Patterns of RNA Editing in Newcastle Disease Virus Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Bioinformatic Analysis
2.3. Markov Model of Polymerase Stuttering
3. Results
3.1. RNA Editing and P/V/W Frequencies
3.2. Pattern of Polymerase Stuttering
3.3. Further Suppression of W mRNA Expression
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Amarasinghe, G.K.; Ayllón, M.A.; Bào, Y.; Basler, C.F.; Bavari, S.; Blasdell, K.R.; Briese, T.; Brown, P.A.; Bukreyev, A.; Balkema-Buschmann, A.; et al. Taxonomy of the order Mononegavirales: Update 2019. Arch. Virol. 2019, 164, 1967–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganar, K.; Das, M.; Sinha, S.; Kumar, S. Newcastle disease virus: Current status and our understanding. Virus Res. 2014, 184, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Nagai, Y.; Hamaguchi, M.; Toyoda, T. Molecular biology of Newcastle disease virus. Prog. Vet. Microbiol. Immunol. 1989, 5, 16–64. [Google Scholar] [PubMed]
- Sánchez-Felipe, L.; Villar, E.; Muñoz-Barroso, I. α;2-3-And α;2-6-N-linked sialic acids allow efficient interaction of Newcastle Disease Virus with target cells. Glycoconj. J. 2012. [Google Scholar] [CrossRef]
- Choppin, P.W.; Compans, R.W. Reproduction of Paramyxoviruses. In Comprehensive Virology; Choppin, P.W., Fraenkel-Conrat, H., Wagner, R.R., Eds.; Springer: Boston, MA, USA, 1975; ISBN 978-4684-2708-0. [Google Scholar] [CrossRef]
- Lamb, R.A.; Parks, G.D. Paramyxoviridae: The viruses and their replication. Fields Virol. 2007, 5, 1449–1496. [Google Scholar]
- Fields, B.N.; Knipe, D.M.; Howley, P.M. Fields Virology; Wolters Kluwer/Lippincott Williams & Wilkins Health: Philadelphia, PA, USA; Baltimore, MD, USA; New York, NY, USA, 2013; ISBN 13: 9781451105636. [Google Scholar]
- Hamaguchi, M.; Yoshida, T.; Nishikawa, K.; Naruse, H.; Nagai, Y. Transcriptive complex of Newcastle disease virus: I. Both L and P proteins are required to constitute an active complex. Virology 1983, 128, 105–117. [Google Scholar] [CrossRef]
- Steward, M.; Vipond, I.B.; Millar, N.S.; Emmerson, P.T. RNA editing in Newcastle disease virus. J. Gen. Virol. 1993. [Google Scholar] [CrossRef]
- Locke, D.P.; Sellers, H.S.; Crawford, J.M.; Schultz-Cherry, S.; King, D.J.; Meinersmann, R.J.; Seal, B.S. Newcastle disease virus phosphoprotein gene analysis and transcriptional editing in avian cells. Virus Res. 2000, 69, 55–68. [Google Scholar] [CrossRef]
- Qiu, X.; Fu, Q.; Meng, C.; Yu, S.; Zhan, Y.; Dong, L.; Song, C.; Sun, Y.; Tan, L.; Hu, S.; et al. Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling. PLoS ONE 2016, 11, e0148560. [Google Scholar] [CrossRef] [Green Version]
- Schirrmacher, V. Signaling through RIG-I and type I interferon receptor: Immune activation by Newcastle disease virus in man versus immune evasion by Ebola virus (Review). Int. J. Mol. Med. 2015, 36, 3–10. [Google Scholar] [CrossRef]
- Kolakofsky, D.; Pelet, T.; Garcin, D.; Hausmann, S.; Curran, J.; Roux, L. Paramyxovirus RNA Synthesis and the Requirement for Hexamer Genome Length: The Rule of Six Revisited. J. Virol. 1998. [Google Scholar] [CrossRef] [Green Version]
- Calain, P.; Roux, L. The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J. Virol. 1993, 67, 4822–4830. [Google Scholar] [PubMed]
- Kolakofsky, D.; Vidal, S.; Curran, J. Paramyxovirus RNA Synthesis and P Gene Expression BT—The Paramyxoviruses; Kingsbury, D.W., Ed.; Springer: Boston, MA, USA, 1991; pp. 215–233. ISBN 978-1-4615-3790-8. [Google Scholar]
- Hausmann, S.; Garcin, D.; Delenda, C.; Kolakofsky, D. The Versatility of Paramyxovirus RNA Polymerase Stuttering. J. Virol. 1999, 73, 5568–5576. [Google Scholar] [PubMed]
