Low Aedes aegypti Vector Competence for Zika Virus from Viremic Rhesus Macaques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Rhesus Macaques and ZIKV Infection
2.3. Mosquitoes
2.4. Bloodmeal on Rhesus Macaques
2.5. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dick, G. Zika isolation and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 509–520. [Google Scholar] [CrossRef]
- Weaver, S.C.; Costa, F.; Garcia-Blanco, M.A.; Ko, A.I.; Ribeiro, G.S.; Saade, G.; Shi, P.; Vasilakis, N. Zika virus: History, emergence, biology, and prospects for control. Antivir. Res. 2016, 130, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.R.; Chen, T.H.; Hancock, W.T.; Powers, A.M.; Jacob, L.K.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009, 360, 2536–2543. [Google Scholar] [CrossRef] [PubMed]
- Cao-Lormeau, V.; Roche, C.; Teissier, A.; Robin, E.; Berry, A.; Mallet, H.; Sall, A.A.; Musso, D. Zika virus, French Polynesia, South Pacific, 2013. Emerg. Infect. Dis. 2014, 20, 1085–1086. [Google Scholar] [CrossRef]
- Campos, G.; Bandeira, A.; Sardi, S. Zika virus Outbreak, Bahia Brazil. Emerg. Infect. Dis. 2015, 21, 1885–1886. [Google Scholar] [CrossRef]
- Zanluca, C.; De Melo, V.C.A.; Mosimann, A.L.P.; Dos Santos, G.I.V.; dos Santos, C.N.D.; Luz, K. First report of autochthonous transmission of Zika virus in Brazil. Mem. Inst. Oswaldo Cruz 2015, 110, 569–572. [Google Scholar] [CrossRef]
- Sampaio, G.S.; Brites, C.; Drexler, J.F.; Moreira-Soto, A.; Miranda, F.; Martins Netto, E. Expansion of Zika virus circulation from Africa to the Americas, 1947–2018: A literature review. Epidemiol. Serv. Saúde 2019, 28, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Possas, C.; Brasil, P.; Marzochi, M.C.; Tanuri, A.; Martins, R.M.; Marques, E.T.; Bonaldo, M.C.; Ferreira, A.G.; Lourenço-de-Oliveira, R.; Nogueira, R.M.R.; et al. Zika puzzle in Brazil: Peculiar conditions of viral introduction and dissemination—A review. Mem. Inst. Oswaldo Cruz 2017, 112, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Calvet, G.; Aguiar, R.S.; Melo, A.S.O.; Sampaio, S.A.; de Filippis, I.; Fabri, A.; Araujo, E.S.M.; Sequeira, P.C.; Mendonça, M.C.L.; Oliveira, L.; et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: A case study. Lancet Infect. Dis. 2016, 16, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Brasil, P.; Sequeira, P.C.; Freitas, A.D.; Zogbi, H.E.; Calvet, G.A.; Souza, R.V.; Siqueira, A.M.; Mendonca, M.C.L.; Nogueira, R.M.R.; Filippis, A.M.B.; et al. Guillain-Barre syndrome associated with Zika virus infection. Lancet 2016, 387, 1482. [Google Scholar] [CrossRef] [Green Version]
- Malta, J.M.A.S.; Vargas, A.; Leite, P.L.; Percio, J.; Coelho, G.E.; Ferraro, A.H.A.; Cordeiro, T.M.O.; Dias, J.S.; Saad, E. Síndrome de Guillain-Barré e outras manifestações neurológicas possivelmente relacionadas à infecção pelo vírus Zika em municípios da Bahia, 2015. Epidemiol. Serv. Saúde 2017, 26, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Vasilakis, N.; Weaver, S.C. Flavivirus transmission focusing on Zika. Curr. Opin. Virol. 2017, 22, 30–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Bugallo, G.; Piedra, L.A.; Rodriguez, M.; Bisset, J.A.; Lourenço-de-Oliveira, R.; Weaver, S.C.; Vasilakis, N.; Vega-Rúa, A. Vector-borne transmission and evolution of Zika virus. Nat. Ecol. Evol. 2019, 3, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diallo, D.; Sall, A.A.; Diagne, C.T.; Faye, O.; Faye, O.; Ba, Y.; Hanley, K.A.; Buenemann, M.; Weaver, S.C.; Diallo, M.; et al. Zika virus emergence in mosquitoes in Southeastern Senegal, 2011. PLoS ONE 2014, 9, e109442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grard, G.; Caron, M.; Mombo, M.; Nkoghe, D.; Ondo, S.M.; Jiolle, D.; Fontenille, D.; Paupy, C.; Leroy, E.M. Zika virus in Gabon (Central Africa)—2007: A New Threat from Aedes albopictus? PLoS Negl. Trop. Dis. 2014, 8, e2681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epelboin, Y.; Talaga, S.; Epelboin, L.; Dusfour, I. Zika virus: An updated review of competent or naturally infected mosquitoes. PLoS Negl. Trop. Dis. 2017, 11, e0005933. [Google Scholar] [CrossRef] [Green Version]
