The Relevance of MicroRNAs in the Pathogenesis and Prognosis of HCV-Disease: The Emergent Role of miR-17-92 in Cryoglobulinemic Vasculitis
Abstract
:1. Introduction
2. MicroRNAs in the HCV Life Cycle
3. MicroRNAs in HCV Related HCC
4. MicroRNAs in HCV-Related Lymphomas and Lymphoproliferative Disorders
5. Cluster miR 17-92 in HCV-Related Cryoglobulinemic Vasculitis
5.1. Patients and Methods
5.2. Results
6. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mason, L.M.K.; Duffell, E.; Veldhuijzen, I.K.; Petriti, U.; Bunge, E.M.; Tavoschi, L. Hepatitis B and C prevalence and incidence in key population groups with multiple risk factors in the EU/EEA: A systematic review. Eurosurveillance 2019, 24, 1800614. [Google Scholar] [CrossRef] [PubMed]
- Inui, M.; Martello, G.; Piccolo, S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol. 2010, 11, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The MicroRNA Spectrum in 12 Body Fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Turchinovich, A.; Tonevitsky, A.G.; Burwinkel, B. Extracellular miRNA: A Collision of Two Paradigms. Trends Biochem. Sci. 2016, 41, 883–892. [Google Scholar] [CrossRef]
- Lemcke, H.; Steinhoff, G.; David, R. Gap junctional shuttling of miRNA—A novel pathway of intercellular gene regulation and its prospects in clinical application. Cell. Signal. 2015, 27, 2506–2514. [Google Scholar] [CrossRef]
- Paul, P.; Chakraborty, A.; Sarkar, D.; Langthasa, M.; Rahman, M.; Bari, M.; Singha, R.S.; Malakar, A.K.; Chakraborty, S. Interplay between miRNAs and human diseases. J. Cell. Physiol. 2018, 233, 2007–2018. [Google Scholar] [CrossRef]
- Lagos-Quintana, M.; Rauhut, R.; Yalcin, A.; Meyer, J.; Lendeckel, W.; Tuschl, T. Identification of Tissue-Specific MicroRNAs from Mouse. Curr. Biol. 2002, 12, 735–739. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Nicolas, E.; Marks, D.; Sander, C.; Lerro, A.; Buendia, M.A.; Xu, C.; Mason, W.S.; Moloshok, T.; Bort, R.; et al. miR-122, a Mammalian Liver-Specific microRNA, is Processed from hcr mRNA and MayDownregulate the High Affinity Cationic Amino Acid Transporter CAT-1. RNA Biol. 2004, 1, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Jopling, C.L.; Yi, M.; Lancaster, A.M.; Lemon, S.M.; Sarnow, P. Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA. Science 2005, 309, 1577–1581. [Google Scholar] [CrossRef] [Green Version]
- Henke, J.I.; Goergen, D.; Zheng, J.; Song, Y.; Schüttler, C.G.; Fehr, C.; Jünemann, C.; Niepmann, M. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J. 2008, 27, 3300–3310. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Masaki, T.; Yamane, D.; McGivern, D.R.; Lemon, S.M. Competing and noncompeting activities of miR-122 and the 5’ exonuclease Xrn1 in regulation of hepatitis C virus replication. Proc. Natl. Acad. Sci. USA 2013, 110, 1881–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, C.; Fukuhara, T.; Li, S.; Wang, J.; Sato, A.; Izumi, T.; Fauzyah, Y.; Yamamoto, T.; Morioka, Y.; Dokholyan, N.V.; et al. Various miRNAs compensate the role of miR-122 on HCV replication. PLoS Pathog. 2020, 16, e1008308. [Google Scholar] [CrossRef] [PubMed]
- Van Der Ree, M.H.; Van Der Meer, A.J.; De Bruijne, J.; Maan, R.; Van Vliet, A.; Welzel, T.M.; Zeuzem, S.; Lawitz, E.J.; Rodriguez-Torres, M.; Kupcova, V.; et al. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antivir. Res. 2014, 111, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ottosen, S.; Parsley, T.B.; Yang, L.; Zeh, K.; Van Doorn, L.-J.; Van Der Veer, E.; Raney, A.K.; Hodges, M.R.; Patick, A.K. In VitroAntiviral Activity and Preclinical and Clinical Resistance Profile of Miravirsen, a Novel Anti-Hepatitis C Virus Therapeutic Targeting the Human Factor miR-122. Antimicrob. Agents Chemother. 2015, 59, 599–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Li, C.; Sun, B.; Yang, R. DCAF1 is involved in HCV replication through regulation of miR-122. Arch. Virol. 2018, 163, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Ono, C.; Fukuhara, T.; Motooka, D.; Nakamura, S.; Okuzaki, D.; Yamamoto, S.; Tamura, T.; Mori, H.; Sato, A.; Uemura, K.; et al. Characterization of miR-122-independent propagation of HCV. PLoS Pathog. 2017, 13, e1006374. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; He, Z. miR-215 Enhances HCV Replication by Targeting TRIM22 and Inactivating NF-κB Signaling. Yonsei Med. J. 2018, 59, 511–518. [Google Scholar] [CrossRef]
- Wang, H.; Gao, H.; Duan, S.; Song, X. Inhibition of microRNA-199a-5p reduces the replication of HCV via regulating the pro-survival pathway. Virus Res. 2015, 208, 7–12. [Google Scholar] [CrossRef]
