Vector-Borne Transmission of the Zika Virus Asian Genotype in Europe
Abstract
:1. Introduction
2. Standard Laboratory Investigations
3. TMA, Nested PCR and Sequencing Strategy
- We used the extremely sensitive Transcription-Mediated Amplification (TMA) technology (Hologic, Marlborough, Massachusetts, United States [7]) to identify samples in which residual amounts of the ZIKV RNA genome could be detected from serum.
- We performed in silico sequence analysis to identify genomic regions in which genotype-specific single nucleotide polymorphisms (SNP) would allow a clear distinction between the African and Asian genotypes of ZIKV. Such SNPs are present in different parts of the genome, but the Pr gene is of specific interest because it includes 16 SNPs, which individually strictly discriminate between the Asian and African genotype (see Figure 1a). It is therefore expected that sequencing this region would allow the unambiguous identification of the genotype incriminated. We designed a hemi-nested PCR set of primers allowing the amplification of a 139-nt sequence (primers excluded), including these SNPs (Supplementary Materials). All amplifications were performed in quadruplicate in the presence of 10 (PBS) negative controls. When tested, electrophoresis onto agarose gels of secondary PCR products revealed a band corresponding to the expected size in Case 3 from Day 1’s sample for three replicates, whereas PBS controls remained negative.
- We used the secondary PCR reaction of all tested samples and negative controls for NGS sequencing using the S5 Ion Torrent technology (ThermoFisher Scientific, Waltham, MA, United States) [8]. Details are provided in the Supplementary Materials.
4. Genotyping and Probable Geographical Origin of the Strain
5. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giron, S.; Franke, F.; Decoppet, A.; Cadiou, B.; Travaglini, T.; Thirion, L.; Durand, G.; Jeannin, C.; L’Ambert, G.; Grard, G.; et al. Vector-borne transmission of Zika virus in Europe, southern France, August 2019. Euro Surveill. 2019, 24, 1900655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazeille, M.; Madec, Y.; Mousson, L.; Bellone, R.; Barré-Cardi, H.; Sousa, C.A.; Jiolle, D.; Yébakima, A.; de Lamballerie, X.; Failloux, A.-B. Zika virus threshold determines transmission by European Aedes albopictus mosquitoes. Emerg. Microbes Infect. 2019, 8, 1668–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersson, J.H.-O.; Bohlin, J.; Dupont-Rouzeyrol, M.; Brynildsrud, O.B.; Alfsnes, K.; Cao-Lormeau, V.-M.; Gaunt, M.W.; Falconar, A.K.; de Lamballerie, X.; Eldholm, V.; et al. Re-visiting the evolution, dispersal and epidemiology of Zika virus in Asia. Emerg. Microbes Infect. 2018, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, J.H.-O.; Eldholm, V.; Seligman, S.J.; Lundkvist, Å.; Falconar, A.K.; Gaunt, M.W.; Musso, D.; Nougairède, A.; Charrel, R.; Gould, E.A.; et al. How Did Zika Virus Emerge in the Pacific Islands and Latin America? mBio 2016, 7, e01239-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denis, J.; Attoumani, S.; Gravier, P.; Tenebray, B.; Garnier, A.; Briolant, S.; de Laval, F.; Chastres, V.; Grard, G.; Leparc-Goffart, I.; et al. High specificity and sensitivity of Zika EDIII-based ELISA diagnosis highlighted by a large human reference panel. PLoS Negl. Trop. Dis. 2019, 13, e0007747. [Google Scholar] [CrossRef] [PubMed]
- Ölschläger, S.; Enfissi, A.; Zaruba, M.; Kazanji, M.; Rousset, D. Diagnostic Validation of the RealStar® Zika Virus Reverse Transcription Polymerase Chain Reaction Kit for Detection of Zika Virus RNA in Urine and Serum Specimens. Am. J. Trop. Med. Hyg. 2017, 97, 1070–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, P.; Ortiz, D.A.; Terzian, A.C.B.; Colombo, T.E.; Nogueira, M.L.; Vasilakis, N.; Loeffelholz, M.J. Evaluation of Aptima Zika Virus Assay. J. Clin. Microbiol. 2017, 55, 2198–2203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moutailler, S.; Yousfi, L.; Mousson, L.; Devillers, E.; Vazeille, M.; Vega-Rúa, A.; Perrin, Y.; Jourdain, F.; Chandre, F.; Cannet, A.; et al. A New High-Throughput Tool to Screen Mosquito-Borne Viruses in Zika Virus Endemic/Epidemic Areas. Viruses 2019, 11, 904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durand, G.A.; Piorkowski, G.; Thirion, L.; Ninove, L.; Giron, S.; Zandotti, C.; Denis, J.; Badaut, C.; Failloux, A.-B.; Grard, G.; et al. Vector-Borne Transmission of the Zika Virus Asian Genotype in Europe. Viruses 2020, 12, 296. https://doi.org/10.3390/v12030296
Durand GA, Piorkowski G, Thirion L, Ninove L, Giron S, Zandotti C, Denis J, Badaut C, Failloux A-B, Grard G, et al. Vector-Borne Transmission of the Zika Virus Asian Genotype in Europe. Viruses. 2020; 12(3):296. https://doi.org/10.3390/v12030296
Chicago/Turabian StyleDurand, Guillaume A., Géraldine Piorkowski, Laurence Thirion, Laetitia Ninove, Sandra Giron, Christine Zandotti, Jessica Denis, Cyril Badaut, Anna-Bella Failloux, Gilda Grard, and et al. 2020. "Vector-Borne Transmission of the Zika Virus Asian Genotype in Europe" Viruses 12, no. 3: 296. https://doi.org/10.3390/v12030296
APA StyleDurand, G. A., Piorkowski, G., Thirion, L., Ninove, L., Giron, S., Zandotti, C., Denis, J., Badaut, C., Failloux, A. -B., Grard, G., Leparc-Goffart, I., & de Lamballerie, X. (2020). Vector-Borne Transmission of the Zika Virus Asian Genotype in Europe. Viruses, 12(3), 296. https://doi.org/10.3390/v12030296