Potent and Selective Activity against Human Immunodeficiency Virus 1 (HIV-1) of Thymelaea hirsuta Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Flash Extraction with Funnel Büchner
2.3. Cells and Viruses
2.4. Cytotoxicity Assays
2.5. Antiviral Assays
2.6. Anti-HIV-1 BaL Activity of 72B Extract by p24 Determination Assay
2.7. Virucidal Activity Assays
2.8. H9/IIIB-C8166 Cocultures Assay
2.9. Transepithelial Electrical Resistance (TEER)Assay
2.10. Effect of Plant Extracts on the Viability of Lactobacilli
2.11. Reverse Transcriptase Assay
2.12. Protease Assay
2.13. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Last 25 Years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [Green Version]
- Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 2005, 4, 206–220. [Google Scholar] [CrossRef] [PubMed]
- Serkedjieva, J. Influenza virus variants with reduced susceptibility to inhibition by a polyphenol extract from Geranium sanguineum L. Die Pharm. 2003, 58, 53–57. [Google Scholar]
- Tolo, F.M.; Rukunga, G.M.; Muli, F.W.; Njagi, E.N.; Njue, W.; Kumon, K.; Mungai, G.M.; Muthaura, C.N.; Muli, J.M.; Keter, L.K.; et al. Anti-viral activity of the extracts of a Kenyan medicinal plant Carissa edulis against herpes simplex virus. J. Ethnopharmacol. 2006, 104, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Deiana, M.; Rosa, A.; Casu, V.; Cottiglia, F.; Bonsignore, L.; Dessì, M.A. Chemical composition and antioxidant activity of extracts from Daphne gnidium L. J. Am. Oil Chem. Soc. 2003, 80, 65–70. [Google Scholar] [CrossRef]
- Jin, Y.-X.; Shi, L.-L.; Zhang, D.-P.; Wei, H.-Y.; Si, Y.; Ma, G.-X.; Zhang, J. A Review on Daphnane-Type Diterpenoids and Their Bioactive Studies. Molecules 2019, 24, 1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, M.; Matsuyama, K.; Miyamae, Y.; Shinmoto, H.; Kchouk, M.E.; Morio, T.; Shigemori, H.; Isoda, H. Antimelanogenesis effect of Tunisian herb Thymelaea hirsuta extract on B16 murine melanoma cells. Exp. Dermatol. 2007, 16, 977–984. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- El Amrani, F.; Rhallab, A.; Alaoui, T.; El Badaoui, K.; Said, C. Hypoglycaemic effect of Thymelaea hirsuta in normal and streptozotocin-Induced diabetic rats. J. Med. Plants Res. 2009, 3, 625–629. [Google Scholar]
- Azza, Z.; Oudghiri, M. In vivo anti-Inflammatory and antiarthritic activities of aqueous extracts from Thymelaea hirsute. Pharmacogn. Res. 2015, 7, 213–216. [Google Scholar]
- Bnouham, M.; Benalla, W.; Bellahcen, S.; Hakkou, Z.; Ziyyat, A.; Mekhfi, H.; Aziz, M.; Legssyer, A. Antidiabetic and antihypertensive effect of a polyphenol-rich fraction of Thymelaea hirsuta L. in a model of neonatal streptozotocin-Diabetic and N G-Nitro-L-Arginine methyl ester-hypertensive rats. J. Diabetes 2012, 4, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Yahyaoui, M.; Bouajila, J.; Cazaux, S.; Abderrabba, M. The impact of regional locality on chemical composition, anti-oxidant and biological activities of Thymelaeahirsuta L. extracts. Phytomedicine 2018, 41, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Akrout, A.; Gonzalez, L.A.; El Jani, H.; Madrid, P.C. Antioxidant and antitumor activities of Artemisia campestris and Thymelaeahirsuta from southern Tunisia. Food Chem. Toxicol. 2011, 49, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Ballero, M.; Floris, R.; Sacchetti, G.; Poli, F. Ricerche etnobotaniche nel comune di Ussassai (Sardegna centro-orientale). Atti della Società Toscana di Scienze Naturali 1998, 105, 83–87. [Google Scholar]