- Ishida, H.; Tatsumi, T.; Hosui, A.; Nawa, T.; Kodama, T.; Shimizu, S.; Hikita, H.; Hiramatsu, N.; Kanto, T.; Hayashi, N.; et al. Alterations in microRNA expression profile in HCV-infected hepatoma cells: Involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway. Biochem. Biophys. Res. Commun. 2011, 412, 92–97. [Google Scholar] [CrossRef]
- Li, S.; Duan, X.; Li, Y.; Liu, B.; McGilvray, I.D.; Chen, L. MicroRNA-130a inhibits HCV replication by restoring the innate immune response. J. Viral Hepat. 2013, 21, 121–128. [Google Scholar] [CrossRef]
- Duan, X.; Liu, X.; Li, W.; Holmes, J.A.; Kruger, A.J.; Yang, C.; Li, Y.; Xu, M.; Ye, H.; Li, S.; et al. Microrna-130a Downregulates HCV Replication through an atg5-Dependent Autophagy Pathway. Cells 2019, 8, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jounai, N.; Takeshita, F.; Kobiyama, K.; Sawano, A.; Miyawaki, A.; Xin, K.-Q.; Ishii, K.J.; Kawai, T.; Akira, S.; Suzuki, K.; et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. USA 2007, 104, 14050–14055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, X.; Li, S.; Holmes, J.A.; Tu, Z.; Li, Y.; Cai, D.; Liu, X.; Li, W.; Yang, C.; Jiao, B.; et al. MicroRNA 130a Regulates both Hepatitis C Virus and Hepatitis B Virus Replication through a Central Metabolic Pathway. J. Virol. 2018, 92, e02009-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shwetha, S.; Sharma, G.; Raheja, H.; Goel, A.; Aggarwal, R.; Das, S. Interaction of miR-125b-5p with Human antigen R mRNA: Mechanism of controlling HCV replication. Virus Res. 2018, 258, 1–8. [Google Scholar] [CrossRef]
- Dai, C.-Y.; Tsai, Y.-S.; Chou, W.-W.; Liu, T.; Huang, C.-F.; Wang, S.-C.; Tsai, P.-C.; Yeh, M.-L.; Hsieh, M.-Y.; Huang, C.-I.; et al. The IL-6/STAT3 pathway upregulates microRNA-125b expression in hepatitis C virus infection. Oncotarget 2018, 9, 11291–11302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacke, R.S.; Tosello-Trampont, A.; Nguyen, V.; Mullins, D.W.; Hahn, Y.S. Extracellular Hepatitis C Virus Core Protein Activates STAT3 in Human Monocytes/Macrophages/Dendritic Cells via an IL-6 Autocrine Pathway. J. Biol. Chem. 2011, 286, 10847–10855. [Google Scholar] [CrossRef] [Green Version]
- Lancet, T. GLOBOCAN 2018: Counting the toll of cancer. Lancet 2018, 392, 985. [Google Scholar] [CrossRef]
- De Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Heal. 2020, 8, e180–e190. [Google Scholar] [CrossRef] [Green Version]
- Mak, L.-Y.; Cruz-Ramón, V.; Chinchilla-López, P.; Torres, H.A.; LoConte, N.K.; Rice, J.P.; Foxhall, L.E.; Sturgis, E.M.; Merrill, J.K.; Bailey, H.H.; et al. Global Epidemiology, Prevention, and Management of Hepatocellular Carcinoma. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 262–279. [Google Scholar] [CrossRef]
- Dimitroulis, D.; Golabkesh, M.; Naguib, D.; Knoop, B.; Dannenberg, L.; Helten, C.; Pöhl, M.; Jung, C.; Kelm, M.; Zeus, T.; et al. Safety and Efficacy in Prasugrel- Versus Ticagrelor-Treated Patients With ST-Elevation Myocardial Infarction. J. Cardiovasc. Pharmacol. 2018, 72, 186–190. [Google Scholar] [CrossRef]
- Flores, A.; Marrero, J.A. Emerging Trends in Hepatocellular Carcinoma: Focus on Diagnosis and Therapeutics. Clin. Med. Insights Oncol. 2014, 8, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Khalili, K.; Menezes, R.; Kim, T.K.; Yazdi, L.K.; Jang, H.-J.; Sharma, S.; Feld, J.; Sherman, M. The effectiveness of ultrasound surveillance for hepatocellular carcinoma in a Canadian centre and determinants of its success. Can. J. Gastroenterol. Hepatol. 2015, 29, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, C.; Rimola, J.; Vilana, R.; Burrel, M.; Darnell, A.; García-Criado, Á.; Bianchi, L.; Belmonte, E.; Caparroz, C.; Barrufet, M.; et al. Diagnosis and staging of hepatocellular carcinoma (HCC): Current guidelines. Eur. J. Radiol. 2018, 101, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Lau, G.K.K.; Wei, L.; Moriyama, M.; Yu, M.-L.; Chuang, W.-L.; Ibrahim, A.; Lesmana, C.R.A.; Sollano, J.; Kumar, M.; et al. APASL HCV guidelines of virus-eradicated patients by DAA on how to monitor HCC occurrence and HBV reactivation. Hepatol. Int. 2019, 13, 649–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannou, G.N.; Green, P.K.; Berry, K. HCV eradication induced by direct-acting antiviral agents reduces the risk of hepatocellular carcinoma. J. Hepatol. 2018, 68, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Van Der Meer, A.J.; Feld, J.; Hofer, H.; Almasio, P.L.; Calvaruso, V.; Fernandez-Rodriguez, C.M.; Aleman, S.; Ganne-Carrié, N.; D’Ambrosio, R.; Pol, S.; et al. Risk of cirrhosis-related complications in patients with advanced fibrosis following hepatitis C virus eradication. J. Hepatol. 2017, 66, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Elemeery, M.N.; Badr, A.N.; Mohamed, M.A.; Ghareeb, D.A. Validation of a serum microRNA panel as biomarkers for early diagnosis of hepatocellular carcinoma post-hepatitis C infection in Egyptian patients. World J. Gastroenterol. 2017, 23, 3864–3875. [Google Scholar] [CrossRef]
