Use of Animal Models in Studying Roles of Antibodies and Their Secretion Cells in Dengue Vaccine Development
Abstract
:1. Background
2. Key Factors Affect the Outcomes of Symptomatic Patients
3. Pathology and Pathogenesis of DHF/DSS
4. Animal Models for DENV Infection and Dengue
5. Dengue Vaccines
6. Immunity in Dengue Virus Infection
7. Conclusions
Authors Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nobuchi, H. The symptoms of a dengue-loke illness recorded in a Chinese medical encyclopedia. Kanp Rinsho 1979, 26, 422–425. (In Japanese) [Google Scholar]
- Simmons, J.S. Dengue fever. Am. J. Trop. Med. 1931, 11, 77–102. [Google Scholar] [CrossRef]
- WHO. Dengue Vaccine Development: The Role of the Who South-East Asia Regional Office; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- WHO. Dengue and Dengue Hemorrhagic Fever; World Health Organization: Geneva, Switzerland, 2009; Volume 117. [Google Scholar]
- Burke, D.S.; Nisalak, A.; Johnson, D.E.; Scott, R.M. A prospective study of dengue infections in Bangkok. Am. J. Trop. Med. Hyg. 1988, 38, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Balmaseda, A.; Standish, K.; Mercado, J.C.; Matute, J.C.; Tellez, Y.; Saborío, S.; Hammond, S.N.; Nuñez, A.; Avilés, W.; Henn, M.R.; et al. Trends in patterns of dengue transmission over 4 years in a pediatric cohort study in Nicaragua. J. Infect. Dis. 2010, 201, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.R.; Parwati, I.; Beckett, C.G.; Widjaja, S.; Sudjana, P.; Kosasih, H.; Wuryadi, S.; McArdle, J.L.; Alisjahbana, B.; Rudiman, P.I.F.; et al. Epidemiology of dengue and dengue hemorrhagic fever in a cohort of adults living in Bandung, West Java, Indonesia. Am. J. Trop. Med. Hyg. 2005, 72, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Mammen, M.P.; Pimgate, C.; Koenraadt, C.J.M.; Rothman, A.L.; Aldstadt, J.; Nisalak, A.; Jarman, R.G.; Jones, J.W.; Srikiatkhachorn, A.; Ypil-Butac, C.A.; et al. Spatial and temporal clustering of dengue virus transmission in Thai villages. PLoS Med. 2008, 5, e205. [Google Scholar] [CrossRef] [Green Version]
- Endy, T.P.; Anderson, K.B.; Nisalak, A.; Yoon, I.-K.; Green, S.; Rothman, A.L.; Thomas, S.J.; Jarman, R.G.; Libraty, D.H.; Gibbons, R.V. Determinants of inapparent and symptomatic dengue infection in a prospective study of primary school children in Kamphaeng Phet, Thailand. PLoS Negl. Trop. Dis. 2011, 5, e975. [Google Scholar] [CrossRef]
- Duong, V.; Lambrechts, L.; Paul, R.E.; Ly, S.; Lay, R.S.; Long, K.C.; Huy, R.; Tarantola, A.; Scott, T.W.; Sakuntabhai, A.; et al. Asymptomatic humans transmit dengue virus to mosquitoes. Proc. Nat. Acad. Sci. USA 2015, 112, 14688–14693. [Google Scholar] [CrossRef] [Green Version]
- Chastel, C. Eventual role of asymptomatic cases of dengue for the introduction and spread of dengue viruses in non-endemic regions. Front. Physiol. 2012, 3, 70. [Google Scholar] [CrossRef] [Green Version]
- WHO. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control, 2nd ed.; World Health Organization: Geneva, Switzerland, 1997; p. 84. [Google Scholar]
- WHO. Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever, Revised and Expanded Edition; World Health Organization: Geneva, Switzerland, 2011; Volume 60. [Google Scholar]
- WHO. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Siler, J.F.; Hall, M.W.; Hitchins, A.P. Dengue: Its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, immunity and prevention. Philipp. J. Sci. 1926, 29, 1–340. [Google Scholar]
- Simmons, J.S.; St. John, J.H.; Reynolds, F.H.K. Experimental studies of dengue. Philipp. J. Sci. 1931, 44, 1–251. [Google Scholar]
- Sabin, A.B. Research on dengue during world war ii. Am. J. Trop. Med. Hyg. 1952, 1, 30–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammon, W.M.; Rudnick, A.; Sather, G.E. Viruses associated with epidemic hemorrhagic fevers of the Philippines and Thailand. Science 1960, 131, 1102–1103. [Google Scholar] [CrossRef]
