Valproic Acid and Its Amidic Derivatives as New Antivirals against Alphaherpesviruses
Abstract
:1. Introduction
2. Valproic Acid
3. Amidic Derivatives of Valproic Acid
3.1. Valpromide
3.2. Valnoctamide
3.3. Antiviral Mechanism of VPA and Related Derivatives
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davison, A.J.; Eberle, R.; Ehlers, B.; Hayward, G.S.; McGeoch, D.J.; Minson, A.C.; Pellett, P.E.; Roizman, B.; Studdert, M.J.; Thiry, E. The order Herpesvirales. Arch. Virol. 2009, 154, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Kukhanova, M.K.; Korovina, A.N.; Kochetkov, S.N. Human herpes simplex virus: Life cycle and development of inhibitors. Biochemistry 2014, 79, 1635–1652. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, L.; Almendral, J.M. Virus Patógenos; Editorial Hélice, Fundación BBVA: Madrid, Spain, 2006. [Google Scholar]
- Smith, T.T.; Whitley, R.J. Herpesviruses. In Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1426–1438.e1. [Google Scholar] [CrossRef]
- Cassady, K.A.; Whitley, R.J. New therapeutic approaches to the alphaherpesvirus infections. J. Antimicrob. Chemother. 1997, 39, 119–128. [Google Scholar] [CrossRef] [Green Version]
- De Mello, C.P.P.; Bloom, D.C.; Paixão, I.C.N.P. Herpes simplex virus type-1: Replication, latency, reactivation and its antiviral targets. Antivir. Ther. 2016, 21, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widener, R.W.; Whitley, R.J. Herpes simplex virus. In Handbook of Clinical Neurology; Elsevier B.V.: Amsterdam, The Netherlands, 2014; Volume 123, pp. 251–263. [Google Scholar] [CrossRef]
- Groves, M.J. Genital Herpes: A Review. Am. Fam. Physician. 2016, 93, 928–934. [Google Scholar]
- Rosenberg, J.; Galen, B.T. Recurrent Meningitis. Curr. Pain Headache Rep. 2017, 21, 33. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, P.G.E.; Gershon, A.A. Clinical features of varicella-zoster virus infection. Viruses 2018, 10, 609. [Google Scholar] [CrossRef] [Green Version]
- Mettenleiter, T.C.; Keil, G.M.; Fuchs, W. Molecular biology of animal herpesviruses. In Animal viruses: Molecular Biology; Caister Academic Press: Norfolk, UK, 2008; Volume 12, p. 531. [Google Scholar]
- Biswas, S.; Bandyopadhyay, S.; Dimri, U.; Patra, P.H. Bovine herpesvirus-1 (BHV-1) a re-emerging concern in livestock: A revisit to its biology, epidemiology, diagnosis, and prophylaxis. Vet. Q. 2013, 33, 68–81. [Google Scholar] [CrossRef]
- Bollaerts, K.; Riera-Montes, M.; Heininger, U.; Hens, N.; Souverain, A.; Verstraeten, T.; Hartwig, S. A systematic review of varicella seroprevalence in European countries before universal childhood immunization: Deriving incidence from seroprevalence data. Epidemiol. Infect. 2017, 145, 2666–2677. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.C.; Feng, H.; Lin, Y.C.; Guo, X.R. New strategies against drug resistance to herpes simplex virus. Int. J. Oral Sci. 2016, 8, 1–6. [Google Scholar] [CrossRef]
- King, D.H. History, pharmacokinetics, and pharmacology of acyclovir. J. Am. Acad. Dermatol. 1988, 18, 176–179. [Google Scholar] [CrossRef]
- Shiraki, K. Antiviral drugs against alphaherpesvirus. In Human Herpesviruses. Advances in Experimental Medicine and Biology; Kawaguchi, Y., Mori, Y., Eds.; Springer: Singapore, 2018; Volume 1045, pp. 103–122. [Google Scholar] [CrossRef]
- Lebrun-Vignes, B. Valaciclovir. Ann. Dermatol. Venereol. 2002, 129, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Al-Badr, A.A.; Ajarim, T.D.S. Ganciclovir. In Profiles of Drug Substances, Excipients and Related Methodology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 43, pp. 1–208. ISBN 9780128151259. [Google Scholar]
- Johnston, C.; Gottlieb, S.L.; Wald, A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine 2016, 34, 2948–2952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, M.J.; Bacon, T.H.; Leary, J.J. Resistance of herpes simplex virus infections to nucleoside analogues in HIV-infected patients. Clin. Infect. Dis. 2004, 39. [Google Scholar] [CrossRef] [PubMed]