- Zekri, A.-R.N.; Youssef, A.S.E.-D.; El-Desouky, E.D.; Ahmed, O.S.; Lotfy, M.M.; Nassar, A.A.-M.; Bahnassey, A.A. Serum microRNA panels as potential biomarkers for early detection of hepatocellular carcinoma on top of HCV infection. Tumor Biol. 2016, 37, 12273–12286. [Google Scholar] [CrossRef]
- El-Abd, N.E.; Fawzy, N.A.; El-Sheikh, S.M.; Soliman, M.E. Circulating miRNA-122, miRNA-199a, and miRNA-16 as Biomarkers for Early Detection of Hepatocellular Carcinoma in Egyptian Patients with Chronic Hepatitis C Virus Infection. Mol. Diagn. Ther. 2015, 19, 213–220. [Google Scholar] [CrossRef]
- Li, J.; Jin, B.; Wang, T.; Li, W.; Wang, Z.; Zhang, H.; Song, Y.; Li, N. Serum microRNA expression profiling identifies serum biomarkers for HCV-related hepatocellular carcinoma. Cancer Biomark. 2019, 26, 501–512. [Google Scholar] [CrossRef]
- Aly, D.M.; Gohar, N.A.-H.; El-Hady, A.A.A.; Khairy, M.; Abdullatif, M.M. Serum microRNA let-7a-1/let-7d/let-7f and miRNA 143/145 Gene Expression Profiles as Potential Biomarkers in HCV Induced Hepatocellular Carcinoma. Asian Pac. J. Cancer Prev. 2020, 21, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Öksüz, Z.; Serin, M.S.; Kaplan, E.; Döğen, A.; Tezcan, S.; Aslan, G.; Emekdas, G.; Sezgin, O.; Altıntaş, E.; Tiftik, E.N. Serum microRNAs; miR-30c-5p, miR-223-3p, miR-302c-3p and miR-17-5p could be used as novel non-invasive biomarkers for HCV-positive cirrhosis and hepatocellular carcinoma. Mol. Biol. Rep. 2015, 42, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Nasser, M.Z.; Zayed, N.A.; Mohamed, A.M.; Attia, D.; Esmat, G.; Khairy, A. Circulating microRNAs (miR-21, miR-223, miR-885-5p) along the clinical spectrum of HCV-related chronic liver disease in Egyptian patients. Arab. J. Gastroenterol. 2019, 20, 198–204. [Google Scholar] [CrossRef]
- Shaheen, N.M.H.; Zayed, N.; Riad, N.M.; Tamim, H.H.; Shahin, R.M.H.; Labib, D.A.; Elsheikh, S.M.; Moneim, R.A.; Yosry, A.; Khalifa, R.H. Role of circulating miR-182 and miR-150 as biomarkers for cirrhosis and hepatocellular carcinoma post HCV infection in Egyptian patients. Virus Res. 2018, 255, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Mourad, L.; El-Ahwany, E.; Zoheiry, M.; Abu-Taleb, H.; Hassan, M.; Ouf, A.; Rahim, A.A.; Hassanien, M.; Zada, S. Expression analysis of liver-specific circulating microRNAs in HCV-induced hepatocellular Carcinoma in Egyptian patients. Cancer Biol. Ther. 2018, 19, 400–406. [Google Scholar] [CrossRef] [PubMed]
- El-Hamouly, M.S.; Azzam, A.A.; Ghanem, S.E.; El-Bassal, F.I.; Shebl, N.; Shehata, A.M.F. Circulating microRNA-301 as a promising diagnostic biomarker of hepatitis C virus-related hepatocellular carcinoma. Mol. Biol. Rep. 2019, 46, 5759–5765. [Google Scholar] [CrossRef]
- Nomair, A.M.; Issa, N.M.; Madkour, M.A.; Shamseya, M.M. The clinical significance of serum miRNA-224 expression in hepatocellular carcinoma. Clin. Exp. Hepatol. 2020, 6, 20–27. [Google Scholar] [CrossRef]
- Oura, K.; Fujita, K.; Morishita, A.; Iwama, H.; Nakahara, M.; Tadokoro, T.; Sakamoto, T.; Nomura, T.; Yoneyama, H.; Mimura, S.; et al. Serum microRNA‑125a‑5p as a potential biomarker of HCV‑associated hepatocellular carcinoma. Oncol. Lett. 2019, 18, 882–890. [Google Scholar] [CrossRef] [Green Version]
- Pascut, D.; Cavalletto, L.; Pratama, M.Y.; Bresolin, S.; Trentin, L.; Basso, G.; Bedogni, G.; Tiribelli, C.; Chemello, L. Serum miRNA Are Promising Biomarkers for the Detection of Early Hepatocellular Carcinoma after Treatment with Direct-Acting Antivirals. Cancers 2019, 11, 1773. [Google Scholar] [CrossRef] [Green Version]
- Tamori, A.; Murakami, Y.; Kubo, S.; Itami, S.; Uchida-Kobayashi, S.; Morikawa, H.; Enomoto, M.; Takemura, S.; Tanahashi, T.; Taguchi, Y.-H.; et al. MicroRNA expression in hepatocellular carcinoma after the eradication of chronic hepatitis virus C infection using interferon therapy. Hepatol. Res. 2015, 46, E26–E35. [Google Scholar] [CrossRef] [Green Version]
- Sha, H.-H.; Wang, D.-D.; Chen, D.; Liu, S.-W.; Wang, Z.; Yan, D.-L.; Dong, S.; Feng, J. MiR-138: A promising therapeutic target for cancer. Tumor Biol. 2017, 39, 1010428317697575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiu, T.-Y.; Shih, Y.-L.; Feng, A.-C.; Lin, H.-H.; Huang, S.-M.; Huang, T.-Y.; Hsieh, C.-B.; Chang, W.-K.; Hsieh, T.-Y. HCV core inhibits hepatocellular carcinoma cell replicative senescence through downregulating microRNA-138 expression. J. Mol. Med. 2017, 95, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, L.-J.; Tan, Y.-X.; Ren, H.; Qi, Z.-T. MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis 2012, 33, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Li, G.; Yue, Z.; Li, C. HCV core protein-induced upregulation of microRNA-196a promotes aberrant proliferation in hepatocellular carcinoma by targeting FOXO1. Mol. Med. Rep. 2016, 13, 5223–5229. [Google Scholar] [CrossRef]