- Halstead, S.B. Observations related to pathogensis of dengue hemorrhagic fever. Vi. Hypotheses and discussion. Yale J. Biol. Med. 1970, 42, 350–362. [Google Scholar] [PubMed]
- Waggoner, J.J.; Balmaseda, A.; Gresh, L.; Sahoo, M.K.; Montoya, M.; Wang, C.; Abeynayake, J.; Kuan, G.; Pinsky, B.A.; Harris, E. Homotypic dengue virus reinfections in nicaraguan children. J. Infect. Dis. 2016, 214, 986–993. [Google Scholar] [CrossRef]
- Forshey, B.M.; Reiner, R.C.; Olkowski, S.; Morrison, A.C.; Espinoza, A.; Long, K.C.; Vilcarromero, S.; Casanova, W.; Wearing, H.J.; Halsey, E.S.; et al. Incomplete protection against dengue virus type 2 re-infection in Peru. PLoS Negl. Trop. Dis. 2016, 10, e0004398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, T.M.; Hunsperger, E.; Munoz-Jordan, J.L.; Margolis, H.S.; Tomashek, K.M. Sequential episodes of dengue—Puerto Rico, 2005–2010. Am. J. Trop. Med. Hyg. 2014, 91, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Endy, T.P.; Nisalak, A.; Chunsuttitwat, S.; Vaughn, D.W.; Green, S.; Ennis, F.A.; Rothman, A.L.; Libraty, D.H. Relationship of preexisting dengue virus (dv) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of dv infection in Thailand. J. Infect. Dis. 2004, 189, 990–1000. [Google Scholar] [CrossRef] [Green Version]
- Guzman, M.G.; Alvarez, M.; Halstead, S.B. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: An historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol. 2013, 158, 1445–1459. [Google Scholar] [CrossRef] [PubMed]
- Rothman, A.L. Immunity to dengue virus: A tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol. 2011, 11, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Rothman, A.L. Dengue: Defining protective versus pathologic immunity. J. Clin. Investig. 2004, 113, 946–951. [Google Scholar] [CrossRef] [Green Version]
- Akbar, N.A.; Allende, I.; Balmaseda, A.; Coelho, I.C.; da Cunha, R.V.; Datta, B.; Devi, S.S.; Farrar, J.; Gaczkowski, R.; Guzman, M.G.; et al. Regarding “Dengue—How best to classify it". Clin. Infect. Dis. 2012, 54, 1820–1822. [Google Scholar] [CrossRef] [Green Version]
- Wilder-Smith, A.; Schwartz, E. Dengue in travelers. N. Engl. J. Med. 2005, 353, 924–932. [Google Scholar] [CrossRef]
- Hammond, S.N.; Balmaseda, A.; Perez, L.; Tellez, Y.; Saborio, S.I.; Mercado, J.C.; Videa, E.; Rodriguez, Y.; Perez, M.A.; Cuadra, R.; et al. Differences in dengue severity in infants, children, and adults in a 3-year hospital-based study in Nicaragua. Am. J. Trop. Med. Hyg. 2005, 73, 1063–1070. [Google Scholar] [CrossRef]
- Sharp, T.W.; Wallace, M.R.; Hayes, C.G.; Sanchez, J.L.; DeFraites, R.F.; Arthur, R.R.; Thornton, S.A.; Batchelor, R.A.; Rozmajzl, P.J.; Hanson, R.K.; et al. Dengue fever in U.S. Troops during operation restore hope, Somalia, 1992–1993. Am. J. Trop. Med. Hyg. 1995, 53, 89–94. [Google Scholar] [CrossRef]
- Guzman, M.G.; Kouri, G. Dengue and dengue hemorrhagic fever in the Americas: Lessons and challenges. J. Clin. Virol. 2003, 27, 1–13. [Google Scholar] [CrossRef]
- Guilarde, A.O.; Turchi, M.D.; Siqueira, J.B., Jr.; Feres, V.C.; Rocha, B.; Levi, J.E.; Souza, V.A.; Boas, L.S.; Pannuti, C.S.; Martelli, C.M. Dengue and dengue hemorrhagic fever among adults: Clinical outcomes related to viremia, serotypes, and antibody response. J. Infect. Dis. 2008, 197, 817–824. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Huang, Y.H.; Shu, P.Y.; Wu, H.S.; Lin, Y.S.; Yeh, T.M.; Liu, H.S.; Liu, C.C.; Lei, H.Y. Characteristic of dengue disease in Taiwan: 2002–2007. Am. J. Trop. Med. Hyg. 2010, 82, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Ooi, E.E.; Goh, K.T.; Gubler, D.J. Dengue prevention and 35 years of vector control in Singapore. Emerg. Infect. Dis. 2006, 12, 887–893. [Google Scholar] [CrossRef]
