Putative Role of Arthropod Vectors in African Swine Fever Virus Transmission in Relation to Their Bio-Ecological Properties
Abstract
:1. Introduction
2. Description of the Ecology and Putative Vector Role of Different Genera/Families of Arthropods
2.1. Argasidae
2.2. Ceratopogonidae
2.3. Culicidae
2.4. Ixodidae
2.5. Muscidae
2.6. Phlebotominae
2.7. Phthiraptera
2.8. Siphonaptera
2.9. Tabanidae
3. Passive Transport ASFV Transmission by Arthropods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stuchin, M.; Machalaba, C.; Karesh, W. Vector-Borne Diseases: Animals and Patterns; Forum on Microbial Threats; Board on Global Health; Health and Medicine Division; National Academies of Sciences, Engineering, and Medicine; Global Health Impacts of Vector-Borne Diseases: Workshop Summary; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Müller, R.; Reuss, F.; Kendrovski, V.; Montag, D. Vector-Borne Diseases. In Biodiversity and Health in the Face of Climate Change; Marselle, M., Stadler, J., Korn, H., Irvine, K., Bonn, A., Eds.; Springer: Cham, Germany, 2019. [Google Scholar]
- Blome, S.; Gabriel, C.; Beer, M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013, 173, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Jori, F.; Bastos, A.D. Role of wild suids in the epidemiology of African swine fever. EcoHealth 2009, 6, 296–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo, C.; Nieto, R.; Soler, A.; Pelayo, V.; Fernandez-Pinero, J.; Markowska-Daniel, I.; Pridotkas, G.; Nurmoja, I.; Granta, R.; Simon, A.; et al. Assessment of African Swine Fever Diagnostic Techniques as a Response to the Epidemic Outbreaks in Eastern European Union Countries: How To Improve Surveillance and Control Programs. J. Clin. Microbiol. 2015, 53, 2555–2565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, R. On a form of swine fever occuring in British east Africa (Kenya, Colony). J Comp. Pathol. Ther. 1921, 34, 159–191. [Google Scholar] [CrossRef] [Green Version]
- Galindo, I.; Alonso, C. African Swine Fever Virus: A Review. Viruses 2017, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Vizcaino, J.M.; Mur, L.; Martinez-Lopez, B. African swine fever (ASF): Five years around Europe. Vet. Microbiol. 2013, 165, 45–50. [Google Scholar] [CrossRef]
- Chenais, E.; Stahl, K.; Guberti, V.; Depner, K. Identification of Wild Boar-Habitat Epidemiologic Cycle in African Swine Fever Epizootic. Emerg. Infect. Dis. 2018, 24, 810–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pikalo, J.; Schoder, M.E.; Sehl, J.; Breithaupt, A.; Tignon, M.; Cay, A.B.; Gager, A.M.; Fischer, M.; Beer, M.; Blome, S. The African swine fever virus isolate Belgium 2018/1 shows high virulence in European wild boar. Transbound. Emerg. Dis. 2020, 67, 1654–1659. [Google Scholar] [CrossRef]
- Linden, A.; Licoppe, A.; Volpe, R.; Paternostre, J.; Lesenfants, C.; Cassart, D.; Garigliany, M.; Tignon, M.; Van Den Berg, T.; Desmecht, D.; et al. Summer 2018: African swine fever virus hits north-western Europe. Transbound. Emerg. Dis. 2019, 66, 54–55. [Google Scholar] [CrossRef] [PubMed]