- Ntie-Kang, F.; Njume, L.E.; Malange, Y.I.; Günther, S.; Sippl, W.; Yong, J.N. The Chemistry and Biological Activities of Natural Products from Northern African Plant Families: From Taccaceae to Zygophyllaceae. Nat. Prod. Bioprospect. 2016, 6, 63–96. [Google Scholar] [CrossRef] [Green Version]
- Vidal, V.; Potterat, O.; Louvel, S.; Hamy, F.; Mojarrab, M.; Sanglier, J.-J.; Klimkait, T.; Hamburger, M. Library-Based Discovery and Characterization of Daphnane Diterpenes as Potent and Selective HIV Inhibitors in Daphne gnidium. J. Nat. Prod. 2011, 75, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Sun, Q.; Hong, L.; Li, L.; Wu, Y.; Xia, M.; Ikejima, T.; Peng, Y.; Song, S. ChemInform Abstract: Daphnane-Type Diterpenes with Inhibitory Activities Against Human Cancer Cell Lines from Daphne genkwa. Bioorg. Med. Chem. Lett. 2013, 44, 2500–2504. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, X.J.; Li, X.Y.; Kong, L.M.; Jiang, H.Z.; Ma, Q.; Liu, Y.Q.; Hu, J.-M.; Zheng, Y.-T.; Li, Y.; et al. Daphnane-type diterpene esters with cytotoxic and anti-HIV-1 activities from Daphne acutiloba Rehd. Phytochemistry 2012, 75, 99–107. [Google Scholar] [CrossRef]
- Miyamae, Y.; Orlina Villareal, M.; Ben Abdrabbah, M.; Isoda, H.; Shigemori, H. Hirseins A and B, daphnane diterpenoids from T. hirsuta that inhibit melanogenesis in B16 melanoma cells. J. Nat. Prod. 2009, 72, 938–941. [Google Scholar] [CrossRef]
- Chaabane, F.; Boubaker, J.; Loussaif, A.; Neffati, A.; Kilani-Jaziri, S.; Ghedira, K.; Chekir-Ghedira, L. Antioxidant, genotoxic and antigenotoxic activities of daphne gnidium leaf extracts. BMC Complement. Altern. Med. 2012, 12, 153. [Google Scholar] [CrossRef] [Green Version]
- Dessí, M.A.; Deiana, M.; Rosa, A.; Piredda, M.; Cottiglia, F.; Bonsignore, L.; Deidda, D.; Pompei, R.; Corongiu, F.P. Antioxidant activity of extracts from plants growing in Sardinia. Phytother. Res. 2001, 15, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Jayasuriya, H.; Zink, D.L.; Suresh, B.S.; Borris, R.P.; Nanakorn, W.; Beck, H.T.; Balick, M.J.; Goetz, M.A.; Lyndia, S.; Lynn, G.; et al. Structure and Stereochemistry of Rediocide A, A Highly Modified Daphnane from Trigonostemonreidioides Exhibiting Potent Insecticidal Activity. J. Am. Chem. Soc. 2000, 122, 4998–4999. [Google Scholar] [CrossRef]
- Jayasuriya, H.; Zink, D.L.; Borris, R.P.; Nanakorn, W.; Beck, H.T.; Balick, M.J.; Goetz, M.A.; Gregory, L.; Shoop, W.L.; Singh, S.B. Rediocides B–E, Potent Insecticides fromTrigonostemonreidioides. J. Nat. Prod. 2004, 67, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Yazdanparast, R.; Moosavi, M.A.; Mahdavi, M.; Sanati, M.H. 3-Hydrogenkwadaphnin from Dendrostelleralessertii induces differentiation and apoptosis in HL-60 cells. Planta Med. 2005, 71, 1112–1117. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Cik, M.; Appendino, G.; Puyvelde, L.; Leysen, J.; Kimpe, N. Daphnane-Type Diterpene Orthoesters and their Biological Activities. Mini-Rev. Med. Chem. 2002, 2, 185–200. [Google Scholar] [CrossRef]
- Carney, J.R.; Krenisky, J.M.; Williamson, R.T.; Luo, J.; Carlson, T.J.; Hsu, V.L.; Moswa, J.L. Maprouneacin, a new daphnane diterpenoid with potent antihyperglycemic activity from Maprouneaafricana. J. Nat. Prod. 1999, 62, 345–347. [Google Scholar] [CrossRef]
- Park, B.-Y.; Min, B.S.; Ahn, K.-S.; Kwon, O.-K.; Joung, H.; Bae, K.-H.; Lee, H.-K.; Oh, S.-R. Daphnane diterpene esters isolated from flower buds of Daphne genkwa induce apoptosis in human myelocytic HL-60 cells and suppress tumor growth in Lewis lung carcinoma (LLC)-inoculated mouse model. J. Ethnopharmacol. 2007, 111, 496–503. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, R.-H.; Wang, F.; Dong, Z.-J.; Yang, L.-M.; Zheng, Y.-T.; Liu, J.-K. Daphnane diterpenoids isolated from Trigonostemon thyrsoideum as HIV-1 antivirals. Phytochemistry 2010, 71, 1879–1883. [Google Scholar] [CrossRef]
