Integrated Analysis of Differentially Expressed miRNAs and mRNAs in Goat Skin Fibroblast Cells in Response to Orf Virus Infection Reveals That cfa-let-7a Regulates Thrombospondin 1 Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Viral Infection
2.2. RNA Extraction
2.3. miRNA Sequencing and RNA-seq
2.4. GO and KEGG Enrichment Analyses
2.5. Target Gene Prediction and miRNA-Gene Network Construction
2.6. RT-qPCR Validation of DEGs and DE miRNAs
2.7. Cell Transfection
2.8. Western Blot
2.9. Plasmid Construction
2.10. Dual Luciferase Reporter Assay
2.11. Statistical Analysis
3. Results
3.1. Differentially Expressed miRNAs From Intergroup Comparisons
3.2. KEGG Enrichment Analyses of DE miRNAs From Intergroup Comparisons
3.3. DEGs Identified by Intergroup Comparisons
3.4. GO Enrichment Analyses of DEGs From Intergroup Comparisons
3.5. KEGG Enrichment Analyses of DEGs From Intergroup Comparisons
3.6. RT-qPCR Validation of DE miRNAs and DEGs
3.7. cfa-let-7a_R+2 Target Prediction and Validation
3.8. cfa-let-7a_R+2 Directly Targets THBS1 3′ UTR
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spyrou, V.; Valiakos, G. Orf virus infection in sheep or goats. Vet. Microbiol. 2015, 181, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Tryland, M. Characterisation of parapoxviruses isolated from Norwegian semi-domesticated reindeer (Rangifer tarandus tarandus). Virol. J. 2005, 2, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkomar, V.; Hannah, M.; Coulson, I.; Owen, C. A case of human to human transmission of orf between mother and child. Clin. Exp. Dermatol. 2016, 41, 60–63. [Google Scholar] [CrossRef]
- Fleming, S.B.; Wise, L.M.; Mercer, A.A. Molecular genetic analysis of orf virus: A poxvirus that has adapted to skin. Viruses 2015, 7, 1505–1539. [Google Scholar] [CrossRef]
- Fleming, S.B.; McCaughan, C.A.; Andrews, A.E.; Nash, A.D.; Mercer, A.A. A homolog of interleukin-10 is encoded by the poxvirus orf virus. J. Virol. 1997, 71, 4857–4861. [Google Scholar] [CrossRef] [Green Version]
- Plowright, W.; Witcomb, M.A.; Ferris, R.D. Studies with a strain of contagious pustular dermatitis virus in tissue culture. Arch. Virol. 1959, 9, 214–231. [Google Scholar] [CrossRef]
- McInnes, C.J.; Wood, A.R.; Nettleton, P.F.; Gilray, J.A. Genomic comparison of an avirulent strain of Orf virus with that of a virulent wild type isolate reveals that the Orf virus G2L gene is non-essential for replication. Virus Genes 2001, 22, 141–150. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, Z.; Xiao, B.; Li, W.; Long, M.; Chen, H.; Li, M.; Rock, D.L.; Hao, W.; Luo, S. Orf virus 002 protein targets ovine protein S100A4 and inhibits NF-κB signaling. Front. Microbiol. 2016, 7, 1389. [Google Scholar] [CrossRef]
- Pang, F.; Zhang, M.; Yang, X.; Li, G.; Zhu, S.; Nie, X.; Cao, R.; Yang, X.; Zhang, Z.; Huang, H. Genome-wide analysis of circular RNAs in goat skin fibroblast cells in response to Orf virus infection. PeerJ 2019, 7, e6267. [Google Scholar] [CrossRef]
- Hosamani, M.; Scagliarini, A.; Bhanuprakash, V.; McInnes, C.J.; Singh, R.K. Orf: An update on current research and future perspectives. Expert Rev. AntiInfect. Ther. 2009, 7, 879–893. [Google Scholar] [CrossRef]