- Mulumba-Mfumu, L.K.; Saegerman, C.; Dixon, L.K.; Madimba, K.C.; Kazadi, E.; Mukalakata, N.T.; Oura, C.A.L.; Chenais, E.; Masembe, C.; Stahl, K.; et al. African swine fever: Update on Eastern, Central and Southern Africa. Transbound. Emerg. Dis. 2019, 66, 1462–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plowright, W.; Parker, J.; Peirce, M.A. African swine fever virus in ticks (Ornithodoros moubata, murray) collected from animal burrows in Tanzania. Nature 1969, 221, 1071–1073. [Google Scholar] [CrossRef] [PubMed]
- Boinas, F.S.; Wilson, A.J.; Hutchings, G.H.; Martins, C.; Dixon, L.J. The persistence of African swine fever virus in field-infected Ornithodoros erraticus during the ASF endemic period in Portugal. PLoS ONE 2011, 6, e20383. [Google Scholar] [CrossRef] [PubMed]
- Penrith, M.L. African swine fever. Onderstepoort J. Vet. Res. 2009, 76, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Olesen, A.S.; Lohse, L.; Boklund, A.; Halasa, T.; Belsham, G.J.; Rasmussen, T.B.; Botner, A. Short time window for transmissibility of African swine fever virus from a contaminated environment. Transbound. Emerg. Dis. 2018, 65, 1024–1032. [Google Scholar] [CrossRef]
- Pautienius, A.; Grigas, J.; Pileviciene, S.; Zagrabskaite, R.; Buitkuviene, J.; Pridotkas, G.; Stankevicius, R.; Streimikyte, Z.; Salomskas, A.; Zienius, D.; et al. Prevalence and spatiotemporal distribution of African swine fever in Lithuania, 2014–2017. Virol. J. 2018, 15, 177. [Google Scholar] [CrossRef]
- Podgorski, T.; Smietanka, K. Do wild boar movements drive the spread of African Swine Fever? Transbound. Emerg. Dis. 2018, 65, 1588–1596. [Google Scholar] [CrossRef]
- Burrage, T.G. African swine fever virus infection in Ornithodoros ticks. Virus Res. 2013, 173, 131–139. [Google Scholar] [CrossRef]
- Costard, S.; Mur, L.; Lubroth, J.; Sanchez-Vizcaino, J.M.; Pfeiffer, D.U. Epidemiology of African swine fever virus. Virus Res. 2013, 173, 191–197. [Google Scholar] [CrossRef]
- Kleiboeker, S.B.; Scoles, G.A.; Burrage, T.G.; Sur, J. African swine fever virus replication in the midgut epithelium is required for infection of Ornithodoros ticks. J. Virol. 1999, 73, 8587–8598. [Google Scholar] [CrossRef] [Green Version]
- Palma, M.; Lopes de Carvalho, I.; Osorio, H.; Ze-Ze, L.; Cutler, S.J.; Nuncio, M.S. Portuguese hosts for Ornithodoros erraticus ticks. Vector Borne Zoonotic Dis. 2013, 13, 775–777. [Google Scholar] [CrossRef] [Green Version]
- Boinas, F.; Ribeiro, R.; Madeira, S.; Palma, M.; De Carvalho, I.L.; Nuncio, S.; Wilson, A.J. The medical and veterinary role of Ornithodoros erraticus complex ticks (Acari: Ixodida) on the Iberian Peninsula. J. Vector Ecol. 2014, 39, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Diaz, A.V.; Netherton, C.L.; Dixon, L.K.; Wilson, A.J. African swine fever virus strain Georgia 2007/1 in Ornithodoros erraticus ticks. Emerg. Infect. Dis. 2012, 18, 1026–1028. [Google Scholar] [CrossRef] [PubMed]
- Pereira de Oliveira, R.; Hutet, E.; Paboeuf, F.; Duhayon, M.; Boinas, F.; Perez de Leon, A.; Filatov, S.; Vial, L.; Le Potier, M.F. Comparative vector competence of the Afrotropical soft tick Ornithodoros moubata and Palearctic species, O. erraticus and O. verrucosus, for African swine fever virus strains circulating in Eurasia. PLoS ONE 2019, 14, e0225657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mans, B.J.; Featherston, J.; Kvas, M.; Pillay, K.A.; De Klerk, D.G.; Pienaar, R.; De Castro, M.H.; Schwan, T.G.; Lopez, J.E.; Teel, P.; et al. Argasid and ixodid systematics: Implications for soft tick evolution and systematics, with a new argasid species list. Ticks Tick-Borne Dis. 2019, 10, 219–240. [Google Scholar] [CrossRef]