- Garikapati, S.; Nguyen, M. Foscarnet; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Piret, J.; Boivin, G. Antiviral resistance in herpes simplex virus and varicella-zoster virus infections: Diagnosis and management. Curr. Opin. Infect. Dis. 2016, 29, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Vissani, M.A.; Thiry, E.; Dal Pozzo, F.; Barrandeguy, M. Antiviral agents against equid alphaherpesviruses: Current status and perspectives. Vet. J. 2016, 207, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Vere Hodge, R.A.; Field, H.J. Antiviral agents for herpes simplex virus. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 67, pp. 1–38. [Google Scholar] [CrossRef]
- De, S.K.; Hart, J.C.L.; Breuer, J. Herpes simplex virus and varicella zoster virus: Recent advances in therapy. Curr. Opin. Infect. Dis. 2015, 28, 589–595. [Google Scholar] [CrossRef]
- Gil, M.; González-González, R.; Vázquez-Calvo, A.; Álvarez-Gutiérrez, A.; Martín-Acebes, M.A.; Praena, B.; Bello-Morales, R.; Saiz, J.C.; López-Guerrero, J.A.; Tabarés, E.; et al. Clinical Infections by Herpesviruses in Patients Treated with Valproic Acid: A Nested Case-Control Study in the Spanish Primary Care Database, BIFAP. J. Clin. Med. 2019, 8, 1442. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.M.; Li, H.L.; Shi, L.H.; Chen, X.P.; Luo, J.; Zhang, Z.L. The pharmacogenomics of valproic acid. J. Hum. Genet. 2017, 62, 1009–1014. [Google Scholar] [CrossRef]
- Nanau, R.M.; Neuman, M.G. Adverse drug reactions induced by valproic acid. Clin. Biochem. 2013, 46, 1323–1338. [Google Scholar] [CrossRef]
- Linde, M.; Mulleners, W.M.; Chronicle, E.P.; Mccrory, D.C. Valproate (valproic acid or sodium valproate or a combination of the two) for the prophylaxis of episodic migraine in adults. Cochrane Database Syst. Rev. 2013, 24, CD010611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patsalos, P.N.; Spencer, E.P.; Berry, D.J. Therapeutic drug monitoring of antiepileptic drugs in epilepsy: A 2018 update. Ther. Drug Monit. 2018, 40, 526–548. [Google Scholar] [CrossRef] [PubMed]
- Tomson, T.; Battino, D.; Perucca, E. Valproic acid after five decades of use in epilepsy: Time to reconsider the indications of a time-honoured drug. Lancet Neurol. 2016, 15, 210–218. [Google Scholar] [CrossRef]
- Diederich, M.; Chateauvieux, S.; Morceau, F.; Dicato, M. Molecular and therapeutic potential and toxicity of valproic acid. J. Biomed. Biotechnol. 2010. [Google Scholar] [CrossRef] [Green Version]
- Gean, P.W.; Huang, C.C.; Hung, C.R.; Tsai, J.J. Valproic acid suppresses the synaptic response mediated by the NMDA receptors in rat amygdalar slices. Brain Res. Bull. 1994, 33, 333–336. [Google Scholar] [CrossRef]
- Zanatta, G.; Sula, A.; Miles, A.J.; Ng, L.C.T.; Torella, R.; Pryde, D.C.; DeCaen, P.G.; Wallace, B.A. Valproic acid interactions with the NavMs voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA 2019, 116, 26549–26554. [Google Scholar] [CrossRef]
- Farber, N.B.; Jiang, X.P.; Heinkel, C.; Nemmers, B. Antiepileptic drugs and agents that inhibit voltage-gated sodium channels prevent NMDA antagonist neurotoxicity. Mol. Psychiatry 2002, 7, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.R.; Correia, A.O.; dos Santos, G.C.A.; Parente, L.L.T.; de Siqueira, K.P.; Lima, D.G.S.; Moura, J.A.; da Silva Ribeiro, A.E.; Costa, R.O.; Lucetti, D.L.; et al. Neuroprotective effects of valproic acid on brain ischemia are related to its HDAC and GSK3 inhibitions. Pharmacol. Biochem. Behav. 2018, 167, 17–28. [Google Scholar] [CrossRef]
- Ghodke-Puranik, Y.; Thorn, C.F.; Lamba, J.K.; Leeder, J.S.; Song, W.; Birnbaum, A.K.; Altman, R.B.; Klein, T.E. Valproic acid pathway: Pharmacokinetics and pharmacodynamics. Pharm. Genom. 2013. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, D.; Goshima, F. Oncolytic virotherapy by HSV. In Advances in Experimental Medicine and Biology; Springer: New York, YA, USA, 2018; Volume 1045, pp. 63–84. [Google Scholar] [CrossRef]
- Vazquez-Calvo, A.; Saiz, J.-C.; Sobrino, F.; Martin-Acebes, M.A. Inhibition of Enveloped Virus Infection of Cultured Cells by Valproic Acid. J. Virol. 2011, 85, 1267–1274. [Google Scholar] [CrossRef] [Green Version]