- Marchette, N.J.; Garcia, R.; Rudnick, A. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am. J. Trop. Med. Hyg. 1969, 18, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-de-Brito, A.; Ribeiro, I.P.; Moraes, M.R.; Fernandes, R.S.; Campos, S.S.; Silva, K.A.B.; Castro, M.G.; Bonaldo, M.C.; Brasil, P.; Lourenço-de-Oliveira, R.; et al. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America. Mem. Inst. Oswaldo Cruz 2016, 111, 655–658. [Google Scholar] [CrossRef] [Green Version]
- Chouin-Carneiro, T.; Vega-Rúa, A.; Vazeille, M.; Yebakima, A.; Girod, R.; Goindin, D.; Dupont-Rouzeyrol, M.; Lourenço-de-Oliveira, R.; Failloux, A. Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl. Trop. Dis. 2016, 10, e0004543. [Google Scholar] [CrossRef]
- Weger-Lucarelli, J.; Ruckert, C.; Chotiwan, N.; Nguyen, C.; Luna, S.M.G.; Fauver, J.R.; Foy, B.D.; Perera, R.; Black, W.C.; Kading, R.C.; et al. Vector competence of American Mosquitoes for three strains of Zika virus. PLoS Negl. Trop. Dis. 2016, 10, e0005101. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, S.R.; Campos, S.S.; Ferreira-de-Brito, A.; Miranda, M.R.; Silva, A.B.K.; Gonçalves, C.M.; Raphael, L.M.S.; Brasil, P.; Failloux, A.; Bonaldo, M.C.; et al. Culex quinquefasciatus from Rio de Janeiro is not competent to transmit the local Zika Virus. PLoS Negl. Trop. Dis. 2016, 10, e0004993. [Google Scholar] [CrossRef] [PubMed]
- Hall-Mendelin, S.; Pyke, A.T.; Moore, P.R.; Mackay, I.M.; Mcmahon, L.; Ritchie, S.A.; Taylor, C.T.; Moore, F.A.J.; Hurk, A.F. Assessment of local mosquito species incriminates Aedes aegypti as the potential vector of Zika virus in Australia. PLoS Negl. Trop. Dis. 2016, 10, e0004959. [Google Scholar] [CrossRef] [PubMed]
- Richard, V.; Paoaafaite, T.; Cao-Lormeau, V. Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus. PLoS Negl. Trop. Dis. 2016, 10, e0005024. [Google Scholar] [CrossRef] [PubMed]
- Ciota, A.T.; Bialosuknia, S.M.; Zink, S.D.; Brecher, M.; Ehrbar, D.J.; Morrissette, M.N.; Kramer, L.D. Effects of Zika virus strain and Aedes mosquito species on vector competence. Emerg. Infect. Dis. 2017, 23, 1110–1117. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.S.; O’Connor, O.; Bersot, M.I.L.; Girault, D.; Dokunengo, M.R.; Pocquet, N.; Dupont-Rouzeyrol, M.; Lourenço-de-Oliveira, R. Vector competence of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Brazil and New Caledonia for three Zika virus lineages. Pathogens 2020, 9, 575. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Du, S.; Shan, C.; Nie, K.; Zhang, R.; Li, X.; Zhang, R.; Wang, T.; Qin, C.; et al. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature 2017, 545, 482–486. [Google Scholar] [CrossRef] [Green Version]
- Roundy, C.M.; Azar, S.R.; Rossi, S.L.; Huang, J.H.; Leal, G.; Yun, R.; Fernandez-Salas, I.; Vitek, C.J.; Paploski, I.A.D.; Kitron, U.; et al. Variation in Aedes aegypti mosquito competence for Zika virus transmission. Emerg. Infect. Dis. 2017, 23, 625–632. [Google Scholar] [CrossRef]
- Tabachnick, W.J. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence. Int. J. Environ. Res. Public Health 2013, 10, 249–277. [Google Scholar] [CrossRef] [Green Version]