- Vial, L.; Ducheyne, E.; Filatov, S.; Gerilovych, A.; McVey, D.S.; Sindryakova, I.; Morgunov, S.; Perez de Leon, A.A.; Kolbasov, D.; De Clercq, E.M. Spatial multi-criteria decision analysis for modelling suitable habitats of Ornithodoros soft ticks in the Western Palearctic region. Vet. Parasitol. 2018, 249, 2–16. [Google Scholar] [CrossRef]
- Ravaomanana, J.; Jori, F.; Vial, L.; Perez-Sanchez, R.; Blanco, E.; Michaud, V.; Roger, F. Assessment of interactions between African swine fever virus, bushpigs (Potamochoerus larvatus), Ornithodoros ticks and domestic pigs in north-western Madagascar. Transbound. Emerg. Dis. 2011, 58, 247–254. [Google Scholar] [CrossRef]
- Trape, J.F.; Diatta, G.; Arnathau, C.; Bitam, I.; Sarih, M.; Belghyti, D.; Bouattour, A.; Elguero, E.; Vial, L.; Mane, Y.; et al. The epidemiology and geographic distribution of relapsing fever borreliosis in West and North Africa, with a review of the Ornithodoros erraticus complex (Acari: Ixodida). PLoS ONE 2013, 8, e78473. [Google Scholar] [CrossRef]
- Wilson, A.J.; Ribeiro, R.; Boinas, F. Use of a Bayesian network model to identify factors associated with the presence of the tick Ornithodoros erraticus on pig farms in southern Portugal. Prev. Vet. Med. 2013, 110, 45–53. [Google Scholar] [CrossRef]
- Vial, L. Eco-éPidemiologie DE La FIèvre Récurrente à Tiques à Borrelia Crocidurae en Afrique DE L’Ouest; Montpellier II: Montpellier, France, 2005. [Google Scholar]
- Filatov, S. Ornithodoros verrucosus in Ukraine: Evaluating regional presence and its possible impact on the epidemiology of African swine fever. In Proceedings of the XXV International Congress of Entomology, Orlando, FL, USA, 25–30 September 2016. [Google Scholar]
- Rieb, J.-P. Contribution à La Connaissance DE L’éCologie ET DE La Biologie Des Cératopogonidés (Diptera, Nematocera); Université Louis Pasteur, UER Vie et terre: Strasbourg, France, 1982; p. 395. [Google Scholar]
- Service, M.W. Adult flight activities of some British Culicoides species. J. Med. Entomol. 1971, 8, 605–609. [Google Scholar] [CrossRef]
- Zimmer, J.Y.; Haubruge, E.; Francis, F.; Bortels, J.; Joie, E.; Simonon, G.; De Deken, R.; De Deken, G.; Deblauwe, I.; Madder, M.; et al. Distribution of potential bluetongue vectors on Belgium farms. Vet. Rec. 2008, 162, 700. [Google Scholar] [CrossRef]
- Perie, P.; Chermette, R.; Millemann, Y.; Zientara, S. Culicoides, hematophagous Diptera vectors of Bluetongue disease. Bull. Acad. Vet. Fr. 2005, 158, 213. [Google Scholar]
- Sellers, R. Weather, Culicoides, and the distribution and spread of Bluetongue and African Horse Sickness viruses. In Proceedings of the Second International Symphosium on Bluetongue, African Horse Sickness and Related Orbiviruses, Paris, France, June 1991; pp. 284–291. [Google Scholar]
- Birley, M.H.; Boorman, J.P.T. Estimating the Survival and Biting Rates of Haematophagous Insects, with Particular Reference to the Culicoides obsoletus Group (Diptera, Ceratopogonidae) in Southern England. J. Anim. Ecol. 1982, 51, 135. [Google Scholar] [CrossRef]