- Vidal, S.; Curran, J.; Kolakofsky, D. A stuttering model for paramyxovirus P mRNA editing. EMBO J. 1990, 9, 2017–2022. [Google Scholar] [PubMed]
- Jacques, J.P.; Hausmann, S.; Kolakofsky, D. Paramyxovirus mRNA editing leads to G deletions as well as insertions. EMBO J. 1994, 13, 5496–5503. [Google Scholar] [PubMed]
- Kolakofsky, D. Paramyxovirus RNA synthesis, mRNA editing, and genome hexamer phase: A review. Virology 2016, 498, 94–98. [Google Scholar] [CrossRef]
- Liu, W.; Qiu, X.; Song, C.; Sun, Y.; Meng, C.; Liao, Y.; Tan, L.; Ding, Z.; Liu, X.; Ding, C. Deep Sequencing-Based Transcriptome Profiling Reveals Avian Interferon-Stimulated Genes and Provides Comprehensive Insight into Newcastle Disease Virus-Induced Host Responses. Viruses 2018, 10, 162. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Kaiser, M.G.; Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Kelly, T.R.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Transcriptome Analysis in Spleen Reveals Differential Regulation of Response to Newcastle Disease Virus in Two Chicken Lines. Sci. Rep. 2018, 8, 1278. [Google Scholar] [CrossRef] [Green Version]
- Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Resistant and susceptible chicken lines show distinctive responses to Newcastle disease virus infection in the lung transcriptome. BMC Genom. 2017, 18, 989. [Google Scholar] [CrossRef] [Green Version]
- Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Kelly, T.R.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Novel Mechanisms Revealed in the Trachea Transcriptome of Resistant and Susceptible Chicken Lines following Infection with Newcastle Disease Virus. Clin. Vaccine Immunol. 2017, 24, e00027-17. [Google Scholar] [CrossRef]
- Wignall-Fleming, E.B.; Hughes, D.J.; Vattipally, S.; Modha, S.; Goodbourn, S.; Davison, A.J.; Randall, R.E. Analysis of Paramyxovirus Transcription and Replication by High-Throughput Sequencing. J. Virol. 2019, 93, e00571-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marco-Sola, S.; Sammeth, M.; Guigó, R.; Ribeca, P. The GEM mapper: Fast, accurate and versatile alignment by filtration. Nat. Methods 2012, 9, 1185–1188. [Google Scholar] [CrossRef]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, L.; Tennakoon, C.; Silesian, A.; Freimanis, G.; Ribeca, P. SiNPle: Fast and sensitive variant calling for deep sequencing data. Genes 2019, 10, 561. [Google Scholar] [CrossRef] [Green Version]
- Jacques, J.P.; Kolakofsky, D. Pseudo-templated transcription in prokaryotic and eukaryotic organisms. Genes Dev. 1991, 5, 707–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, R.M.; Krumm, S.A.; Thakkar, V.D.; Sohn, M.; Plemper, R.K. The structurally disordered paramyxovirus nucleocapsid protein tail domain is a regulator of the mRNA transcription gradient. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hausmann, S.; Garcin, D.; Morel, A.S.; Kolakofsky, D. Two nucleotides immediately upstream of the essential A6G3 slippery sequence modulate the pattern of G insertions during Sendai virus mRNA editing. J. Virol. 1999, 73, 343–351. [Google Scholar] [CrossRef] [Green Version]
Melissa Deist & Lamont Lab Group [21,22,23] | Prof Chan Ding’s Lab [20] | |||||
---|---|---|---|---|---|---|
Samples | Chicken Line | Sex | Phenotype | Chicken Age | Samples | Embryo Age |
Leghorn rep 1 | Leghorn | Female | Susceptible | 21 | LaSota rep 1 | CEF cells isolated from 10-day-old SPF chicken embryos |
Leghorn rep 2 | Leghorn | Female | Susceptible | 21 | LaSota rep 2 | |