- Seet, B.T.; McCaughan, C.A.; Handel, T.M.; Mercer, A.; Brunetti, C.; McFadden, G.; Fleming, S.B. Analysis of an orf virus chemokine-binding protein: Shifting ligand specificities among a family of poxvirus viroceptors. Proc. Natl. Acad. Sci. USA 2003, 100, 15137–15142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyttle, D.J.; Fraser, K.M.; Fleming, S.B.; Mercer, A.A.; Robinson, A.J. Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J. Virol. 1994, 68, 84–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westphal, D.; Ledgerwood, E.C.; Hibma, M.H.; Fleming, S.B.; Whelan, E.M.; Mercer, A.A. A novel bcl-2-like inhibitor of apoptosis is encoded by the parapoxvirus orf virus. J. Virol. 2007, 81, 7178–7188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haig, D.; McInnes, C.; Thomson, J.; Wood, A.; Bunyan, K.; Mercer, A. The orf virus OV20. 0L gene product is involved in interferon resistance and inhibits an interferon-inducible, double-stranded RNA-dependent kinase. Immunology 1998, 93, 335. [Google Scholar] [CrossRef]
- Diel, D.; Luo, S.; Delhon, G.; Peng, Y.; Flores, E.; Rock, D.L. Orf virus ORFV121 encodes a novel inhibitor of NF-κB that contributes to virus virulence. J. Virol. 2011, 85, 2037–2049. [Google Scholar] [CrossRef] [Green Version]
- Diel, D.; Delhon, G.; Luo, S.; Flores, E.; Rock, D.L. A novel inhibitor of the NF-κB signaling pathway encoded by the parapoxvirus orf virus. J. Virol. 2010, 84, 3962–3973. [Google Scholar] [CrossRef] [Green Version]
- Diel, D.; Luo, S.; Delhon, G.; Peng, Y.; Flores, E.; Rock, D.L. A nuclear inhibitor of NF-κB encoded by a poxvirus. J. Virol. 2011, 85, 264–275. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Z. MicroRNAs as oncogenes and tumor suppressors. N. Engl. J. Med. 2005, 302, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Grey, F.; Meyers, H.; White, E.A.; Spector, D.H.; Nelson, J. A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog. 2007, 3, e163. [Google Scholar] [CrossRef]
- Pang, F.; Chen, Z.; Wang, C.; Zhang, M.; Zhang, Z.; Yang, X.; Zheng, Y.; Liu, A.; Cheng, Y.; Chen, J. Comprehensive analysis of differentially expressed microRNAs and mRNAs in MDBK cells expressing bovine papillomavirus E5 oncogene. PeerJ 2019, 7, e8098. [Google Scholar] [CrossRef] [Green Version]
- Skalsky, R.L.; Cullen, B.R. EBV noncoding RNAs. Curr. Top. Microbiol. Immunol. 2015, 391, 181–217. [Google Scholar] [PubMed] [Green Version]
- Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Pathol. Mech. Dis. 2014, 9, 287–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, R.; Huang, J.; Wang, Q.; Liu, H.; Wang, R.; Wang, J.; Yang, F. MicroRNA-224-5p regulates adipocyte apoptosis induced by TNFα via controlling NF-κB activation. J. Cell. Physiol. 2018, 233, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Rajewsky, K. MicroRNA control in the immune system: Basic principles. Cell 2009, 136, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Cai, Q.; Zhang, X.; Zhang, H.; Zhong, Y.; Xu, C.; Li, Y. Two less common human microRNAs miR-875 and miR-3144 target a conserved site of E6 oncogene in most high-risk human papillomavirus subtypes. Protein Cell 2015, 6, 575–588. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Ye, J.; Ashraf, U.; Li, Y.; Wei, S.; Wan, S.; Zohaib, A.; Song, Y.; Chen, H.; Cao, S. MicroRNA-33a-5p modulates Japanese encephalitis virus replication by targeting eukaryotic translation elongation factor 1A1. J. Virol. 2016, 90, 3722–3734. [Google Scholar] [CrossRef] [Green Version]