- Hou, T.; Ou, J.; Zhao, X.; Huang, X.; Huang, Y.; Zhang, Y. MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1. Br. J. Cancer 2014, 110, 1260–1268. [Google Scholar] [CrossRef] [Green Version]
- Lu, H. FOXO1: A Potential Target for Human Diseases. Curr. Drug Targets 2011, 12, 1235–1244. [Google Scholar] [CrossRef] [Green Version]
- El-Araby, R.E.; Khalifa, M.A.; Zoheiry, M.M.; Zahran, M.Y.; Rady, M.I.; Ibrahim, R.A.; El-Talkawy, M.D.; Essawy, F.M. The interaction between microRNA-152 and DNA methyltransferase-1 as an epigenetic prognostic biomarker in HCV-induced liver cirrhosis and HCC patients. Cancer Gene Ther. 2019, 27, 486–497. [Google Scholar] [CrossRef]
- Piluso, A.; Gragnani, L.; Fognani, E.; Grandini, E.; Monti, M.; Stasi, C.; Loggi, E.; Margotti, M.; Conti, F.; Andreone, P.; et al. Deregulation of microRNA expression in peripheral blood mononuclear cells from patients with HCV-related malignancies. Hepatol. Int. 2015, 9, 586–593. [Google Scholar] [CrossRef]
- Rashad, N.M.; El-Shal, A.S.; Shalaby, S.M.; Mohamed, S.Y. Serum miRNA-27a and miRNA-18b as potential predictive biomarkers of hepatitis C virus-associated hepatocellular carcinoma. Mol. Cell. Biochem. 2018, 447, 125–136. [Google Scholar] [CrossRef]
- Zahra, M.; Azzazy, H.; Moustafa, A. Transcriptional Regulatory Networks in Hepatitis C Virus-induced Hepatocellular Carcinoma. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sodroski, C.; Lowey, B.; Hertz, L.; Liang, T.J.; Li, Q. MicroRNA-135a Modulates Hepatitis C Virus Genome Replication through Downregulation of Host Antiviral Factors. Virol. Sin. 2019, 34, 197–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvisi, D.F.; Ladu, S.; Gorden, A.; Farina, M.; Conner, E.A.; Lee, J.-S.; Factor, V.M.; Thorgeirsson, S.S. Ubiquitous Activation of Ras and Jak/Stat Pathways in Human HCC. Gastroenterology 2006, 130, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Fteah, A.M.; Ahmed, A.I.; Mosaad, N.A.; Hassan, M.M.; Mahmoud, S.H. Association of MicroRNA 196a and 499 Polymorphisms with Development of Cirrhosis and Hepatocellular Carcinoma Post-HCV Infection in Egyptian Patients. Asian Pac. J. Cancer Prev. 2019, 20, 3479–3485. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhuang, C.; Zhao, J.; Ming, L. Functional miR-146a, miR-149, miR-196a2 and miR-499 polymorphisms and the susceptibility to hepatocellular carcinoma: An updated meta-analysis. Clin. Res. Hepatol. Gastroenterol. 2017, 41, 664–676. [Google Scholar] [CrossRef]
- Shaker, O.; Alhelf, M.; Morcos, G.; Elsharkawy, A. miRNA-101-1 and miRNA-221 expressions and their polymorphisms as biomarkers for early diagnosis of hepatocellular carcinoma. Infect. Genet. Evol. 2017, 51, 173–181. [Google Scholar] [CrossRef]
- Ferri, C.; Longombardo, G.; Civita, L.; Greco, F.; Lombardini, F.; Cecchetti, R.; Cagianelli, M.A.; Marchi, S.; Monti, M.; Zignego, A.L.; et al. Hepatitis C virus chronic infection as a common cause of mixed cryoglobulinaemia and autoimmune liver disease. J. Intern. Med. 1994, 236, 31–36. [Google Scholar] [CrossRef]
- Zignego, A.L.; Ramos-Casals, M.; Ferri, C.; Saadoun, D.; Arcaini, L.; Roccatello, D.; Antonelli, A.; Desbois, A.C.; Comarmond, C.; Gragnani, L.; et al. International therapeutic guidelines for patients with HCV-related extrahepatic disorders. A multidisciplinary expert statement. Autoimmun. Rev. 2017, 16, 523–541. [Google Scholar] [CrossRef]
- Zignego, A.L.; Giannini, C.; Gragnani, L. HCV and Lymphoproliferation. Clin. Dev. Immunol. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Monti, G.; Pioltelli, P.; Saccardo, F.; Campanini, M.; Candela, M.; Cavallero, G.; De Vita, S.; Ferri, C.; Mazzaro, C.; Migliaresi, S.; et al. Incidence and Characteristics of Non-Hodgkin Lymphomas in a Multicenter Case File of Patients With Hepatitis C Virus–Related Symptomatic Mixed Cryoglobulinemias. Arch. Intern. Med. 2005, 165, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Gragnani, L.; Fognani, E.; Piluso, A.; Boldrini, B.; Urraro, T.; Fabbrizzi, A.; Stasi, C.; Ranieri, J.; Monti, M.; Arena, U.; et al. Long-term effect of HCV eradication in patients with mixed cryoglobulinemia: A prospective, controlled, open-label, cohort study. Hepatology 2015, 61, 1145–1153. [Google Scholar] [CrossRef]