- Messer, W.B.; Gubler, D.J.; Harris, E.; Sivananthan, K.; de Silva, A.M. Emergence and global spread of a dengue serotype 3, subtype iii virus. Emerg. Infect. Dis. 2003, 9, 800–809. [Google Scholar] [CrossRef] [Green Version]
- Rico-Hesse, R. Microevolution and virulence of dengue viruses. Adv. Virus Res. 2003, 59, 315–341. [Google Scholar]
- Guzman, M.G.; Halstead, S.B.; Artsob, H.; Buchy, P.; Farrar, J.; Gubler, D.J.; Hunsperger, E.; Kroeger, A.; Margolis, H.S.; Martinez, E.; et al. Dengue: A continuing global threat. Nat. Rev. Microbiol. 2010, 8, S7–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, H.A.; Klaythong, R.; Sirikong, M.; Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Endy, T.P.; Libraty, D.H.; Nisalak, A.; Innis, B.L.; et al. Hla-a and -b allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens 2002, 60, 309–318. [Google Scholar] [CrossRef]
- Tsai, J.-J.; Liu, L.-T.; Chang, K.; Wang, S.-H.; Hsiao, H.-M.; Clark, K.B.; Perng, G.C. The importance of hematopoietic progenitor cells in dengue. Ther. Adv. Hematol. 2012, 3, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Bierman, H.R.; Nelson, E.R. Hematodepressive virus diseases of Thailand. Ann. Intern. Med. 1965, 62, 867–884. [Google Scholar] [CrossRef]
- WHO. Summaries of papers presented at the who inter-regional seminar on mosquito-borne haemorrhagic fevers in the south-east Asia and western pacific regions. Bulletin 1966, 35, 61–62. [Google Scholar]
- Sabin, A.B. Electron microscope studies on human dengue serum. Am. J. Public Health 1951, 41, 1215. [Google Scholar] [CrossRef]
- Hase, T.; Summers, P.L.; Eckels, K.H.; Baze, W.B. An electron and immunoelectron microscopic study of dengue-2 virus infection of cultured mosquito cells: Maturation events. Arch. Virol. 1987, 92, 273–291. [Google Scholar] [CrossRef]
- Hsu, A.Y.; Wu, S.R.; Tsai, J.J.; Chen, P.L.; Chen, Y.P.; Chen, T.Y.; Lo, Y.C.; Ho, T.C.; Lee, M.; Chen, M.T.; et al. Infectious dengue vesicles derived from cd61+ cells in acute patient plasma exhibited a diaphanous appearance. Sci. Rep. 2015, 5, 17990. [Google Scholar] [CrossRef]
- Raut, R.; Corbett, K.S.; Tennekoon, R.N.; Premawansa, S.; Wijewickrama, A.; Premawansa, G.; Mieczkowski, P.; Ruckert, C.; Ebel, G.D.; De Silva, A.D.; et al. Dengue type 1 viruses circulating in humans are highly infectious and poorly neutralized by human antibodies. Proc. Nat. Acad. Sci. USA 2019, 116, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.R.; Tuchinda, S.; Howard, R.; Chulajata, R. Haematology of Thai haemorrhagic fever (dengue). Bull. World Health Organ. 1966, 35, 43–44. [Google Scholar]
- Nelson, E.R.; Bierman, H.R.; Chulajata, R. Hematologic phagocytosis in postmortem bone marrows of dengue hemorrhagic fever. (Hematologic phagocytosis in Thai hemorrhagic fever). Am. J. Med. Sci. 1966, 252, 68–74. [Google Scholar]
- Rosen, L.; Khin, M.M.; Tin, U. Recovery of virus from the liver of children with fatal dengue: Reflections on the pathogenesis of the disease and its possible analogy with that of yellow fever. Res. Virol. 1989, 140, 351–360. [Google Scholar] [CrossRef]
- Rosen, L.; Drouet, M.T.; Deubel, V. Detection of dengue virus rna by reverse transcription-polymerase chain reaction in the liver and lymphoid organs but not in the brain in fatal human infection. Am. J. Trop. Med. Hyg. 1999, 61, 720–724. [Google Scholar] [CrossRef] [Green Version]
- Aye, K.S.; Charngkaew, K.; Win, N.; Wai, K.Z.; Moe, K.; Punyadee, N.; Thiemmeca, S.; Suttitheptumrong, A.; Sukpanichnant, S.; Prida, M.; et al. Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from myanmar. Hum. Pathol. 2014, 45, 1221–1233. [Google Scholar] [CrossRef]
- Ab-Rahman, H.A.; Wong, P.F.; Rahim, H.; Abd-Jamil, J.; Tan, K.K.; Sulaiman, S.; Lum, C.S.; Syed-Omar, S.F.; AbuBakar, S. Dengue death with evidence of hemophagocytic syndrome and dengue virus infection in the bone marrow. SpringerPlus 2015, 4, 665. [Google Scholar] [CrossRef] [Green Version]