- Peterson, S.M.; Thompson, J.A.; Ufkin, M.L.; Sathyanarayana, P.; Liaw, L.; Congdon, C.B. Common features of microRNA target prediction tools. Front. Genet. 2014, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Witkos, T.M.; Koscianska, E.; Krzyzosiak, W.J. Practical aspects of microRNA target prediction. Curr. Mol. Med. 2011, 11, 93–109. [Google Scholar] [CrossRef] [Green Version]
- Pang, F.; Zhang, M.; Li, G.; Zhang, Z.; Huang, H.; Li, B.; Wang, C.; Yang, X.; Zheng, Y.; An, Q. Integrated mRNA and miRNA profiling in NIH/3T3 cells in response to bovine papillomavirus E6 gene expression. PeerJ 2019, 7, e7442. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nör, J.E.; Mitra, R.S.; Sutorik, M.M.; Mooney, D.J.; Castle, V.P.; Polverini, P.J. Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J. Vasc. Res. 2000, 37, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Yang, M.; Shang, J.; Xu, Y.; Wang, Y.; Tao, Q.; Zhang, L.; Ding, Y.; Chen, Y.; Zhao, D. MiR-222 inhibits apoptosis in porcine follicular granulosa cells by targeting the THBS1 gene. Anim. Sci. J. 2019, 90, 719–727. [Google Scholar] [CrossRef]
- Harty, R.N.; Pitha, P.M.; Okumura, A. Antiviral activity of innate immune protein ISG15. J. Innate Immun. 2009, 1, 397–404. [Google Scholar] [CrossRef]
- Perng, Y.-C.; Lenschow, D.J. ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 2018, 16, 423–439. [Google Scholar] [CrossRef]
- KÜnzi, M.S.; Pitha, P.M. Role of interferon-stimulated gene ISG-15 in the interferon-ω-mediated inhibition of human immunodeficiency virus replication. J. Interferon Cytokine Res. 1996, 16, 919–927. [Google Scholar] [CrossRef]
- Okumura, A.; Pitha, P.M.; Harty, R.N. ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc. Natl. Acad. Sci. USA 2008, 105, 3974–3979. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.; Struckhoff, J.J.; Schneider, J.; Martinez-Sobrido, L.; Wolff, T.; García-Sastre, A.; Zhang, D.-E.; Lenschow, D.J. Mice lacking the ISG15 E1 enzyme UbE1L demonstrate increased susceptibility to both mouse-adapted and non-mouse-adapted influenza B virus infection. J. Virol. 2009, 83, 1147–1151. [Google Scholar] [CrossRef] [Green Version]
- Sen, G.; Sarkar, S. The interferon-stimulated genes: Targets of direct signaling by interferons, double-stranded RNA, and viruses. In Interferon: The 50th Anniversary; Springer: Berlin/Heidelberg, Germany, 2007; pp. 233–250. [Google Scholar]
- Kim, J.-H.; Luo, J.-K.; Zhang, D.-E. The level of hepatitis B virus replication is not affected by protein ISG15 modification but is reduced by inhibition of UBP43 (USP18) expression. J. Immunol. 2008, 181, 6467–6472. [Google Scholar] [CrossRef] [Green Version]
- González-Sanz, R.; Mata, M.; Bermejo-Martín, J.; Álvarez, A.; Cortijo, J.; Melero, J.A.; Martínez, I. ISG15 is upregulated in respiratory syncytial virus infection and reduces virus growth through protein ISGylation. J. Virol. 2016, 90, 3428–3438. [Google Scholar] [CrossRef] [Green Version]