- Gragnani, L.; Cerretelli, G.; Lorini, S.; Steidl, C.; Giovannelli, A.; Monti, M.; Petraccia, L.; Sadalla, S.; Urraro, T.; Caini, P.; et al. Interferon-free therapy in hepatitis C virus mixed cryoglobulinaemia: A prospective, controlled, clinical and quality of life analysis. Aliment. Pharmacol. Ther. 2018, 48, 440–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacoub, P.; Desbois, A.-C.; Comarmond, C.; Saadoun, D. Impact of sustained virological response on the extrahepatic manifestations of chronic hepatitis C: A meta-analysis. Gut 2018, 67, 2025–2034. [Google Scholar] [CrossRef] [PubMed]
- Gragnani, L.; Fabbrizzi, A.; Triboli, E.; Urraro, T.; Boldrini, B.; Fognani, E.; Piluso, A.; Caini, P.; Ranieri, J.; Monti, M.; et al. Triple antiviral therapy in hepatitis C virus infection with or without mixed cryoglobulinaemia: A prospective, controlled pilot study. Dig. Liver Dis. 2014, 46, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Gragnani, L.; Piluso, A.; Fognani, E.; Zignego, A.L. MicroRNA expression in hepatitis C virus-related malignancies: A brief review. World J. Gastroenterol. 2015, 21, 8562–8568. [Google Scholar] [CrossRef]
- Peveling-Oberhag, J.; Crisman, G.; Schmidt, A.; Döring, C.; Lucioni, M.; Arcaini, L.; Rattotti, S.; Hartmann, S.; Piiper, A.; Hofmann, W.-P.; et al. Dysregulation of global microRNA expression in splenic marginal zone lymphoma and influence of chronic hepatitis C virus infection. Leukemia 2012, 26, 1654–1662. [Google Scholar] [CrossRef]
- Fognani, E.; Giannini, C.; Piluso, A.; Gragnani, L.; Monti, M.; Caini, P.; Ranieri, J.; Urraro, T.; Triboli, E.; Laffi, G.; et al. Role of MicroRNA Profile Modifications in Hepatitis C Virus-Related Mixed Cryoglobulinemia. PLoS ONE 2013, 8, e62965. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, L.; Yang, L.; Yu, X.; Cheng, S.; Ma, F.; Cheng, H. miR-26b suppressed cervical cancer cell proliferation and apoptosis by targeting ATF2 through MAPK1/ERK2 pathway. Minerva Endocrinol. 2020, 44, 405–407. [Google Scholar] [CrossRef]
- Jin, F.; Wang, Y.; Li, M.; Zhu, Y.; Liang, H.; Wang, C.; Wang, F.; Zhang, C.-Y.; Zen, K.; Li, L. MiR-26 enhances chemosensitivity and promotes apoptosis of hepatocellular carcinoma cells through inhibiting autophagy. Cell Death Dis. 2018, 8, e2540. [Google Scholar] [CrossRef]
- Chen, Z.-G.; Zheng, C.-Y.; Cai, W.-Q.; Li, D.-W.; Ye, F.-Y.; Zhou, J.; Wu, R.; Yang, K. miR-26b Mimic Inhibits Glioma Proliferation In Vitro and In Vivo Suppressing COX-2 Expression. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2019, 27, 147–155. [Google Scholar] [CrossRef]
- Zhang, Z.; Florez, S.; Gutierrez-Hartmann, A.; Martin, J.F.; Amendt, B.A. MicroRNAs Regulate Pituitary Development, and MicroRNA 26b Specifically Targets Lymphoid Enhancer Factor 1 (Lef-1), Which Modulates Pituitary Transcription Factor 1 (Pit-1) Expression. J. Biol. Chem. 2010, 285, 34718–34728. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, A.; Tschumper, R.C.; Wu, X.; Shanafelt, T.D.; Eckel-Passow, J.; Huddleston, P.; Slager, S.L.; Kay, N.E.; Jelinek, D.F. LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. Blood 2010, 116, 2975–2983. [Google Scholar] [CrossRef] [PubMed]
- Gragnani, L.; Fognani, E.; Piluso, A.; Zignego, A.L. Hepatitis C-associated B-cell non-Hodgkin lymphomas: The emerging role of miRNA-26b. J. Hepatol. 2013, 59, 1362–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Liang, Z.; Xu, L.; Zou, F. MicroRNA-21: A ubiquitously expressed pro-survival factor in cancer and other diseases. Mol. Cell. Biochem. 2011, 360, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Leng, R.; Pan, H.-F.; Qin, W.-Z.; Chen, G.-M.; Ye, D. Role of microRNA-155 in autoimmunity. Cytokine Growth Factor Rev. 2011, 22, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.S.; El-Khazragy, N.; Elshimy, A.A.; Aboelhussein, M.M.; Saleh, S.A.; Fadel, S.; Atia, H.A.; Matbouly, S.; Tamer, N. In vitro knock-out of miR-155 suppresses leukemic and HCV virus loads in pediatric HCV-4–associated acute lymphoid leukemia: A promising target therapy. J. Cell. Biochem. 2019, 121, 2811–2817. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, G.; Biswas, R. MicroRNA-155: A Master Regulator of Inflammation. J. Interf. Cytokine Res. 2019, 39, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Augello, C.; Gianelli, U.; Savi, F.; Moro, A.; Bonoldi, E.; Gambacorta, M.; Vaira, V.; Baldini, L.; Bosari, S. MicroRNA as potential biomarker in HCV-associated diffuse large B-cell lymphoma. J. Clin. Pathol. 2014, 67, 697–701. [Google Scholar] [CrossRef]
- Bruni, R.; Marcantonio, C.; Pulsoni, A.; Tataseo, P.; De Angelis, F.; Spada, E.; Marcucci, F.; Panfilio, S.; Bianco, P.; Riminucci, M.; et al. microRNA levels in paraffin-embedded indolent B-cell non-Hodgkin lymphoma tissues from patients chronically infected with hepatitis B or C virus. BMC Infect. Dis. 2014, 14, S6. [Google Scholar] [CrossRef] [Green Version]