- Cook, G.C. Liver involvement in systemic infection. Eur. J. Gastroenterol. Hepatol. 1997, 9, 1239–1247. [Google Scholar]
- Nguyen, T.L.; Nguyen, T.H.; Tieu, N.T. The impact of dengue haemorrhagic fever on liver function. Res. Virol. 1997, 148, 273–277. [Google Scholar] [CrossRef]
- Krishnamurti, C.; Kalayanarooj, S.; Cutting, M.A.; Peat, R.A.; Rothwell, S.W.; Reid, T.J.; Green, S.; Nisalak, A.; Endy, T.P.; Vaughn, D.W.; et al. Mechanisms of hemorrhage in dengue without circulatory collapse. Am. J. Trop. Med. Hyg. 2001, 65, 840–847. [Google Scholar] [CrossRef] [Green Version]
- Boonpucknavig, S.; Vuttiviroj, O.; Bunnag, C.; Bhamarapravati, N.; Nimmanitya, S. Demonstration of dengue antibody complexes on the surface of platelets from patients with dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 1979, 28, 881–884. [Google Scholar] [CrossRef]
- Tsai, J.J.; Chokephaibulkit, K.; Chen, P.C.; Liu, L.T.; Hsiao, H.M.; Lo, Y.C.; Perng, G.C. Role of cognitive parameters in dengue hemorrhagic fever and dengue shock syndrome. J. Biomed. Sci. 2013, 20, 88. [Google Scholar] [CrossRef] [Green Version]
- Balmaseda, A.; Hammond, S.N.; Perez, L.; Tellez, Y.; Saborio, S.I.; Mercado, J.C.; Cuadra, R.; Rocha, J.; Perez, M.A.; Silva, S.; et al. Serotype-specific differences in clinical manifestations of dengue. Am. J. Trop. Med. Hyg. 2006, 74, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Kurane, I.; Rothman, A.L.; Livingston, P.G.; Green, S.; Gagnon, S.J.; Janus, J.; Innis, B.L.; Nimmannitya, S.; Nisalak, A.; Ennis, F.A. Immunopathologic mechanisms of dengue hemorrhagic fever and dengue shock syndrome. Arch. Virol. Suppl. 1994, 9, 59–64. [Google Scholar]
- I.M.R. Dengue Fever Studies in Malaysia; The Institute for Medical Research: Kuala Lumpur, Malaysia, 1986; Volume 23. [Google Scholar]
- Blanc, G.; Caminopetros, J. Contributions to the study of vaccination against dengue. Bull. Acad. Med. 1929, 102, 40–47. [Google Scholar]
- Cleland, J.B.; Bradley, B.; Macdonald, W. Further experiments in the etiology of dengue fever. J. Hyg. 1919, 18, 217–254. [Google Scholar] [CrossRef] [Green Version]
- Kimura, R.; Hotta, S. Studies on dengue fever (vi). On the inoculation of dengue virus into mice. Nippom Igaku 1944, 3379, 629–633. (In Japanese) [Google Scholar]
- Hotta, S. Experimental studies on dengue i isolation, identification and modification of the virus. J. Infect. Dis. 1952, 90, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Azami, N.A.M.; Takasaki, T.; Kurane, I.; Moi, M.L. Non-human primate models of dengue virus infection: A comparison of viremia levels and antibody responses during primary and secondary infection among old world and new world monkeys. Pathogens 2020, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Sarathy, V.V.; White, M.; Li, L.; Kaiser, J.A.; Campbell, G.A.; Milligan, G.N.; Bourne, N.; Barrett, A.D.T. Characterization of a murine model of non-lethal, symptomatic dengue virus infection. Sci. Rep. 2018, 8, 4900. [Google Scholar] [CrossRef] [Green Version]
- Coronel-Ruiz, C.; Gutierrez-Barbosa, H.; Medina-Moreno, S.; Velandia-Romero, M.L.; Chua, J.V.; Castellanos, J.E.; Zapata, J.C. Humanized mice in dengue research: A comparison with other mouse models. Vaccines 2020, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, E.A.; Fink, K. Animal models for dengue and zika vaccine development. Adv. Exp. Med. Biol. 2018, 1062, 215–239. [Google Scholar]
- Bente, D.A.; Rico-Hesse, R. Models of dengue virus infection. Drug Discov. Today Dis. Models 2006, 3, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Mathew, A. Humanized mouse models to study human cell-mediated and humoral responses to dengue virus. Curr. Opin. Virol. 2017, 25, 76–80. [Google Scholar] [CrossRef]