- Chouin-Carneiro, T.; David, M.R.; Nogueira, F.D.B.; Santos, F.B.; Lourenço-de-Oliveira, R. Zika virus transmission by Brazilian Aedes aegypti and Aedes albopictus is virus dose and temperature-dependent. PLoS Negl. Trop. Dis. 2015, 14, e0008527. [Google Scholar]
- Azar, S.R.; Weaver, S.C. Vector competence: What has Zika virus taught us? Viruses 2019, 11, 867. [Google Scholar] [CrossRef] [Green Version]
- Vazeille, M.; Madec, Y.; Mousson, L.; Bellone, R.; Barré-Cardi, H.; Sousa, C.A.; Jiolle, D.; Yébakimaf, A.; Lamballerieg, X.; Failloux, A.; et al. Zika virus threshold determines transmission by European Aedes albopictus mosquitoes. Emerg. Microbes Infect. 2019, 8, 1668–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, C.M.; Dudley, D.M.; Aliota, M.T.; Weiler, A.M.; Barry, G.L.; Mohns, M.S.; Breitbach, M.E.; Stewart, L.M.; Buechler, C.R.; Graham, M.E.; et al. Oropharyngeal mucosal transmission of Zika virus in rhesus macaques. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, A.J.; Smith, J.L.; Haese, N.N.; Broeckel, R.M.; Parkins, C.J.; Kreklywich, C.; DeFilippis, V.R.; Denton, M.; Smith, P.P.; Messer, W.B.; et al. Zika virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLoS Pathog. 2017, 13, e1006219. [Google Scholar] [CrossRef] [PubMed]
- Morrison, T.E.; Diamond, M.S. Animal models of Zika virus infection, pathogenesis, and immunity. J. Virol. 2017, 91, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Gardinali, N.R.; Marchevsky, R.S.; Oliveira, J.M.; Pelajo, M.; Kugelmeier, T.; Castro, M.P.; Silva, A.C.A.; Pinto, D.P.; Fonseca, L.B.; Vilhena, L.S.; et al. Sofosbuvir shows a protective effect against vertical transmission of Zika virus and the associated congenital syndrome in rhesus monkeys. Antivir. Res. 2020, 7, 104859. [Google Scholar] [CrossRef]
- Bearcroft, W.G.C. Zika virus infection experimentally induced in a human volunteer. Trans. R. Soc. Trop. Med. Hyg. 1956, 50, 442–448. [Google Scholar] [CrossRef]
- Azar, S.R.; Rossi, S.L.; Haller, S.H.; Yun, R.; Huang, J.H.; Plante, J.A.; Zhou, J.; Olano, J.P.; Roundy, C.M.; Hanley, K.A.; et al. ZIKV Demonstrates Minimal Pathologic Effects Cynomolgus Macaques. Viruses 2018, 10, 661. [Google Scholar] [CrossRef] [Green Version]
- Dudley, D.M.; Newman, C.M.; Lalli, J.; Stewart, L.M.; Koenig, M.R.; Weiler, A.M.; Semler, M.R.; Barry, G.L.; Zarbock, K.R.; Mohns, M.S.; et al. Infection via mosquito bite alters Zika virus tissue tropism and replication kinetics in rhesus macaques. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Regan, C.P.; Morissette, P.; Regan, H.K.; Travis, J.J.; Gerenser, P.; Wen, J.; Fitzgerald, K.; Gruver, S.; DeGeorge, J.J.; Sannajust, F.J.; et al. Assessment of the clinical cardiac drug-drug interaction associated with the combination of hepatitis C virus nucleotide inhibitors and amiodarone in guinea pigs and rhesus monkeys. Hepatology 2016, 64, 1430–1441. [Google Scholar] [CrossRef]
- Xie, X.; Zou, J.; Shan, C.; Shi, P.Y. Small molecules and antibodies for Zika therapy. J. Infect. Dis. 2017, 216, S945–S950. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.C.; Zaverucha-Do-Valle, C.; Reis, P.A.; Barbosa-Lima, G.; Vieira, Y.R.; Mattos, M.; Silva, P.P.; Sacramento, C.; Faria Neto, H.C.C.; Campanati, L.; et al. Sofosbuvir protects Zika virus-infected mice from mortality, preventing short- and long-term sequelae. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, S.; Tan, N.W.W.; Chan, K.W.K.; Vasudevan, S.G. Assessing the utility of antivirals for preventing maternal-fetal transmission of Zika virus in pregnant mice. Antivir. Res. 2019, 167, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 2008, 14, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.r-project.org/ (accessed on 2 June 2020).