- Ota, A.; Tagawa, H.; Karnan, S.; Tsuzuki, S.; Karpas, A.; Kira, S.; Yoshida, Y.; Seto, M. Identification and Characterization of a Novel Gene, C13orf25, as a Target for 13q31-q32 Amplification in Malignant Lymphoma. Cancer Res. 2004, 64, 3087–3095. [Google Scholar] [CrossRef] [Green Version]
- Lenz, G.; Wright, G.W.; Emre, N.C.T.; Kohlhammer, H.; Dave, S.S.; Davis, R.E.; Carty, S.; Lam, L.T.; Shaffer, A.L.; Xiao, W.; et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 13520–13525. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, K.A.; Wentzel, E.A.; Zeller, K.I.; Dang, C.V.; Mendell, J.T. c-Myc-regulated microRNAs modulate E2F1 expression. Nat. Cell Biol. 2005, 435, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Olive, V.; Li, Q.; He, L. mir-17-92: A polycistronic oncomir with pleiotropic functions. Immunol. Rev. 2013, 253, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Thomson, J.M.; Hemann, M.T.; Hernando-Monge, E.; Mu, D.; Goodson, S.; Powers, S.K.; Cordon-Cardo, C.; Lowe, S.W.; Hannon, G.J.; et al. A microRNA polycistron as a potential human oncogene. Nat. Cell Biol. 2005, 435, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Inomata, M.; Tagawa, H.; Guo, Y.-M.; Kameoka, Y.; Takahashi, N.; Sawada, K. MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 2009, 113, 396–402. [Google Scholar] [CrossRef]
- Volinia, S.; Calin, G.A.; Liu, C.-G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 2006, 103, 2257–2261. [Google Scholar] [CrossRef] [Green Version]
- Hayashita, Y.; Osada, H.; Tatematsu, Y.; Yamada, H.; Yanagisawa, K.; Tomida, S.; Yatabe, Y.; Kawahara, K.; Sekido, Y.; Takahashi, T. A Polycistronic MicroRNA Cluster, miR-17-92, Is Overexpressed in Human Lung Cancers and Enhances Cell Proliferation. Cancer Res. 2005, 65, 9628–9632. [Google Scholar] [CrossRef] [Green Version]
- Takakura, S.; Mitsutake, N.; Nakashima, M.; Namba, H.; Saenko, V.A.; Rogounovitch, T.I.; Nakazawa, Y.; Hayashi, T.; Ohtsuru, A.; Yamashita, S. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci. 2008, 99, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Connolly, E.; Melegari, M.; Landgraf, P.; Tchaikovskaya, T.; Tennant, B.C.; Slagle, B.L.; Rogler, L.E.; Zavolan, M.; Tuschl, T.; Rogler, C.E. Elevated Expression of the miR-17–92 Polycistron and miR-21 in Hepadnavirus-Associated Hepatocellular Carcinoma Contributes to the Malignant Phenotype. Am. J. Pathol. 2008, 173, 856–864. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Han, C.; Wu, T. MiR-17-92 cluster promotes hepatocarcinogenesis. Carcinogenesis 2015, 36, 1213–1222. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Srinivasan, L.; Calado, D.P.; Patterson, H.C.; Zhang, B.; Wang, J.; Henderson, J.M.; Kutok, J.L.; Rajewsky, K. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat. Immunol. 2008, 9, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Li, Y.; Liang, Y.; Yin, M.; Yu, Z.; Zhang, Y.; Huang, L.; Ni, J. MiR-18a and miR-17 are positively correlated with circulating PD-1+ICOS+follicular helper T cells after hepatitis B vaccination in a chinese population. BMC Immunol. 2018, 19, 25. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.; Petrone, J.; Steele, R.; Lauer, G.M.; Di Bisceglie, A.M.; Ray, R.B. Up-regulation of circulating miR-20a is correlated with hepatitis C virus-mediated liver disease progression. Hepatology 2013, 58, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Ngo, S.; Steyn, F.; McCombe, P.A. Gender differences in autoimmune disease. Front. Neuroendocr. 2014, 35, 347–369. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J.E.; Silman, A.J. Why are women predisposed to autoimmune rheumatic diseases? Arthritis Res. Ther. 2009, 11, 252–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gragnani, L.; Visentini, M.; Fognani, E.; Urraro, T.; De Santis, A.; Petraccia, L.; Perez, M.; Ceccotti, G.; Colantuono, S.; Mitrevski, M.; et al. Prospective study of guideline-tailored therapy with direct-acting antivirals for hepatitis C virus-associated mixed cryoglobulinemia. Hepatology 2016, 64, 1473–1482. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.; Wang, N.; Williams, J.M.; Hunt, M.J.; I Rosenfeld, S.; Condemi, J.J.; Packman, C.H.; Abraham, G.N. Aberrant immunoglobulin and c-myc gene rearrangements in patients with nonmalignant monoclonal cryoglobulinemia. J. Immunol. 1987, 139, 3512–3520. [Google Scholar]
Name | Inhibition/Enhancement of HCV Replication | Pathways | Ref |
---|---|---|---|
miR-122 | enhancement | Binds to S1 and S2 sites at the 5′ non coding region on viral RNA and increases translation | [9,10] |
Together with the Argonaute protein (AGO) stabilizes and protects the uncapped viral genome from degradation | [11] | ||
