain | 2 | 51,225 | 1129 |
C/CAN/1994N6762-M | Mouse | Gloucester, Canada | 1994 | ERA | [7] | Brain | 2 | 50,403 | 1165 |
C/CAN/1994N35116 | Striped skunk | Hullet, Canada | 1994 | ERA | [7] | Brain | 2 | 49,319 | 1127 |
C/CAN/1996N5367 | Red fox | Ops, Canada | 1996 | ERA | [7] | Brain | 2 | 50,188 | 1090 |
C/CAN/1998N4916 | Raccoon | Normanby, Canada | 1998 | ERA | [7] | Brain | 2 | 51,239 | 1092 |
C/CAN/1999N6567 | Red fox | Mulmur, Canada | 1999 | ERA | [7] | Brain | 2 | 51,411 | 995 |
Sample ID | Vaccine Strain | Batch ID | Description | Sequencing Method | RABV Reads | Mean Depth |
---|---|---|---|---|---|---|
B/ERA/lot16 | ERA | lot 016 | ERA-BHK21 vaccine batch from 2005 | 2 | 50,788 | 11,301 |
B/SAD/Bern/4024 | SAD Bern | 17/61Lj (4024) | Lysvulpen vaccine batches that were distributed in the area of Małopolska in autumn 2016, spring 2017 and autumn 2017 | 1 | 51,098 | 1317 |
B/SAD/Bern/7024 | SAD Bern | 17/76Lj (7024) | 1 | 52,001 | 1333 |
R Package | Version | Description |
---|---|---|
ape | 5.3 | Analyses of phylogenetics and evolution |
cluster | 2.0.8 | Extended cluster analysis |
fpc | 2.2-3 | Flexible procedures for clustering |
ggplot2 | 3.2.0 | Data visualizations |
ggrepel | 0.8.1 | Non-overlapping text labels for ggplot2 |
grid | 3.6.0 | Grid graphics package |
phyloseq | 1.28.0 | Handling and analysis of high-throughput microbiome census data |
vegan | 2.5-5 | Community ecology package |
Samples | Host Species | Number of Group-Specific Differences | |
---|---|---|---|
Group 1 | C/CAN/1992N8944 | Red fox | 9 |
C/CAN/1992N8991 | Raccoon | ||
C/CAN/1996N5367 | Red fox | ||
C/CAN/1996 | |||
Group 2 | C/CAN/1994N35116 | Striped skunk | 7 |
C/CAN/1994N6762B | Cow | ||
C/CAN/1994N6762M | Cow (M-passage) 1 | ||
C/CAN/1994 | |||
C/CAN/1998N4916 | Raccoon | ||
Group 3 | C/CAN/1991 | Striped skunk | 3 |
C/CAN/1999N6567 | Red fox |
Sample ID | Position * | Consensus Vaccine-Induced Case | Variant Vaccine-Induced Case (Consensus Vaccine) | Frequency of SNVs in the Vaccine-Induced Case |
---|---|---|---|---|
CAN/1992N8944 | 10,840 | A | G | 33.7% |
CAN/1994N6762-M | 3085 | T | C | 31.9% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvelage, S.; Smreczak, M.; Orłowska, A.; Freuling, C.M.; Müller, T.; Fehlner-Gardiner, C.; Nadin-Davis, S.; Höper, D.; Trębas, P. Population- and Variant-Based Genome Analyses of Viruses from Vaccine-Derived Rabies Cases Demonstrate Product Specific Clusters and Unique Patterns. Viruses 2020, 12, 115. https://doi.org/10.3390/v12010115
Calvelage S, Smreczak M, Orłowska A, Freuling CM, Müller T, Fehlner-Gardiner C, Nadin-Davis S, Höper D, Trębas P. Population- and Variant-Based Genome Analyses of Viruses from Vaccine-Derived Rabies Cases Demonstrate Product Specific Clusters and Unique Patterns. Viruses. 2020; 12(1):115. https://doi.org/10.3390/v12010115
Chicago/Turabian StyleCalvelage, Sten, Marcin Smreczak, Anna Orłowska, Conrad Martin Freuling, Thomas Müller, Christine Fehlner-Gardiner, Susan Nadin-Davis, Dirk Höper, and Paweł Trębas. 2020. "Population- and Variant-Based Genome Analyses of Viruses from Vaccine-Derived Rabies Cases Demonstrate Product Specific Clusters and Unique Patterns" Viruses 12, no. 1: 115. https://doi.org/10.3390/v12010115
APA StyleCalvelage, S., Smreczak, M., Orłowska, A., Freuling, C. M., Müller, T., Fehlner-Gardiner, C., Nadin-Davis, S., Höper, D., & Trębas, P. (2020). Population- and Variant-Based Genome Analyses of Viruses from Vaccine-Derived Rabies Cases Demonstrate Product Specific Clusters and Unique Patterns. Viruses, 12(1), 115. https://doi.org/10.3390/v12010115