- Crespillo, A.J.; Praena, B.; Bello-Morales, R.; Lerma, L.; Vázquez-Calvo, A.; Martín-Acebes, M.A.; Tabarés, E.; Sobrino, F.; López-Guerrero, J.A. Inhibition of herpes virus infection in oligodendrocyte cultured cells by valproic acid. Virus Res. 2016, 214, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Bello-Morales, R.; Andreu, S.; López-Guerrero, J.A. The role of herpes simplex virus type 1 infection in demyelination of the central nervous system. Int. J. Mol. Sci. 2020, 21, 5026. [Google Scholar] [CrossRef]
- Bello-Morales, R.; Fedetz, M.; Alcina, A.; Tabarés, E.; López-Guerrero, J.A. High susceptibility of a human oligodendroglial cell line to herpes simplex type 1 infection. J. Neurovirol. 2005, 11, 190–198. [Google Scholar] [CrossRef]
- Hogestyn, J.M.; Mock, D.J.; Mayer-Proschel, M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regen. Res. 2018, 13, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Bello-Morales, R.; Crespillo, A.J.; García, B.; Dorado, L.Á.; Martín, B.; Tabarés, E.; Krummenacher, C.; De Castro, F.; López-Guerrero, J.A. The effect of cellular differentiation on HSV-1 infection of oligodendrocytic cells. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Calvo, Á.; Martín-Acebes, M.A.; Sáiz, J.C.; Ngo, N.; Sobrino, F.; de la Torre, J.C. Inhibition of multiplication of the prototypic arenavirus LCMV by valproic acid. Antiviral Res. 2013, 99, 172–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanold, K.C. Teratogenic Potential of Valproic Acid. J. Obstet. Gynecol. Neonatal Nurs. 1986, 15, 111–116. [Google Scholar] [CrossRef]
- Ornoy, A. Valproic acid in pregnancy: How much are we endangering the embryo and fetus? Reprod. Toxicol. 2009, 28, 1–10. [Google Scholar] [CrossRef]
- Isoherranen, N.; Yagen, B.; Bialer, M. New CNS-active drugs which are second-generation valproic acid: Can they lead to the development of a magic bullet? Curr. Opin. Neurol. 2003, 16, 203–211. [Google Scholar] [CrossRef]
- Praena, B.; Bello-Morales, R.; de Castro, F.; López-Guerrero, J.A. Amidic derivatives of valproic acid, valpromide and valnoctamide, inhibit HSV-1 infection in oligodendrocytes. Antiviral Res. 2019, 168, 91–99. [Google Scholar] [CrossRef]
- Winkler, I.; Blotnik, S.; Shimshoni, J.; Yagen, B.; Devor, M.; Bialer, M. Efficacy of antiepileptic isomers of valproic acid and valpromide in a rat model of neuropathic pain. Br. J. Pharmacol. 2005, 146, 198–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudin, A.P.; Mawasi, H.; Eisenkraft, A.; Elger, C.E.; Bialer, M.; Kunz, W.S. Mitochondrial liver toxicity of valproic acid and its acid derivatives is related to inhibition of α-lipoamide dehydrogenase. Int. J. Mol. Sci. 2017, 18, 1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, D.; Yagen, B.; Minert, A.; Wlodarczyk, B.; Finnell, R.H.; Schurig, V.; Devor, M.; Bialer, M. Evaluation of the antiallodynic, teratogenic and pharmacokinetic profile of stereoisomers of valnoctamide, an amide derivative of a chiral isomer of valproic acid. Neuropharmacology 2010, 58, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Bialer, M. Chemical properties of antiepileptic drugs (AEDs). Adv. Drug Deliv. Rev. 2012, 64, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Bialer, M.; Yagen, B. Valproic Acid: Second Generation. Neurotherapeutics 2007, 4, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Bialer, M.; Haj-Yehia, A.; Barzaghi, N.; Pisani, F.; Perucca, E. Pharmacokinetics of a valpromide isomer, valnoctamide, in healthy subjects. Eur. J. Clin. Pharmacol. 1990, 38, 289–291. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA) Valproate and Related Substances. Available online: https://www.ema.europa.eu/en/medicines/human/referrals/valproate-related-substances-0#overview-section (accessed on 28 October 2020).
- Vademecum 2020 Valpromida 2020. Available online: https://www.vademecum.es/principios-activos-valpromida-N03AG02 (accessed on 28 October 2020).