- Mazerolle, M. Model Selection and Multimodel Inference based on (Q)AIC(c). R Package Version 2.2-2. 2019. Available online: https://cran.r-project.org/package=AICcmodavg (accessed on 2 June 2020).
- Best, K.; Guedj, J.; Madelain, V.; De Lamballerie, X.; Lim, S.Y.; Osuna, C.E.; Whitney, J.B.; Perelson, A.S. Zika plasma viral dynamics in nonhuman primates provides insights into early infection and antiviral strategies. Proc. Natl. Acad. Sci. USA 2017, 114, 8847–8852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musso, D.; Rouault, E.; Teissier, A.; Lanteri, M.C.; Zisou, K.; Broult, J.; Grange, E.; Nhan, T.; Aubry, M. Molecular detection of Zika virus in blood and RNA load determination during the French Polynesian outbreak. J. Med. Virol. 2017, 89, 1505–1510. [Google Scholar] [CrossRef] [Green Version]
- Waggoner, J.J.; Gresh, L.; Vargas, M.J.; Ballesteros, G.; Tellez, Y.; Soda, K.J.; Sahoo, M.K.; Nuñez, A.; Balmaseda, A.; Harris, E.; et al. Viremia and clinical presentation in Nicaraguan patients infected with Zika virus, chikungunya virus, and dengue virus. Clin. Infect. Dis. 2016, 63, 1584–1590. [Google Scholar] [CrossRef]
- Seferovic, M.; Martín, C.S.S.; Tardif, S.D.; Rutherford, J.; Castro, E.C.C.; Li, T.; Hodara, V.L.; Parodi, L.M.; Giavedoni, L.; Layne-Colon, D.; et al. Experimental Zika virus infection in the pregnant common marmoset induces spontaneous fetal loss and neurodevelopmental abnormalities. Sci. Rep. 2018, 8, 1–15. [Google Scholar]
- Berry, N.; Ferguson, D.; Ham, C.; Hall, J.; Jenkins, A.; Giles, E.; Devishi, D.; Kempster, S.; Rose, N.; Dowall, S.; et al. High susceptibility, viral dynamics and persistence of South American Zika virus in New World monkey species. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bae, H.; Nitsche, A.; Teichmann, A.; Biel, S.S.; Niedrig, M. Detection of yellow fever virus: A comparison of quantitative real-time PCR and plaque assay. J. Virol. Methods 2003, 110, 185–191. [Google Scholar] [CrossRef]
- Tesla, B.; Demakovsky, L.R.; Packiam, H.S.; Mordecai, E.A.; Rodríguez, A.D.; Bonds, M.H.; Brindley, M.A.; Murdock, C.C. Estimating the effects of variation in viremia on mosquito susceptibility, infectiousness, and R0 of Zika in Aedes aegypti. PLoS Negl. Trop. Dis. 2018, 12, e0006733. [Google Scholar] [CrossRef] [Green Version]
- Kuno, G.; Chang, G.J. Biological transmission of arboviruses: Reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin. Microbiol. Rev. 2005, 18, 608–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, L.D.; Ciota, A.T. Dissecting vectorial capacity for mosquito-borne viruses Laura. Curr. Opin. Virol. 2015, 15, 112–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, J.; Hermida, L.; Castro, J.; Lazo, L.; Martinez, R.; Gil, L.; Romero, Y.; Puente, P.; Zaragoza, S.; Cosme, K.; et al. Viremia and antibody response in green monkeys (Chlorocebus aethiops sabaeus) infected with dengue virus type 2: A potential model for vaccine testing. Microbiol. Immunol. 2009, 53, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Althouse, B.M.; Hanley, K.A. The tortoise or the hare? Impacts of within-host dynamics on transmission success of arthropod-borne viruses. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 1–11. [Google Scholar] [CrossRef]