Interaction between miR-122-miRISC-HCV-RNA results in miR-122 sequestration, preventing its binding with host targets and promoting HCV replication | [12] | ||
DCAF1 targets miR-122 and negatively regulates HCV IRES-mediated translation | [15] | ||
miR-125b-5p | Controversial | Downregulates HuR which promotes HCV replication | [24] |
Inhibits miR-125b-5p decreasing HCV expression at both RNA and protein levels | [25] | ||
miR-130a | inhibition | Inhibits the ATG5 protein that upregulates the expression of type I IFN and of molecules involved in innate immune response | [20,21,22] |
HCV replication is inhibited through the reduced production of ATP and other glycolytic intermediates | [23] | ||
miR-199a-5p | enhancement | Stimulates pro-survival pathways like PI3K/Akt, Ras/ERK, and Wnt/β-catenin | [18] |
miR-215 | enhancement | Inactivates NF-κB pathway by inhibiting TRIM22 | [17] |
miR-491 | enhancement | Low levels of miR-491 reduced the inhibition of PI3K/AKT pathway which is involved in the maintenance of HCV replication | [19] |
Name | Expression | Samples Type | Pathways/Putative Pathways | Ref. |
---|---|---|---|---|
miR-16 | Down | serum samples | Suppresses invasion and migration of HCC cells through different targets | [39,45] |
miR-17-5p | Up | Serum samples | Could suppress invasion and metastasis of oncogenic c-Myc in HCC cells | [42] |
miR-18b | Up | serum samples | Unknown | [59] |
miR-21 | Up | PBMC samples | Increases tissue invasion targeting many tumor suppressors such as PTEN and PDCD4 | [43,58] |
miR-23b-3p | Down | serum samples | Acts as tumor suppressor, regulating migration and invasion by targeting Pyk2 | [40] |
miR-26b | Down | PBMC samples | Promotes apoptosis and tumor suppression, targeting different target genes | [58] |
miR-27 | Down | tissue samples | Targets genes involved in cell cycle and apoptosis | [60] |
miR-27a | up | serum samples/ tissue samples | Leads to up-regulation of transcriptional factor specificity protein (Sp), vascular endothelial growth factor (VEGF), and VEGF receptor 1 (VEGFR1) | [59] |
miR-29b | Down | serum samples | Suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metallo proteinase 2 expression | [38] |
miR-30c-5p | Up | Serum samples | Suppresses cells migration and invasion in other types of solid tumors through different targets | [42] |
miR-34a | Up | Serum samples | Inhibits cells proliferation targeting SATB2 | [45] |
miR-122-5p | Up | serum samples | Acts as tumor-suppressor in HCC development by targeting genes such as metalloprotease, BCL-w, and cyclin G1 | [38,40] |
miR-125a | Down | Serum samples | Inhibits HCC cell proliferation and induces apoptosis in vitro and in vivo | [45] |
miR-125b | Down | serum samples | Suppresses HCC invasion/metastasis by targeting VEGF | [37] |
miR-128 | Up | tissue samples | Iinvolved in HCV life cycle | [60] |
miR-135 | Up | In vitro/ tissue samples | Inhibits the tumor suppressor protein tyrosine phosphatase receptor delta (PTPRD) and inversely correlates with STAT3 protein which was often activated in HCC | [62] |
miR-138 | Down | In vitro/serum samples/tissue samples | Inhibits the telomerase reverse transcriptase and induces cell senescence | [51,52] |
miR-138b | Down | Serum samples | Unknown | [37] |
miR-139 | Down | serum samples | Inhibits proliferation and invasion of HCC cells | [45] |
miR-143 | Down | Serum samples | Negatively regulates proliferation and invasion targeting FGF1 | [41] |
miR-145 | Down | serum samples | Is associated with inflammation fibrosis | [37,41,45] |
miR-150 | Down | serum samples | Negatively regulates proliferation and invasion targeting MMP4 | [44] |
miR-152 | Down | serum samples | Targets the DNA methiltransferase-1 which sustains fibroblast activation | [57] |
miR-155 | Up | In vitro/tissue samples | Contributes to tumor progression targeting PTEN | [58] |
miR-181a-c | Up | tissue samples | Promotes migration and invasion | [60] |
miR-182 | Down | serum samples | Promotes progression and angiogenesis | [44] |
miR-185-5p | Down | serum samples | Acts as a tumor suppressor by targeting multiple genes | [40] |
miR-196a | Up | In vitro | Facilitates cell proliferation by inducing the G1-S transition | [54] |
miR-199 | Down | tissue samples | Targets genes involved in cell cycle and apoptosis | [60] |
miR-199a | Down | serum samples | Inhibits tumor progression through different pathways | [39,45] |
miR-200 | Down | tissue samples | Targets genes involved in cell cycle and apoptosis | [60] |
miR-214-5p | Down | serum samples | Regulates fibroblast growth factor receptor 1 expression | [37] |
miR-221 | Up | Serum samples | Promotes tumor progression via PTEN/PI3K/AKT pathway | [45] |
miR-223-3p | Down | Serum samples | Inhibits HCC cell proliferation and promotes apoptosis by directly targeting NLRP3 | [42] |