- Bialer, M. Clinical Pharmacology of Valpromide. Clin. Pharmacokinet. 1991, 20, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Okada, A.; Kurihara, H.; Aoki, Y.; Bialer, M.; Fujiwara, M. Amidic Modification of Valproic Acid Reduces Skeletal Teratogenicity in Mice. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2004, 71, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Bialer, M. Pharmacokinetic considerations in the design of better and safer new antiepileptic drugs. J. Control. Release 1999, 62, 187–192. [Google Scholar] [CrossRef]
- Bialer, M.; Haj-Yehia, A.; Badir, K.; Hadad, S. Can we develop improved derivatives of valproic acid? Pharm. World Sci. 1994, 16, 2–6. [Google Scholar] [CrossRef]
- Isoherranen, N.; White, H.S.; Klein, B.D.; Roeder, M.; Woodhead, J.H.; Schurig, V.; Yagen, B.; Bialer, M. Pharmacokinetic-pharmacodynamic relationships of (2S,3S)-valnoctamide and its stereoisomer (2R,3S)-valnoctamide in rodent models of epilepsy. Pharm. Res. 2003, 20, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Modi, H.R.; Ma, K.; Chang, L.; Chen, M.; Rapoport, S.I. Valnoctamide, which reduces rat brain arachidonic acid turnover, is a potential non-teratogenic valproate substitute to treat bipolar disorder. Psychiatry Res. 2017, 254, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Shekh-Ahmad, T.; Mawasi, H.; McDonough, J.H.; Yagen, B.; Bialer, M. The potential of sec-butylpropylacetamide (SPD) and valnoctamide and their individual stereoisomers in status epilepticus. Epilepsy Behav. 2015, 49, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Ornaghi, S.; Hsieh, L.S.; Bordey, A.; Vergani, P.; Paidas, M.J.; Van Den Pol, A.N. Valnoctamide inhibits cytomegalovirus infection in developing brain and attenuates neurobehavioral dysfunctions and brain abnormalities. J. Neurosci. 2017, 37, 6877–6893. [Google Scholar] [CrossRef] [Green Version]
- Bersudsky, Y.; Applebaum, J.; Gaiduk, Y.; Sharony, L.; Mishory, A.; Podberezsky, A.; Agam, G.; Belmaker, R.H. Valnoctamide as a valproate substitute with low teratogenic potential in mania: A double-blind, controlled, add-on clinical trial. Bipolar Disord. 2010, 12, 376–382. [Google Scholar] [CrossRef]
- Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIII). Epilepsia 2017, 58, 181–221. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.L.; Bialer, M.; Cabrera, R.M.; Finnell, R.H.; Wlodarczyk, B.J. Teratogenicity of valproic acid and its constitutional isomer, amide derivative valnoctamide in mice. Birth Defects Res. 2019, 111, 1013–1023. [Google Scholar] [CrossRef]
- Ornaghi, S.; Davis, J.N.; Gorres, K.L.; Miller, G.; Paidas, M.J.; van den Pol, A.N. Mood stabilizers inhibit cytomegalovirus infection. Virology 2016, 499, 121–135. [Google Scholar] [CrossRef]
- Gorres, K.L.; Daigle, D.; Mohanram, S.; McInerney, G.E.; Lyons, D.E.; Miller, G. Valpromide inhibits Lytic cycle reactivation of epstein-Barr virus. MBio 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.G.; Gaffy, C.B.; Weseli, J.R.; Gorres, K.L. Inhibition of epstein-barr virus lytic reactivation by the atypical antipsychotic drug clozapine. Viruses 2019, 11, 450. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Singh, K. Valproic Acid in Prevention and Treatment of COVID-19. Authorea Prepr. 2020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreu, S.; Ripa, I.; Bello-Morales, R.; López-Guerrero, J.A. Valproic Acid and Its Amidic Derivatives as New Antivirals against Alphaherpesviruses. Viruses 2020, 12, 1356. https://doi.org/10.3390/v12121356
Andreu S, Ripa I, Bello-Morales R, López-Guerrero JA. Valproic Acid and Its Amidic Derivatives as New Antivirals against Alphaherpesviruses. Viruses. 2020; 12(12):1356. https://doi.org/10.3390/v12121356
Chicago/Turabian StyleAndreu, Sabina, Inés Ripa, Raquel Bello-Morales, and José Antonio López-Guerrero. 2020. "Valproic Acid and Its Amidic Derivatives as New Antivirals against Alphaherpesviruses" Viruses 12, no. 12: 1356. https://doi.org/10.3390/v12121356
APA StyleAndreu, S., Ripa, I., Bello-Morales, R., & López-Guerrero, J. A. (2020). Valproic Acid and Its Amidic Derivatives as New Antivirals against Alphaherpesviruses. Viruses, 12(12), 1356. https://doi.org/10.3390/v12121356