- Martinez-de la Puente, J.; Figuerola, J.; Soriguer, R. Fur or feather? Feeding preferences of species of Culicoides biting midges in Europe. Trends Parasitol. 2015, 31, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, L.D.; Kristensen, B.; Kirkeby, C.; Rasmussen, T.B.; Belsham, G.J.; Bodker, R.; Botner, A. Culicoids as vectors of Schmallenberg virus. Emerg. Infect. Dis. 2012, 18, 1204–1206. [Google Scholar] [CrossRef] [PubMed]
- Hoch, A.L.; Gargan, T.P.; Bailey, C.L. Mechanical transmission of Rift Valley fever virus by Hematophagous Diptera. Am. J. Trop. Med. Hyg. 1985, 34, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Eritja, R.; Palmer, J.R.B.; Roiz, D.; Sanpera-Calbet, I.; Bartumeus, F. Direct Evidence of Adult Aedes albopictus Dispersal by Car. Sci. Rep. 2017, 7, 14399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, R.; Otranto, D.; Wall, R. The Encyclopedia of Medical and Veterinary Entomology; CABI: Oxford, UK, 2013; p. 429. [Google Scholar]
- Andreadis, S.S.; Dimotsiou, O.C.; Savopoulou-Soultani, M. Variation in adult longevity of Culex pipiens f. pipiens, vector of the West Nile Virus. Parasitol. Res. 2014, 113, 4315–4319. [Google Scholar] [CrossRef]
- Clements, A. The Biology of Mosquitoes. Transmission of Viruses and Interactions with Bacteria; CABI Publishing: Cambridge, UK, 2012; Volume 3. [Google Scholar]
- Martinez-de la Puente, J.; Ferraguti, M.; Ruiz, S.; Roiz, D.; Soriguer, R.C.; Figuerola, J. Culex pipiens forms and urbanization: Effects on blood feeding sources and transmission of Avian plasmodium. Malar. J. 2016, 15, 589. [Google Scholar] [CrossRef] [Green Version]
- Börstler, J.; Jöst, H.; Garms, R.; Krüger, A.; Tannich, E.; Becker, N.; Schmidt-Chanasit, J.; Lühken, R. Host-feeding patterns of mosquito species in Germany. Parasites Vectors 2016, 9, 318. [Google Scholar] [CrossRef] [Green Version]
- Brugman, V.A.; Hernandez-Triana, L.M.; Medlock, J.M.; Fooks, A.R.; Carpenter, S.; Johnson, N. The Role of Culex pipiens L. (Diptera: Culicidae) in Virus Transmission in Europe. Int. J. Environ. Res. Public Health 2018, 15, 389. [Google Scholar] [CrossRef] [Green Version]
- Plowright, W.; Thomson, G.R.; Neser, J.A. African swine fever. In Infectious Diseases of Livestock with Special Reference to Southern Africa; Coetzer, J.A.W., Thomson, G.R., Tustin, R.C., Eds.; Oxford University Press: Cape Town, South Africa, 1994; pp. 567–599. [Google Scholar]
- Herm, R.; Tummeleht, L.; Jürison, M.; Vilem, A.; Viltrop, A. Trace amounts of African swine fever virus DNA detected in insects collected from an infected pig farm in Estonia. Vet. Med. Sci. 2019, 6, 100–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dantas-Torres, F.; Chomel, B.B.; Otranto, D. Ticks and tick-borne diseases: A One Health perspective. Trends Parasitol. 2012, 28, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Eid, C. Les Tiques: Identification, Biologie, Importance Médicale ET Vétérinaire; Lavoisier: Paris, France, 2007. [Google Scholar]
- Rizzoli, A.; Silaghi, C.; Obiegala, A.; Rudolf, I.; Hubalek, Z.; Foldvari, G.; Plantard, O.; Vayssier-Taussat, M.; Bonnet, S.; Spitalska, E.; et al. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Front. Public Health 2014, 2, 251. [Google Scholar] [CrossRef]