- Fernandes, R.S.; Campos, S.S.; Ribeiro, P.S.; Raphael, L.M.S.; Bonaldo, M.C.; Lourenço-de-Oliveira, R. Culex quinquefasciatus from areas with the highest incidence of microcephaly associated with Zika virus infections in the Northeast region of Brazil are refractory to the virus. Mem. Inst. Oswaldo Cruz 2017, 112, 577–579. [Google Scholar] [CrossRef]
- Miller, B.R.; Monath, T.P.; Tabachnick, W.J.; Ezike, V.I. Epidemic yellow fever caused by an incompetent mosquito vector. Trop. Med. Parasitol. 1989, 4, 396–399. [Google Scholar]
- Lambrechts, L.; Failloux, A.B. Vector biology prospects in dengue research. Mem. Inst. Oswaldo Cruz 2012, 107, 1080–1082. [Google Scholar] [CrossRef] [Green Version]
Monkey Identification (Treatment) | Mosquito Population | d.p.p.i. a Monkey (RNA Copies/mL of Plasma) | d.p.m.i. b Mosquitoes | N c | Infection Rate d (Number of Positive Bodies) | Disseminated Rate e (Number of Positive Heads) | Transmission Rate f (Number of Positive Salivas) |
---|---|---|---|---|---|---|---|
AB68 (non-treated) | Aedes aegypti Manguinhos F > 10 | 2 (2.95 × 108) | 3 | 20 | 5% (1) | 0% | 0% |
7 | 20 | 15% (3) | 0% | 0% | |||
14 | 12 | 0% | 0% | 0% | |||
4 (3.02 × 102) | 3 | 15 | 0% | 0% | 0% | ||
7 | 20 | 0% | 0% | 0% | |||
14 | 20 | 0% | 0% | 0% | |||
8 (1.32 × 106) | 3 | 8 | 0% | 0% | 0% | ||
7 | 20 | 0% | 0% | 0% | |||
14 | 18 | 0% | 0% | 0% | |||
12 (0) | 14 | 2 | 0% | 0% | 0% | ||
18 (0) | 3 | 20 | 0% | 0% | 0% | ||
14 | 20 | 0% | 0% | 0% | |||
25 (0) | 3 | 20 | 0% | 0% | 0% | ||
14 | 20 | 0% | 0% | 0% | |||
35 (0) | 7 | 20 | 0% | 0% | 0% | ||
AD14 (non-treated) | Aedes aegypti Manguinhos F > 10 | 2 (8.13 × 107) | 3 | 20 | 0% | 0% | 0% |
7 | 20 | 0% | 0% | 0% | |||
14 | 4 | 0% | 0% | 0% | |||
4 (5.01 × 104) | 3 | 9 | 0% | 0% | 0% | ||
7 | 20 | 0% | 0% | 0% | |||
14 | 20 | 0% | 0% | 0% | |||
8 (9.12 × 104) | 3 | 8 | 0% | 0% | 0% | ||
7 | 20 | 0% | 0% | 0% | |||
14 | 14 | 0% | 0% | 0% | |||
12 (0) | 3 | 20 | 0% | 0% | 0% | ||
7 | 20 | 0% | 0% | 0% | |||
14 | 20 | 0% | 0% | 0% | |||
18 (0) | 3 | 20 | 0% | 0% | 0% | ||
7 | 20 | 0% | 0% | 0% | |||
14 | 20 | 0% | 0% | 0% | |||
25 (0) | 3 | 20 | 0% | 0% | 0% | ||
7 | 20 | 0% | 0% | 0% | |||
14 | 20 | 0% | 0% | 0% | |||
35 (0) | 7 | 20 | 0% | 0% | 0% | ||
AE62 (non-treated) | Aedes aegypti Manguinhos F > 10 | 2 (1.20 × 107) | 7 | 30 | 6.6% (2) | 50% (1) | 0% |
14 | 30 | 0% | 0% | 0% | |||
4 (2.69 × 104) | 7 | 30 | 0% | 0% | 0% | ||
14 | 23 | 0% | 0% | 0% | |||
AB18 (SOF-treated) g | Aedes aegypti Manguinhos F > 10 | 2 (1.26 × 105) | 7 | 20 | 5% (1) | 0% | 0% |
14 | 30 | 6.6% (2) | 100% (2) | -- | |||