Leghorn rep 3 | Leghorn | Male | Susceptible | 21 | LaSota rep 3 | |
Fayoumi rep 1 | Fayoumi | Female | Resistant | 21 | Herts/33 rep 1 | |
Fayoumi rep 2 | Fayoumi | Female | Resistant | 21 | Herts/33 rep 2 | |
Fayoumi rep 3 | Fayoumi | Male | Resistant | 21 | Herts/33 rep 3 | |
Virus dose | 200 microliters 107 embryo infectious dose of 50% | Virus dose | MOI = 1 | |||
Experiment type | in vivo | Experiment type | in vitro | |||
Organ harvested | Trachea | Organ used for primary cells | Chicken embryo | |||
Cell type | Epithelial cell | Cell type | Fibroblast cell | |||
Sample type | RNA | Sample Type | RNA | |||
Time of tissue harvest | 2 days post infection | Time of cell harvest | 12 h post infection | |||
NDV strain | LaSota (non-pathogenic) | NDV strain | LaSota (non-pathogenic) & Herts/33 (highly pathogenic) |
Samples | P | V | W | P mRNA Count | V mRNA Count | W mRNA Count |
---|---|---|---|---|---|---|
Leghorn 1 | 0.5881057 | 0.3502203 | 0.0616740 | 534 | 318 | 56 |
Leghorn 2 | 0.5895536 | 0.3096877 | 0.1007588 | 3341 | 1755 | 571 |
Leghorn 3 | 0.6131687 | 0.3165559 | 0.0702754 | 1937 | 1000 | 222 |
Fayoumi 1 | 0.5700246 | 0.3611794 | 0.0687961 | 464 | 294 | 56 |
Fayoumi 2 | 0.5855513 | 0.3650190 | 0.0494297 | 154 | 96 | 13 |
Fayoumi 3 | 0.5555556 | 0.3801170 | 0.0643275 | 95 | 65 | 11 |
CEF Herts/33 1 | 0.7581556 | 0.1857977 | 0.0560466 | 71,789 | 17,593 | 5307 |
CEF Herts/33 2 | 0.7703368 | 0.1770732 | 0.0525900 | 79,934 | 18,374 | 5457 |
CEF Herts/33 3 | 0.7920412 | 0.1618567 | 0.0461021 | 75,335 | 15,395 | 4385 |
CEF LaSota 1 | 0.9236920 | 0.0665634 | 0.0097446 | 18,484 | 1332 | 195 |
CEF LaSota 2 | 0.9380527 | 0.0531048 | 0.0088425 | 18,883 | 1069 | 178 |
CEF LaSota 3 | 0.9465327 | 0.0443343 | 0.0091330 | 20,624 | 966 | 199 |
p-Value | Leghorn | Fayoumi | CEF Herts/33 | CEF LaSota |
---|---|---|---|---|
Leghorn | 1.0000000 | 0.1803779 | 0.2960698 | 0.2243687 |
Fayoumi | 0.1803779 | 1.0000000 | 0.0015257 | 0.7551445 |
CEF Herts/33 | 0.2960698 | 0.0015257 | 1.0000000 | 0.0026214 |
CEF LaSota | 0.2243687 | 0.7551445 | 0.0026214 | 1.0000000 |
Coefficient | Estimate | Std. Error | t Value | Pr (>|t|) |
---|---|---|---|---|
(intercept) | 0.0091800 | 0.0549286 | 0.1671257 | 0.8677600 |
l (slope) | −0.5130190 | 0.0339636 | −15.1049786 | 0.0000000 |
Fayoumi | 0.1106835 | 0.1650741 | 0.6705082 | 0.5047720 |
CEF-LaSota | −0.2277560 | 0.0566429 | −4.0209119 | 0.0001460 |
CEF-Herts/33 | −0.8588694 | 0.0722928 | −11.8804256 | 0.0000000 |
l:Fayoumi | −0.0589679 | 0.1098642 | −0.5367340 | 0.5931778 |
l:CEF-LaSota | −0.0224315 | 0.0350717 | −0.6395889 | 0.5245578 |
l:CEF-Herts/33 | 0.0737953 | 0.0428570 | 1.7218949 | 0.0895690 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadhav, A.; Zhao, L.; Ledda, A.; Liu, W.; Ding, C.; Nair, V.; Ferretti, L. Patterns of RNA Editing in Newcastle Disease Virus Infections. Viruses 2020, 12, 1249. https://doi.org/10.3390/v12111249
Jadhav A, Zhao L, Ledda A, Liu W, Ding C, Nair V, Ferretti L. Patterns of RNA Editing in Newcastle Disease Virus Infections. Viruses. 2020; 12(11):1249. https://doi.org/10.3390/v12111249
Chicago/Turabian StyleJadhav, Archana, Lele Zhao, Alice Ledda, Weiwei Liu, Chan Ding, Venugopal Nair, and Luca Ferretti. 2020. "Patterns of RNA Editing in Newcastle Disease Virus Infections" Viruses 12, no. 11: 1249. https://doi.org/10.3390/v12111249
APA StyleJadhav, A., Zhao, L., Ledda, A., Liu, W., Ding, C., Nair, V., & Ferretti, L. (2020). Patterns of RNA Editing in Newcastle Disease Virus Infections. Viruses, 12(11), 1249. https://doi.org/10.3390/v12111249