- Bonnet, S.; De La Fuente, J.; Nicollet, P.; Liu, X.; Madani, N.; Blanchard, B.; Maingourd, C.; Alongi, A.; Torina, A.; Fernandez de Mera, I.G.; et al. Prevalence of tick-borne pathogens in adult Dermacentor spp. ticks from nine collection sites in France. Vector Borne Zoonotic Dis. 2013, 13, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, X.; Wang, Y.; Bei, J.; Jin, X.; Dou, W.; Ji, H.; Duan, Y.; Yang, X.; Gao, S. DNA segments of African Swine Fever Virus detected for the first time in hard ticks from sheep and bovines. Syst. Appl. Acarol. 2019, 24, 180. [Google Scholar] [CrossRef]
- Sanchez Botija, C. Reservoirs of ASFV: A study of the ASFV in arthropods by means of haemadsorption. Bull. Off. Int. Epizoot. 1963, 60, 895–899. [Google Scholar]
- Kovalenko, Y.R.; Sidorov, M.A.; Burba, L.G. Pasture ticks and Haematopinus as possible reservoirs and vectors of African swine fever. Tr. Vsesoyuznogo Inst. Eksperimental’noi Vet. 1967, 33, 91–94. [Google Scholar]
- Frant, M.; Wozniakowski, G.; Pejsak, Z. African Swine Fever (ASF) and Ticks. No Risk of Tick-mediated ASF Spread in Poland and Baltic States. J. Vet. Res. 2017, 61, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Pereira De Oliveira, R.; Hutet, E.; Duhayon, M.; Guionnet, J.M.; Paboeuf, F.; Vial, L.; Le Potier, M.F. Successful Infection of Domestic Pigs by Ingestion of the European Soft Tick O. Erraticus That Fed on African Swine Fever Virus Infected Pig. Viruses 2020, 12, 300. [Google Scholar] [CrossRef] [Green Version]
- Lysyk, T.J. Relationships between temperature and life-history parameters of Stomoxys calcitrans (Diptera: Muscidae). J. Med. Entomol. 1998, 35, 107–119. [Google Scholar] [CrossRef]
- Gilles, J. Dynamique et Génétique Des Populations D’Insectes Vecteurs -Les Stomoxes, Stomoxys Calcitrans et Stomoxys Niger Niger Dans Les élevages Bovins Réunionnais. Ph.D. Thesis, Université de La Réunion, La Réunion, France, 2005. [Google Scholar]
- Lienard, E.; Salem, A.; Grisez, C.; Prevot, F.; Bergeaud, J.P.; Franc, M.; Gottstein, B.; Alzieu, J.P.; Lagalisse, Y.; Jacquiet, P. A longitudinal study of Besnoitia besnoiti infections and seasonal abundance of Stomoxys calcitrans in a dairy cattle farm of southwest France. Vet. Parasitol. 2011, 177, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Skovgard, H.; Nachman, G. Biological control of house flies Musca domestica and stable flies Stomoxys calcitrans (Diptera: Muscidae) by means of inundative releases of Spalangia cameroni (Hymenoptera: Pteromalidae). Bull. Entomol. Res. 2004, 94, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Baldacchino, F.; Muenworn, V.; Desquesnes, M.; Desoli, F.; Charoenviriyaphap, T.; Duvallet, G. Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): A review. Parasite 2013, 20, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogsette, J.A.; Ruff, J.P.; Jones, C.J. Stable fly biology and control in northwest Florida. J. Agric. Entomol. 1987, 4, 1–11. [Google Scholar]
- Foil, L.D.; Hogsette, J.A. Biology and control of tabanids, stable flies and horn flies. Rev. Sci. Tech. 1994, 13, 1125–1158. [Google Scholar] [CrossRef]
- Coronado, A.; Butler, J.F.; Becnel, J.; Ghogsette, J. Artificial feeding in the stable fly Stomoxys calcitrans and their relationship with the blood meal destination. In Proceedings of the 1st International Symposium and 2nd National Symposium on Haemoparasites and Their Vectors, Caracas, Venezuela, 14–16 October 2004. [Google Scholar]