- Sooryanarain, H.; Rogers, A.J.; Cao, D.; Haac, M.E.R.; Karpe, Y.A.; Meng, X.-J. ISG15 modulates type I interferon signaling and the antiviral response during hepatitis E virus replication. J. Virol. 2017, 91, e00617–e00621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helbig, K.J.; Beard, M.R. The role of viperin in the innate antiviral response. J. Mol. Biol. 2014, 426, 1210–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, K.-C.; Cresswell, P. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proc. Natl. Acad. Sci. USA 2001, 98, 15125–15130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helbig, K.J.; Eyre, N.S.; Yip, E.; Narayana, S.; Li, K.; Fiches, G.; McCartney, E.M.; Jangra, R.K.; Lemon, S.M.; Beard, M.R. The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A. Hepatology 2011, 54, 1506–1517. [Google Scholar] [CrossRef] [PubMed]
- Helbig, K.J.; Carr, J.M.; Calvert, J.K.; Wati, S.; Clarke, J.N.; Eyre, N.S.; Narayana, S.K.; Fiches, G.N.; McCartney, E.M.; Beard, M.R. Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin. PLoS Negl. Trop. Dis. 2013, 7, e2178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, K.S.; Olfat, F.; Phoon, M.C.; Hsu, J.P.; Howe, J.L.; Seet, J.E.; Chin, K.C.; Chow, V.T. In vivo and in vitro studies on the antiviral activities of viperin against influenza H1N1 virus infection. J. Gen. Virol. 2012, 93, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Szretter, K.J.; Brien, J.D.; Thackray, L.B.; Virgin, H.W.; Cresswell, P.; Diamond, M.S. The interferon-inducible gene viperin restricts west nile virus pathogenesis. J. Virol. 2011, 85, 11557–11566. [Google Scholar] [CrossRef] [Green Version]
- Teng, T.-S.; Foo, S.-S.; Simamarta, D.; Lum, F.-M.; Teo, T.-H.; Lulla, A.; Yeo, N.K.; Koh, E.G.; Chow, A.; Leo, Y.-S. Viperin restricts chikungunya virus replication and pathology. J. Clin. Investig. 2012, 122, 4447–4460. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Shan, H.; Su, Y.; Xia, K.; Zou, R.; Shao, Q. Let-7a inhibits migration, invasion and tumor growth by targeting AKT2 in papillary thyroid carcinoma. Oncotarget 2017, 8, 69746. [Google Scholar] [CrossRef] [Green Version]
- Cai, K.; Wan, Y.; Sun, G.; Shi, L.; Bao, X.; Wang, Z. Let-7a inhibits proliferation and induces apoptosis by targeting EZH2 in nasopharyngeal carcinoma cells. Oncol. Rep. 2012, 28, 2101–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Duan, C.; Chen, J.; Ou-Yang, X.; Zhang, Z.; Li, C.; Peng, H. Let-7a elevates p21WAF1 levels by targeting of NIRF and suppresses the growth of A549 lung cancer cells. FEBS Lett. 2009, 583, 3501–3507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Zhao, X.; Yuan, X.; Jiang, J.; Li, P. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in cervical cancer. Oncotarget 2017, 8, 28226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, T.; Wang, Y.; Ding, W.-J.; Li, Y.-L.; Hu, X.-D.; Wang, C.; Ding, A.; Shen, J.-L. Thrombospondin-1 production regulates the inflammatory cytokine secretion in THP-1 cells through NF-κB signaling pathway. Inflammation 2017, 40, 1606–1621. [Google Scholar] [CrossRef]