- Min, Y.; Yan, L.; Chin-Ho, C.; Yu, Z.; Kuo-Hsiung, L.; Chen, D.F. Stelleralides D–J and Anti-HIV Daphnane Diterpenes from Stellera chamaejasme. J. Nat. Prod. 2015, 78, 2712–2718. [Google Scholar] [CrossRef] [Green Version]
- Asada, Y.; Sukemori, A.; Watanabe, T.; Malla, K.J.; Yoshikawa, T.; Li, W.; Koike, K.; Chen, C.-H.; Akiyama, T.; Qian, K.; et al. Stelleralides A–C, Novel Potent Anti-HIV Daphnane-Type Diterpenoids from Stellerachamaejasme L. Org. Lett. 2011, 13, 2904–2907. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.-Y.; Chen, H.; He, H.-P.; Zhang, Y.; Li, S.-F.; Tang, G.-H.; Guo, L.-L.; Yang, W.; Zhu, F.; Zheng, Y.-T.; et al. Anti-HIV active daphnane diterpenoids from Trigonostemon thyrsoideum. Phytochemistry 2013, 96, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-W.; Leu, Y.-L.; Horng, J.-T. Daphne Genkwa Sieb. et Zucc. Water-Soluble Extracts Act on Enterovirus 71 by Inhibiting Viral Entry. Viruses 2012, 4, 539–556. [Google Scholar] [CrossRef] [Green Version]
- Sanna, G.; Farci, P.; Busonera, B.; Murgia, G.; La Colla, P.; Giliberti, G. Antiviral properties from plants of the Mediterranean flora. Nat. Prod. Res. 2015, 29, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Nguyen, H.T.T.; Park, S.-J.; Chang, J.S.; Park, K.H.; et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem. 2010, 18, 7940–7947. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.-L.; Liu, B.; Qin, H.-L.; Lee, S.; Wang, Y.; Du, G.-H. Anti-Influenza Virus Activities of Flavonoids from the Medicinal PlantElsholtziarugulosa. Planta Med. 2008, 74, 847–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Sun, L.-M.; Liu, X.-Q.; Li, B.; Wang, Q.; Dong, J.-X. Anti-HBV active flavone glucosides from Euphorbia humifusaWilld. Fitoterapia 2010, 81, 799–802. [Google Scholar] [CrossRef]
- Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods 1988, 20, 309–321. [Google Scholar] [CrossRef]
- Carta, A.; Sanna, G.; Briguglio, I.; Madeddu, S.; Vitale, G.; Piras, S.; Corona, P.; Peana, A.T.; Laurini, E.; Fermeglia, M.; et al. Quinoxaline derivatives as new inhibitors of coxsackievirus B5. Eur. J. Med. Chem. 2017, 145, 559–569. [Google Scholar] [CrossRef]
- Serreli, G.; Melis, M.P.; Corona, G.; Deiana, M. Modulation of LPS-induced nitric oxide production in intestinal cells by hydroxytyrosol and tyrosol metabolites: Insight into the mechanism of action. Food Chem. Toxicol. 2019, 125, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Incani, A.; Serra, G.; Atzeri, A.; Melis, M.P.; Serreli, G.; Bandino, G.; Sedda, P.; Campus, M.; Tuberoso, C.I.G.; Deiana, M. Extra virgin olive oil phenolic extracts counteract the pro-oxidant effect of dietary oxidized lipids in human intestinal cells. Food Chem. Toxicol. 2016, 90, 171–180. [Google Scholar] [CrossRef]
- Waheed, A.A.; Ablan, S.D.; Soheilian, F.; Nagashima, K.; Ono, A.; Schaffner, C.P.; Freed, E.O. Inhibition of Human Immunodeficiency Virus Type 1 Assembly and Release by the Cholesterol-Binding Compound Amphotericin B Methyl Ester: Evidence for Vpu Dependence. J. Virol. 2008, 82, 9776–9781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, M.L. Resistance to enfuvirtide, the first HIV fusion inhibitor. J. Antimicrob. Chemother. 2004, 54, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easterbrook, M.D.; Levy, M.H.; Gomez, A.M.; Turco, S.J.; Epand, R.M.; Rosenthal, K.L. Inhibition of HIV-1-induced syncytia formation and infectivity by lipophosphoglycan from Leishmania. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1995, 10, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Günther-Ausborn, S.; Stegmann, T. How Lysophosphatidylcholine Inhibits Cell–Cell Fusion Mediated by the Envelope Glycoprotein of Human Immunodeficiency Virus. Virology 1997, 235, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Oka, M.; Iimura, S.; Tenmyo, O.; Sawada, Y.; Sugawara, M.; Ohkusa, N.; Yamamoto, H.; Kawano, K.; Hu, S.-L.; Fukagawa, Y.; et al. Terpestacin, a new syncytium formation inhibitor from Arthrinium sp. J. Antibiot. 1993, 46, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Serra, G.; Incani, A.; Serreli, G.; Porru, L.; Melis, M.; Tuberoso, C.I.; Rossin, D.; Biasi, F.; Deiana, M. Olive oil polyphenols reduce oxysterols-Induced redox imbalance and pro-Inflammatory response in intestinal cells. Redox Biol. 2018, 17, 348–354. [Google Scholar] [CrossRef]
Compounds | MT-4 | HIV-1IIIB | MDBK | BVDV | BHK | Reo-1 | Vero-76 | Sb-1 | RSV | VSV | HSV-1 |
---|---|---|---|---|---|---|---|---|---|---|---|
CC50a | EC50b | CC50c | EC50d | CC50e | EC50f | CC50g | EC50h | EC50j | EC50k | EC50l | |
71 (Leaves) | |||||||||||
A | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
B | >100 | 0.8 ± 0.1 | >100 | >100 | >100 | >100 | 84 | >84 | >84 | >84 | >84 |
C | >100 | 5 | >100 | >100 | >100 | >100 | 92 | >92 | >92 | >92 | >92 |
72 (Branches) | |||||||||||
A | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
B | >100 | 0.8 ± 0.1 | >100 | >100 | >100 | >100 | 84 | >84 | >84 | >84 | >84 |
C | >100 | 5 | >100 | >100 | >100 | >100 | 94 | >94 | >94 | >94 | >94 |
Compounds | MT-4 | HIV-1IIIB | N119(Y181C) | A17 (K103N, Y181C) | EFVR (K103R, V179D, P225H) | AZTR (67N, 70R, 215F, 219Q) | MDR (74V, 41L, 106A, 215Y) |
---|---|---|---|---|---|---|---|
CC50a | EC50b | ||||||
71 (Leaves) | |||||||
A | >100 | >100 | - | - | - | - | - |
B | >100 | 0.8 ± 0.1 | 0.35 ± 0.005 | 0.4 ± 0.05 | 0.7 ± 0.1 | 3 ± 0.01 | 4 ± 0.01 |
C | 86 | 10 | 9 | 8 | 10 | >86 | 15 |
72 (Branches) | |||||||
A | >100 | >100 | - | - | - | - | - |
B | >100 | 0.8 ± 0.1 | 0.5 ± 0.003 | 0.4 ± 0.01 | 2 ± 0.05 | 3 ± 0.03 | 4 ± 0.03 |
C | 70 | 10 | 9 | 9 | 13 | >70 | 16 |
References * | |||||||
Azidothymidine | 45 | 0.02 ± 0.003 | 0.02 ± 0.003 | 0.01/ ± 0.002 | 0.02 ± 0.003 | 7.0 ± 0.05 | 0.65 ± 0.01 |
Efavirenz | 40 | 0.003 ± 0.0003 | 0.02 ± 0.003 | 0.10 ± 0.009 | 13.0 ± 2.1 | 0.0035 ± 0.0003 | 0.01 ± 0.05 |
Nevirapine | >100 | 0.08 ± 0.01 | 8.0 ± 08 | 70 | 100 | 0.4 ± 0.1 | 3.0 ± 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanna, G.; Madeddu, S.; Murgia, G.; Serreli, G.; Begala, M.; Caboni, P.; Incani, A.; Franci, G.; Galdiero, M.; Giliberti, G. Potent and Selective Activity against Human Immunodeficiency Virus 1 (HIV-1) of Thymelaea hirsuta Extracts. Viruses 2020, 12, 664. https://doi.org/10.3390/v12060664
Sanna G, Madeddu S, Murgia G, Serreli G, Begala M, Caboni P, Incani A, Franci G, Galdiero M, Giliberti G. Potent and Selective Activity against Human Immunodeficiency Virus 1 (HIV-1) of Thymelaea hirsuta Extracts. Viruses. 2020; 12(6):664. https://doi.org/10.3390/v12060664
Chicago/Turabian StyleSanna, Giuseppina, Silvia Madeddu, Giuseppe Murgia, Gabriele Serreli, Michela Begala, Pierluigi Caboni, Alessandra Incani, Gianluigi Franci, Marilena Galdiero, and Gabriele Giliberti. 2020. "Potent and Selective Activity against Human Immunodeficiency Virus 1 (HIV-1) of Thymelaea hirsuta Extracts" Viruses 12, no. 6: 664. https://doi.org/10.3390/v12060664
APA StyleSanna, G., Madeddu, S., Murgia, G., Serreli, G., Begala, M., Caboni, P., Incani, A., Franci, G., Galdiero, M., & Giliberti, G. (2020). Potent and Selective Activity against Human Immunodeficiency Virus 1 (HIV-1) of Thymelaea hirsuta Extracts. Viruses, 12(6), 664. https://doi.org/10.3390/v12060664