- St. John, A.L.; Rathore, A.P.; Raghavan, B.; Ng, M.L.; Abraham, S.N. Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage. eLife 2013, 2, e00481. [Google Scholar] [CrossRef]
- Bente, D.A.; Melkus, M.W.; Garcia, J.V.; Rico-Hesse, R. Dengue fever in humanized nod/scid mice. J. Virol. 2005, 79, 13797–13799. [Google Scholar] [CrossRef] [Green Version]
- Mota, J.; Rico-Hesse, R. Humanized mice show clinical signs of dengue fever according to infecting virus genotype. J. Virol. 2009, 83, 8638–8645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sridharan, A.; Chen, Q.; Tang, K.F.; Ooi, E.E.; Hibberd, M.L.; Chen, J. Inhibition of megakaryocyte development in the bone marrow underlies dengue virus-induced thrombocytopenia in humanized mice. J. Virol. 2013, 87, 11648–11658. [Google Scholar] [CrossRef] [Green Version]
- Wege, A.K.; Melkus, M.W.; Denton, P.W.; Estes, J.D.; Garcia, J.V. Functional and phenotypic characterization of the humanized blt mouse model. Curr. Top. Microbiol. Immunol. 2008, 324, 149–165. [Google Scholar]
- Jaiswal, S.; Smith, K.; Ramirez, A.; Woda, M.; Pazoles, P.; Shultz, L.D.; Greiner, D.L.; Brehm, M.A.; Mathew, A. Dengue virus infection induces broadly cross-reactive human igm antibodies that recognize intact virions in humanized blt-nsg mice. Exp. Biol. Med. 2015, 240, 67–78. [Google Scholar] [CrossRef]
- Shresta, S.; Sharar, K.L.; Prigozhin, D.M.; Snider, H.M.; Beatty, P.R.; Harris, E. Critical roles for both stat1-dependent and stat1-independent pathways in the control of primary dengue virus infection in mice. J. Immunol. 2005, 175, 3946–3954. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ng, M.M.; Chu, J.J. Molecular profiling of t-helper immune genes during dengue virus infection. Virol. J. 2008, 5, 165. [Google Scholar] [CrossRef] [Green Version]
- Perry, S.T.; Buck, M.D.; Lada, S.M.; Schindler, C.; Shresta, S. Stat2 mediates innate immunity to dengue virus in the absence of stat1 via the type i interferon receptor. PLoS Pathog. 2011, 7, e1001297. [Google Scholar] [CrossRef]
- Zust, R.; Toh, Y.X.; Valdes, I.; Cerny, D.; Heinrich, J.; Hermida, L.; Marcos, E.; Guillen, G.; Kalinke, U.; Shi, P.Y.; et al. Type i interferon signals in macrophages and dendritic cells control dengue virus infection: Implications for a new mouse model to test dengue vaccines. J. Virol. 2014, 88, 7276–7285. [Google Scholar] [CrossRef] [Green Version]
- Cassetti, M.C.; Durbin, A.; Harris, E.; Rico-Hesse, R.; Roehrig, J.; Rothman, A.; Whitehead, S.; Natarajan, R.; Laughlin, C. Report of an niaid workshop on dengue animal models. Vaccine 2010, 28, 4229–4234. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.J. Dengue human infection model: Re-establishing a tool for understanding dengue immunology and advancing vaccine development. Hum. Vaccines Immunother. 2013, 9, 1587–1590. [Google Scholar] [CrossRef] [Green Version]
- Durbin, A.P.; Whitehead, S.S. The dengue human challenge model: Has the time come to accept this challenge? J. Infect. Dis. 2013, 207, 697–699. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.W.; Wang, C.C.; Wang, Y.P.; Lee, C.Y.; Perng, G.C. Risk of leukemia after dengue virus infection: A population-based cohort study. Cancer Epidemiol. Biomark. Prev. 2020, 29, 558–564. [Google Scholar] [CrossRef] [Green Version]
- Scott, H. Dengue; Edward Arnold & Co.: London, UK, 1939; Volume II. [Google Scholar]
- Bosch, Q.A.T.; Clapham, H.E.; Lambrechts, L.; Duong, V.; Buchy, P.; Althouse, B.M.; Lloyd, A.L.; Waller, L.A.; Morrison, A.C.; Kitron, U.; et al. Contributions from the silent majority dominate dengue virus transmission. PLoS Pathog. 2018, 14, e1006965. [Google Scholar]