- Mellor, P.S.; Kitching, R.P.; Wilkinson, P.J. Mechanical transmission of capripox virus and African swine fever virus by Stomoxys calcitrans. Res. Vet. Sci. 1987, 43, 109–112. [Google Scholar] [CrossRef]
- Olesen, A.S.; Hansen, M.F.; Rasmussen, T.B.; Belsham, G.J.; Bodker, R.; Botner, A. Survival and localization of African swine fever virus in stable flies (Stomoxys calcitrans) after feeding on viremic blood using a membrane feeder. Vet. Microbiol. 2018, 222, 25–29. [Google Scholar] [CrossRef]
- Petrasiunas, A.; Bernotiene, R.; Turcinaviciene, J. Catches of Blood-Feeding Flies with Nzi Traps in African Swine Fever Affected Areas Of Lithuania. Bull. Lith. Entomol. Soc. 2018, 2, 25–29. [Google Scholar]
- Duvallet, G.; Fontenille, D.; Robert, V. Entomologie Médicale et Vétérinaire; IRD: Marseille, France, 2017; p. 688. [Google Scholar]
- Abonnenc, E. Les Phlébotomes de la Région Éthiopienne (Diptera, Psychodidae); ORSTOM: Paris, France, 1972; p. 289. [Google Scholar]
- Bouchery, N. Soin des leishmanioses dans le sud du Honduras Une alternative: Clematis dioica. Ph.D. Thesis, Université de Lille, Lille, France, 2007. [Google Scholar]
- Bongiorno, G.; Habluetzel, A.; Khoury, C.; Maroli, M. Host preferences of phlebotomine sand flies at a hypoendemic focus of canine leishmaniasis in central Italy. Acta Trop. 2003, 88, 109–116. [Google Scholar] [CrossRef]
- Colonge, H. Contribution a L’éTude DU Repas Sanguin DE Phlebotomus Perniciosus (Diptera: Psychodidae); Ecole Nationale Vétérinaire: Toulouse, France, 2011. [Google Scholar]
- Killick-Kendrick, R. The biology and control of phlebotomine sand flies. Clin. Derm. 1999, 17, 279–289. [Google Scholar] [CrossRef]
- Baum, M.; de Castro, E.A.; Pinto, M.C.; Goulart, T.M.; Baura, W.; Klisiowicz Ddo, R.; Vieira da Costa-Ribeiro, M.C. Molecular detection of the blood meal source of sand flies (Diptera: Psychodidae) in a transmission area of American Cutaneous Leishmaniasis, Parana State, Brazil. Acta Trop. 2015, 143, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Barriga, D.; Parreira, R.; Maia, C.; Afonso, M.O.; Blanco-Ciudad, J.; Serrano, F.J.; Perez-Martin, J.E.; Gomez-Gordo, L.; Campino, L.; Reina, D.; et al. Detection of Leishmania DNA and blood meal sources in phlebotomine sand flies (Diptera: Psychodidae) in western of Spain: Update on distribution and risk factors associated. Acta Trop. 2016, 164, 414–424. [Google Scholar] [CrossRef]
- Fonteles, R.S.; Pereira Filho, A.A.; Moraes, J.L.P.; Pereira, S.R.F.; Rodrigues, B.L.; Rebelo, J.M.M. Detection of Leishmania DNA and Blood Meal Identification in Sand Flies (Diptera: Psychodidae) From Lencois Maranhenses National Park Region, Brazil. J. Med. Entomol. 2018, 55, 445–451. [Google Scholar] [CrossRef]
- Rigg, C.A.; Calzada, J.E.; Saldana, A.; Perea, M.; Chaves, L.F.; Valderrama, A. Leishmania spp. Infection Rate and Feeding Patterns of Sand Flies (Diptera: Psychodidae) from a Hyperendemic Cutaneous Leishmaniasis Community in Panama. Am. J. Trop. Med. Hyg. 2019, 100, 798–807. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, K.; Shi, H.; Zhang, Y.; Ha, Y.; Wang, Y.; Jiang, J.; Wang, Y.; Yang, Z.; Xu, J.; et al. Ecological niches and blood sources of sand fly in an endemic focus of visceral leishmaniasis in Jiuzhaigou, Sichuan, China. Infect. Dis. Poverty 2016, 5, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depaquit, J.; Grandadam, M.; Fouque, F.; Andry, P.E.; Peyrefitte, C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: A review. Euro Surveill 2010, 15, 19507. [Google Scholar] [PubMed]