4 (1.0 × 105) | 7 | 20 | 0% | 0% | 0% | ||
14 | 30 | 0% | 0% | 0% | |||
8 (1.0 × 103) | 7 | 20 | 0% | 0% | 0% | ||
14 | 30 | 0% | 0% | 0% | |||
AB18 (SOF-treated) g | Aedes aegypti Urca F3 | 2 (1.26 × 105) | 7 | 15 | 0% | 0% | 0% |
14 | 11 | 18.1% (1) | 100% (1) | -- | |||
4 (1.0 × 105) | 7 | 20 | 0% | 0% | 0% | ||
14 | 25 | 0% | 0% | 0% | |||
8 (1.0 × 103) | 7 | 20 | 0% | 0% | 0% | ||
14 | 30 | 0% | 0% | 0% | |||
AA14 (SOF-treated) g | Aedes aegypti Manguinhos F > 10 | 1 (NA) | 14 | 19 | 0% | 0% | 0% |
2 (2.8 × 106) | 7 | 25 | 0% | 0% | 0% | ||
14 | 27 | 3.7% (1) | 100% (1) | 100% (1) | |||
3 (NA) | 14 | 23 | 0% | 0% | 0% | ||
AA14 (SOF-treated) g | Aedes aegypti Urca | 2 (2.8 × 106) | 7 | 30 | 4% (1) | 0% | 0% |
14 | 30 | 10% (3) | 66.6% (2) | 50% (1) | |||
3 (NA) | 14 | 20 | 0% | 0% | 0% | ||
AB28 (SOF-treated) g | Aedes aegypti Manguinhos F > 10 | 2 (2.15 × 106) | 14 | 5 | 0% | 0% | 0% |
AB28 (SOF-treated) g | Aedes aegypti Urca | 1 (NA) | 14 | 1 | 0% | 0% | 0% |
2 (2.15 × 106) | 14 | 17 | 0% | 0% | 0% | ||
3 (NA) | 14 | 5 | 0% | 0% | 0% |
GLM: Infection ~ log (Macaque Viral load) + Mosquito Population | ||||||
---|---|---|---|---|---|---|
Independent Variable | Coefficient (β) | Std. Error | OR (95% CI) | Z Value | p-Value | Explained Deviance |
Intercept | −8.26 | 1.53 | −5.39 | <0.001 | 8.18% | |
Macaque viral load (log) | 0.28 | 0.09 | 1.33 (1.11–1.59) | 3.09 | 0.002 | |
Mosquito population (Urca) | 1.01 | 0.61 | 2.73 (0.82–9.11) | 1.640 | 0.101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, R.S.; David, M.R.; De Abreu, F.V.S.; Ferreira-de-Brito, A.; Gardinali, N.R.; Lima, S.M.B.; Andrade, M.C.R.; Kugelmeier, T.; Oliveira, J.M.d.; Pinto, M.A.; et al. Low Aedes aegypti Vector Competence for Zika Virus from Viremic Rhesus Macaques. Viruses 2020, 12, 1345. https://doi.org/10.3390/v12121345
Fernandes RS, David MR, De Abreu FVS, Ferreira-de-Brito A, Gardinali NR, Lima SMB, Andrade MCR, Kugelmeier T, Oliveira JMd, Pinto MA, et al. Low Aedes aegypti Vector Competence for Zika Virus from Viremic Rhesus Macaques. Viruses. 2020; 12(12):1345. https://doi.org/10.3390/v12121345
Chicago/Turabian StyleFernandes, Rosilainy Surubi, Mariana Rocha David, Filipe Vieira Santos De Abreu, Anielly Ferreira-de-Brito, Noemi R. Gardinali, Sheila Maria Barbosa Lima, Márcia Cristina Ribeiro Andrade, Tatiana Kugelmeier, Jaqueline Mendes de Oliveira, Marcelo A. Pinto, and et al. 2020. "Low Aedes aegypti Vector Competence for Zika Virus from Viremic Rhesus Macaques" Viruses 12, no. 12: 1345. https://doi.org/10.3390/v12121345
APA StyleFernandes, R. S., David, M. R., De Abreu, F. V. S., Ferreira-de-Brito, A., Gardinali, N. R., Lima, S. M. B., Andrade, M. C. R., Kugelmeier, T., Oliveira, J. M. d., Pinto, M. A., & Lourenço-de-Oliveira, R. (2020). Low Aedes aegypti Vector Competence for Zika Virus from Viremic Rhesus Macaques. Viruses, 12(12), 1345. https://doi.org/10.3390/v12121345