- Stramer, S.L.; Linnen, J.M.; Carrick, J.M.; Foster, G.A.; Krysztof, D.E.; Zou, S.; Dodd, R.Y.; Tirado-Marrero, L.M.; Hunsperger, E.; Santiago, G.A.; et al. Dengue viremia in blood donors identified by rna and detection of dengue transfusion transmission during the 2007 dengue outbreak in Puerto Rico. Transfusion 2012, 52, 1657–1666. [Google Scholar] [CrossRef]
- Chien, Y.W.; Shu, Y.C.; Chuang, K.T.; Yeh, C.Y.; Ko, W.C.; Ko, N.Y.; Perng, G.C. High estimated prevalence of asymptomatic dengue viremia in blood donors during a dengue epidemic in southern Taiwan, 2015. Transfusion 2017, 57, 2649–2656. [Google Scholar] [CrossRef]
- Chien, Y.W.; Huang, H.M.; Ho, T.C.; Tseng, F.C.; Ko, N.Y.; Ko, W.C.; Perng, G.C. Seroepidemiology of dengue virus infection among adults during the ending phase of a severe dengue epidemic in southern taiwan, 2015. BMC Infect. Dis. 2019, 19, 338. [Google Scholar] [CrossRef] [Green Version]
- Green, S.; Vaughn, D.W.; Kalayanarooj, S.; Nimmannitya, S.; Suntayakorn, S.; Nisalak, A.; Lew, R.; Innis, B.L.; Kurane, I.; Rothman, A.L.; et al. Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity. J. Infect. Dis. 1999, 179, 755–762. [Google Scholar] [CrossRef]
- Green, S.; Vaughn, D.W.; Kalayanarooj, S.; Nimmannitya, S.; Suntayakorn, S.; Nisalak, A.; Rothman, A.L.; Ennis, F.A. Elevated plasma interleukin-10 levels in acute dengue correlate with disease severity. J. Med. Virol. 1999, 59, 329–334. [Google Scholar] [CrossRef]
- Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Innis, B.L.; Nimmannitya, S.; Suntayakorn, S.; Endy, T.P.; Raengsakulrach, B.; Rothman, A.L.; Ennis, F.A.; et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis. 2000, 181, 2–9. [Google Scholar] [CrossRef]
- Libraty, D.H.; Young, P.R.; Pickering, D.; Endy, T.P.; Kalayanarooj, S.; Green, S.; Vaughn, D.W.; Nisalak, A.; Ennis, F.A.; Rothman, A.L. High circulating levels of the dengue virus nonstructural protein ns1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J. Infect. Dis. 2002, 186, 1165–1168. [Google Scholar] [CrossRef] [PubMed]
- Beltramello, M.; Williams, K.L.; Simmons, C.P.; Macagno, A.; Simonelli, L.; Quyen, N.T.; Sukupolvi-Petty, S.; Navarro-Sanchez, E.; Young, P.R.; de Silva, A.M.; et al. The human immune response to dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 2010, 8, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Srichaikul, T.; Nimmannitya, S. Haematology in dengue and dengue haemorrhagic fever. Best Pract. Res. Clin. Haematol. 2000, 13, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Kalayanarooj, S.; Vaughn, D.W.; Nimmannitya, S.; Green, S.; Suntayakorn, S.; Kunentrasai, N.; Viramitrachai, W.; Ratanachu-eke, S.; Kiatpolpoj, S.; Innis, B.L.; et al. Early clinical and laboratory indicators of acute dengue illness. J. Infect. Dis. 1997, 176, 313–321. [Google Scholar] [CrossRef]
- Green, S.; Pichyangkul, S.; Vaughn, D.W.; Kalayanarooj, S.; Nimmannitya, S.; Nisalak, A.; Kurane, I.; Rothman, A.L.; Ennis, F.A. Early cd69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever. J. Infect. Dis. 1999, 180, 1429–1435. [Google Scholar] [CrossRef]
- Mathew, A.; Kurane, I.; Green, S.; Vaughn, D.W.; Kalayanarooj, S.; Suntayakorn, S.; Ennis, F.A.; Rothman, A.L. Impaired t cell proliferation in acute dengue infection. J. Immunol. 1999, 162, 5609–5615. [Google Scholar]
- Gagnon, S.J.; Ennis, F.A.; Rothman, A.L. Bystander target cell lysis and cytokine production by dengue virus-specific human cd4(+) cytotoxic t-lymphocyte clones. J. Virol. 1999, 73, 3623–3629. [Google Scholar] [CrossRef] [Green Version]
- Kurane, I.; Ennis, F.A. Immunopathogenesis of dengue virus infections. In Dengue and Dengue Hemorrhagic Fever; Gubler, D.J., Kuno, G., Eds.; CAB International: Wallingford, UK, 1997; pp. 273–290. [Google Scholar]
- Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Innis, B.L.; Nimmannitya, S.; Suntayakorn, S.; Rothman, A.L.; Ennis, F.A.; Nisalak, A. Dengue in the early febrile phase: Viremia and antibody responses. J. Infect. Dis. 1997, 176, 322–330. [Google Scholar] [CrossRef]