- Good, D.J.; Polverini, P.J.; Rastinejad, F.; Le Beau, M.M.; Lemons, R.S.; Frazier, W.A.; Bouck, N.P. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. USA 1990, 87, 6624–6628. [Google Scholar] [CrossRef] [Green Version]
Sample | Raw Reads | Clean Reads | Mapped Reads | Q20 | Q30 |
---|---|---|---|---|---|
GSF_1 | 57,183,142 | 55,444,222 | 51,842,931(93.50%) | 99.30 | 96.27 |
GSF_2 | 48,776,996 | 48,162,078 | 45,704,129(94.90%) | 99.27 | 95.70 |
GSF_3 | 50,682,932 | 50,001,006 | 46,891,314(93.78%) | 99.40 | 95.78 |
18 h.p.i_1 | 54,753,068 | 54,206,124 | 28,379,819(52.36%) | 99.21 | 95.43 |
18 h.p.i_2 | 52,356,386 | 51,858,906 | 27,326,358(52.69%) | 99.21 | 95.38 |
18 h.p.i_3 | 45,717,786 | 45,266,068 | 24,495,939(54.12%) | 98.80 | 94.50 |
30 h.p.i_1 | 42,852,548 | 42,351,874 | 16,204,107(38.26%) | 99.00 | 94.89 |
30 h.p.i_2 | 44,324,190 | 43,961,096 | 16,296,813(37.07%) | 98.85 | 94.52 |
30 h.p.i_3 | 44,336,038 | 43,948,868 | 16,994,445(38.67%) | 98.74 | 94.21 |
Gene | GSF_1 | GSF _2 | GSF _3 | 18 h.p.i_1 | 18 h.p.i _2 | 18 h.p.i_3 | 30 h.p.i_1 | 30 h.p.i_2 | 30 h.p.i_3 |
---|---|---|---|---|---|---|---|---|---|
EIF2AK2 | 1.63 | 10.39 | 9.56 | 22.17 | 21.29 | 22.44 | 42.28 | 41.02 | 44.33 |
RSAD2 | 0.10 | 0.05 | 0.13 | 11.90 | 11.65 | 12.40 | 12.80 | 10.66 | 11.40 |
ISG15 | 2.90 | 0.14 | 0.34 | 16.07 | 17.61 | 15.28 | 38.51 | 30.52 | 33.22 |
CCL5 | 1.75 | 0.24 | 0.05 | 17.42 | 16.22 | 17.91 | 9.32 | 8.77 | 7.14 |
ADAR | 5.53 | 6.92 | 12.24 | 14.08 | 16.98 | 20.23 | 17.53 | 13.94 | 22.05 |
ZC3HAV1 | 4.72 | 14.67 | 14.01 | 14.66 | 13.39 | 30.56 | 41.63 | 40.32 | 41.62 |
LOC102173932 | 1.15 | 2.89 | 2.76 | 8.51 | 8.13 | 8.31 | 24.96 | 24.20 | 25.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, F.; Wang, X.; Chen, Z.; Zhang, Z.; Zhang, M.; Wang, C.; Yang, X.; An, Q.; Du, L.; Wang, F. Integrated Analysis of Differentially Expressed miRNAs and mRNAs in Goat Skin Fibroblast Cells in Response to Orf Virus Infection Reveals That cfa-let-7a Regulates Thrombospondin 1 Expression. Viruses 2020, 12, 118. https://doi.org/10.3390/v12010118
Pang F, Wang X, Chen Z, Zhang Z, Zhang M, Wang C, Yang X, An Q, Du L, Wang F. Integrated Analysis of Differentially Expressed miRNAs and mRNAs in Goat Skin Fibroblast Cells in Response to Orf Virus Infection Reveals That cfa-let-7a Regulates Thrombospondin 1 Expression. Viruses. 2020; 12(1):118. https://doi.org/10.3390/v12010118
Chicago/Turabian StylePang, Feng, Xinying Wang, Zhen Chen, Zhenxing Zhang, Mengmeng Zhang, Chengqiang Wang, Xiaohong Yang, Qi An, Li Du, and Fengyang Wang. 2020. "Integrated Analysis of Differentially Expressed miRNAs and mRNAs in Goat Skin Fibroblast Cells in Response to Orf Virus Infection Reveals That cfa-let-7a Regulates Thrombospondin 1 Expression" Viruses 12, no. 1: 118. https://doi.org/10.3390/v12010118
APA StylePang, F., Wang, X., Chen, Z., Zhang, Z., Zhang, M., Wang, C., Yang, X., An, Q., Du, L., & Wang, F. (2020). Integrated Analysis of Differentially Expressed miRNAs and mRNAs in Goat Skin Fibroblast Cells in Response to Orf Virus Infection Reveals That cfa-let-7a Regulates Thrombospondin 1 Expression. Viruses, 12(1), 118. https://doi.org/10.3390/v12010118