miR-224 | Up | Serum samples | Putative oncogenic miRNA (not specified) | [47] |
miR-224-5p | Up | serum samples | Putative oncogenic miRNA (not specified) | [40] |
miR-301 | Up | serum samples | Enhances stem cell traits in HCC cells and plays a crucial role in Tumor Associated Neutrophil-induced effects | [46] |
miR-302c-3p | Up | Serum samples | Inhibits migration and invasion targeting TRAF4 | [42] |
miR-331-3p | Up | serum samples | Promotes proliferation and metastasis through the suppression of leucine-rich repeat protein phosphatase mediated dephosphorylation of AKT | [40] |
miR-335-5p | Up | tissue samples | Is associated with non-alcoholic fatty liver disease and metabolic disorders | [60] |
miR-375 | Down | serum samples | Its downregulation mediated by β-catenin, promotes tumor formation through upregulation of YAP1, AEG-1, and of IGF1R, which induces cell growth | [37] |
miR-494 | Up | serum samples | Induces endothelial to mesenchymal transformation by targeting SIRT3/TGF-β/SMAD signaling | [37] |
miR-494-3p | Up | serum samples | Promotes cell proliferation, migration, and invasion by targeting PTEN | [40] |
miR-885-5p | Up | serum samples | Suppresses HCC by inhibiting Wnt/β catenin signaling | [38,43] |
miR-1269 | Up | serum samples | Promotes proliferations targeting FOXO1 | [37] |
miR-3197 | Up | serum samples | Unknown | [49] |
let-7-a1 | Down | Serum samples | Targets genes involved in cell cycle and apoptosis | [41] |
let-7 family | Down | tissue samples | Targets genes involved in cell cycle and apoptosis | [60] |
Name | Deregulation Type | Samples Type | Pathways/Putative Pathways | Ref |
---|---|---|---|---|
miR-16 | Up | PBMC | Unknown | [58,76] |
miR-21 | Up | PBMC | Promotes NF-kappa B activity | [58,75,76] |
miR-26b | Down | PBMC | May targets NEK6 that inhibits cellular senescence | [58,75,76,82] |
miR-30a | Up | tissue samples | Suppresses proliferation and metastasis | [88] |
miR-34a | Up | tissue samples | Downregulates FOXP1 during DNA damage response to limit BCR signaling | [75] |
miR-92a | Down | tissue samples | Promotes tumor progression | [88] |
miR-95 | Down | tissue samples | Induces cell proliferation in other tumors through several targets | [75] |
miR-125a | Down | tissue samples | Directly involved in NF-kB activity | [75] |
miR-126 | Down | tissue samples | Inhibits proliferation and apoptosis | [75] |
miR-138 | Down | tissue samples | Inhibits the telomerase reverse transcriptase and induces cell senescence | [75,87] |
miR-139 | Down | tissue samples | Involved in cell migration and proliferation | [75] |
miR-146a | Up | tissue samples | Inhibits NF-kB driven inflammation | [75] |
miR-147a | Up | tissue samples | Inhibits cell proliferations | [87] |
miR-147b | Up | tissue samples | Stimulates proliferation and invasion | [87] |
miR-155 | Up | tissue samples/PBMC | Promotes NF-kappa B activity | [58,75,76] |
miR-345 | Down | tissue samples | Acts as a tumor suppressor in various malignancies | [75] |
miR-494 | Up | tissue samples | Promotes cell proliferation and invasion | [75] |
miR-511 | Up | tissue samples | Is a possible suppressor of cell proliferation | [87] |
HCV (n = 34) | CV (n = 45) | |
---|---|---|
Age (years) | 54.2 ± 11.9 | 62.5 ± 7.23 |
Sex (M/F) | 26(76%)/ 8(24%) | 11(24%)/ 34(76%) |
Histology | ||
Chronic Hepatitis Cirrhosis | 28 (82%) 6 (18%) | 28 (62%) 17 (38%) |
ALT ^ (UI/L) | 175 ± 126 | 161 ± 90 |
HCV-RNA (IU/mL × 106) | 3.6 ± 3.2 | 3.3 ± 2.8 |
HCV genotype | ||
1 | 22 (65%) | 23 (51%) |
2 | 6 (18%) | 20 (44%) |
3 | 5 (14%) | 2 (5%) |
4 | 1 (3%) | - |
Cryocrit | 0 | 11.7 ± 17.1 |
C4 (mg/dL) | 19 ± 5 | 8 ± 7 |
RF† (IU/mL) | - | 273 ± 430 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorini, S.; Gragnani, L.; Zignego, A.L. The Relevance of MicroRNAs in the Pathogenesis and Prognosis of HCV-Disease: The Emergent Role of miR-17-92 in Cryoglobulinemic Vasculitis. Viruses 2020, 12, 1364. https://doi.org/10.3390/v12121364
Lorini S, Gragnani L, Zignego AL. The Relevance of MicroRNAs in the Pathogenesis and Prognosis of HCV-Disease: The Emergent Role of miR-17-92 in Cryoglobulinemic Vasculitis. Viruses. 2020; 12(12):1364. https://doi.org/10.3390/v12121364
Chicago/Turabian StyleLorini, Serena, Laura Gragnani, and Anna Linda Zignego. 2020. "The Relevance of MicroRNAs in the Pathogenesis and Prognosis of HCV-Disease: The Emergent Role of miR-17-92 in Cryoglobulinemic Vasculitis" Viruses 12, no. 12: 1364. https://doi.org/10.3390/v12121364
APA StyleLorini, S., Gragnani, L., & Zignego, A. L. (2020). The Relevance of MicroRNAs in the Pathogenesis and Prognosis of HCV-Disease: The Emergent Role of miR-17-92 in Cryoglobulinemic Vasculitis. Viruses, 12(12), 1364. https://doi.org/10.3390/v12121364