- Sanchez-Vargas, L.A.; Kounlavouth, S.; Smith, M.L.; Anderson, K.B.; Srikiatkhachorn, A.; Ellison, D.W.; Currier, J.R.; Endy, T.P.; Mathew, A.; Rothman, A.L. Longitudinal analysis of memory b and t cell responses to dengue virus in a 5-year prospective cohort study in thailand. Front. Immunol. 2019, 10, 1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friberg, H.; Bashyam, H.; Toyosaki-Maeda, T.; Potts, J.A.; Greenough, T.; Kalayanarooj, S.; Gibbons, R.V.; Nisalak, A.; Srikiatkhachorn, A.; Green, S.; et al. Cross-reactivity and expansion of dengue-specific t cells during acute primary and secondary infections in humans. Sci. Rep. 2011, 1, 51. [Google Scholar] [CrossRef]
- Thein, T.L.; Ng, E.L.; Yeang, M.S.; Leo, Y.S.; Lye, D.C. Risk factors for concurrent bacteremia in adult patients with dengue. J. Microbiol. Immunol. Infect. 2017, 50, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Syue, L.S.; Tang, H.J.; Hung, Y.P.; Chen, P.L.; Li, C.W.; Li, M.C.; Tsai, P.F.; Liu, C.C.; Lee, N.Y.; Ko, W.C. Bloodstream infections in hospitalized adults with dengue fever: Clinical characteristics and recommended empirical therapy. J. Microbiol. Immunol. Infect. 2019, 52, 225–232. [Google Scholar] [CrossRef]
- Ranjit, S.; Kissoon, N.; Gandhi, D.; Dayal, A.; Rajeshwari, N.; Kamath, S.R. Early differentiation between dengue and septic shock by comparison of admission hemodynamic, clinical, and laboratory variables: A pilot study. Pediatr. Emerg. Care 2007, 23, 368–375. [Google Scholar] [CrossRef]
- Perng, G.C.; Chokephaibulkit, K. Immunologic hypo- or non-responder in natural dengue virus infection. J. Biomed. Sci. 2013, 20, 34. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.K.; Chen, H.L.; Yang, C.F.; Hsieh, S.C.; Juan, C.C.; Chang, S.M.; Yu, C.C.; Lin, L.H.; Huang, J.H.; King, C.C. Slower rates of clearance of viral load and virus-containing immune complexes in patients with dengue hemorrhagic fever. Clin. Infect. Dis. 2006, 43, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.R.; Whitehead, S.S. Immune response to dengue virus and prospects for a vaccine. Annu. Rev. Immunol. 2011, 29, 587–619. [Google Scholar] [CrossRef]
- Thomas, S.J.; Endy, T.P. Vaccines for the prevention of dengue: Development update. Hum. Vaccines 2011, 7, 674–684. [Google Scholar] [CrossRef]
- Webster, D.P.; Farrar, J.; Rowland-Jones, S. Progress towards a dengue vaccine. Lancet Infect. Dis. 2009, 9, 678–687. [Google Scholar] [CrossRef]
- Schmitz, J.; Roehrig, J.; Barrett, A.; Hombach, J. Next generation dengue vaccines: A review of candidates in preclinical development. Vaccine 2011, 29, 7276–7284. [Google Scholar] [CrossRef]
- Swaminathan, S.; Batra, G.; Khanna, N. Dengue vaccines: State of the art. Expert Opin. Ther. Pat. 2010, 20, 819–835. [Google Scholar] [CrossRef]
- Gusman, M.G. Dengue vaccines: New developments. Drugs Future 2011, 36, 45–62. [Google Scholar] [CrossRef]
- Perng, G.C.; Lei, H.Y.; Lin, Y.S.; Choekphaibulkit, K. Dengue vaccines: Challenge and confrotation. World J. Vaccines 2011, 1, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Capeding, M.R.; Tran, N.H.; Hadinegoro, S.R.; Ismail, H.I.; Chotpitayasunondh, T.; Chua, M.N.; Luong, C.Q.; Rusmil, K.; Wirawan, D.N.; Nallusamy, R.; et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: A phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 2014, 384, 1358–1365. [Google Scholar] [CrossRef]
- Villar, L.; Dayan, G.H.; Arredondo-Garcia, J.L.; Rivera, D.M.; Cunha, R.; Deseda, C.; Reynales, H.; Costa, M.S.; Morales-Ramirez, J.O.; Carrasquilla, G.; et al. Efficacy of a tetravalent dengue vaccine in children in latin America. N. Engl. J. Med. 2015, 372, 113–123. [Google Scholar] [CrossRef]
- Ng, K.H.; Zhang, S.L.; Tan, H.C.; Kwek, S.S.; Sessions, O.M.; Chan, C.Y.; Liu, I.D.; Lee, C.K.; Tambyah, P.A.; Ooi, E.E.; et al. Persistent dengue infection in an immunosuppressed patient reveals the roles of humoral and cellular immune responses in virus clearance. Cell Host Microbe 2019, 26, 601–605.e603. [Google Scholar] [CrossRef] [PubMed]
- Hotta, S. Viral infection in indonesia—Immuno-epidemiological studies. Kansenshogaku Zasshi 1971, 45, 211–217. [Google Scholar]
- Linnen, J.M.; Vinelli, E.; Sabino, E.C.; Tobler, L.H.; Hyland, C.; Lee, T.H.; Kolk, D.P.; Broulik, A.S.; Collins, C.S.; Lanciotti, R.S.; et al. Dengue viremia in blood donors from Honduras, Brazil, and Australia. Transfusion 2008, 48, 1355–1362. [Google Scholar] [CrossRef]
- Punzel, M.; Korukluoglu, G.; Caglayik, D.Y.; Menemenlioglu, D.; Bozdag, S.C.; Tekgunduz, E.; Altuntas, F.; Campos Rde, M.; Burde, B.; Gunther, S.; et al. Dengue virus transmission by blood stem cell donor after travel to Sri Lanka; Germany, 2013. Emerg. Infect. Dis. 2014, 20, 1366–1369. [Google Scholar] [CrossRef] [PubMed]
- Visuthranukul, J.; Bunworasate, U.; Lawasut, P.; Suankratay, C. Dengue hemorrhagic fever in a peripheral blood stem cell transplant recipient: The first case report. Infect. Dis. Rep. 2009, 1, e3. [Google Scholar] [CrossRef] [Green Version]
- Chotigeat, U.; Kalayanarooj, S.; Nisalak, A. Vertical transmission of dengue infection in Thai infants: Two case reports. J. Med. Assoc. Thai. 2003, 86 (Suppl. 3), S628–S632. [Google Scholar]
- Ribeiro, C.F.; Lopes, V.G.; Brasil, P.; Coelho, J.; Muniz, A.G.; Nogueira, R.M. Perinatal transmission of dengue: A report of 7 cases. J. Pediatr. 2013, 163, 1514–1516. [Google Scholar] [CrossRef] [Green Version]
- Hsu, A.Y.; Ho, T.C.; Lai, M.L.; Tan, S.S.; Chen, T.Y.; Lee, M.; Chien, Y.W.; Chen, Y.P.; Perng, G.C. Identification and characterization of permissive cells to dengue virus infection in human hematopoietic stem and progenitor cells. Transfusion 2019, 59, 2938–2951. [Google Scholar] [CrossRef] [PubMed]
- Rothman, A.L. Immunology and immunopathogenesis of dengue disease. Adv. Virus Res. 2003, 60, 397–419. [Google Scholar]
- Halstead, S.B. Pathogenesis of dengue: Challenges to molecular biology. Science 1988, 239, 476–481. [Google Scholar] [CrossRef]
- Fagbami, A.; Halstead, S.B.; Marchette, N.; Larsen, K. Heterologous flavivirus infection-enhancing antibodies in sera of nigerians. Am. J. Trop. Med. Hyg. 1988, 38, 205–207. [Google Scholar] [CrossRef]
- Ruechusatsawat, K.; Morita, K.; Tanaka, M.; Vongcheree, S.; Rojanasuphot, S.; Warachit, P.; Kanai, K.; Thongtradol, P.; Nimnakorn, P.; Kanungkid, S.; et al. Daily observation of antibody levels among dengue patients detected by Enzyme-Linked Immunosorbent Assay (ELISA). Jpn. J. Trop. Med. Hyg. 1994, 22, 9–12. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chokephaibulkit, K.; Chien, Y.-W.; AbuBakar, S.; Pattanapanyasat, K.; Perng, G.C. Use of Animal Models in Studying Roles of Antibodies and Their Secretion Cells in Dengue Vaccine Development. Viruses 2020, 12, 1261. https://doi.org/10.3390/v12111261
Chokephaibulkit K, Chien Y-W, AbuBakar S, Pattanapanyasat K, Perng GC. Use of Animal Models in Studying Roles of Antibodies and Their Secretion Cells in Dengue Vaccine Development. Viruses. 2020; 12(11):1261. https://doi.org/10.3390/v12111261
Chicago/Turabian StyleChokephaibulkit, Kulkanya, Yu-Wen Chien, Sazaly AbuBakar, Kovit Pattanapanyasat, and Guey Chuen Perng. 2020. "Use of Animal Models in Studying Roles of Antibodies and Their Secretion Cells in Dengue Vaccine Development" Viruses 12, no. 11: 1261. https://doi.org/10.3390/v12111261
APA StyleChokephaibulkit, K., Chien, Y. -W., AbuBakar, S., Pattanapanyasat, K., & Perng, G. C. (2020). Use of Animal Models in Studying Roles of Antibodies and Their Secretion Cells in Dengue Vaccine Development. Viruses, 12(11), 1261. https://doi.org/10.3390/v12111261