- Tesh, R.B.; Modi, G.B. Growth and transovarial transmission of Chandipura virus (Rhabdoviridae: Vesiculovirus) in phlebotomus papatasi. Am. J. Trop. Med. Hyg. 1983, 32, 621–623. [Google Scholar] [CrossRef]
- Kettle, D.S. Medical and Veterinary Entomology; CABI Publishing: Wallingford, UK, 1984. [Google Scholar]
- Wooten-Saadi, E.L.; Towell-Vail, C.A.; Williams, R.E.; Gaafar, S.M. Incidence of Sarcoptes scabiei (Acari: Sarcoptidae) and Haematopinus suis (Anoplura: Haematopinidae) on swine in Indiana. J. Econ. Entomol. 1987, 80, 1031–1034. [Google Scholar] [CrossRef]
- Raoult, D.; Roux, V. The body louse as a vector of reemerging human diseases. Clin. Infect. Dis. 1999, 29, 888–911. [Google Scholar] [CrossRef]
- Deplazes, P.; Eckert, J.; Mathis, A.; Samson-Himmelstjerna, G.v.; Zahner, H. Parasitology in Veterinary Medicine; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016. [Google Scholar]
- Lavoipierre, M.M. Feeding mechanism of Haematopinus suis, on the transilluminated mouse ear. Exp. Parasitol. 1967, 20, 303–311. [Google Scholar] [CrossRef]
- Doster, A.R. Skin diseases of swine. J. Swine. Health Prod. 1995, 3, 256–261. [Google Scholar]
- Sanchez Botija, C.; Babiola, C. African swine fever virus in Haematopinus suis. Bull. L’office Int. Des Epizoot. 1966, 66, 699–705. [Google Scholar]
- Sanchez, J.P.; Ezquiaga, M.C.; Ruiz, M. Fleas (Insecta: Siphonaptera) with public health relevance in domestic pigs (Artiodactyla: Suidae) from Argentina. Zootaxa 2018, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Metzger, M.E.; Rust, M.K. Effect of temperature on cat flea (Siphonaptera:Pulicidae) development and overwintering. J. Med. Entomol. 1997, 34, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Franc, M.; Bouhsira, E.; Beugnet, F. Direct transmission of the cat flea (Ctenocephalides felis) between cats exhibiting social behaviour. Parasite 2013, 20, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Privora, M.; Rupes, V.; Vychodil, J.; Tondl, F. The incidence of Pulex irritans L. (Siphonaptera) on pigs and its resistance to chlorinated hydrocarbons. Folia Parasitol. 1972, 19, 375–378. [Google Scholar]
- Christodoulopoulos, G.; Theodoropoulos, G. Infestation of dairy goats with the human flea, Pulex irritans, in central Greece. Vet. Rec. 2003, 152, 371–372. [Google Scholar] [CrossRef]
- Durden, L.A.; Traub, R. Fleas (Siphonaptera). In Medical and Veterinary Entomology; Mullen, G., Durden, L., Eds.; Academic Press/Elsevier Science: San Diego, CA, USA, 2002; pp. 103–125. [Google Scholar]
- Krasnov, B. Functional and Evolutionary Ecology of Fleas; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Bitam, I.; Dittmar, K.; Parola, P.; Whiting, M.F.; Raoult, D. Fleas and flea-borne diseases. Int. J. Infect. Dis. 2010, 14, e667–e676. [Google Scholar] [CrossRef] [Green Version]
- Chvála, M.; Lyneborg, L.; Moucha, J. The Horse Flies of Europe (Diptera, Tabanidae); Entomological Society of Copenhagen: Copenhagen, Denmark, 1972; p. 499. [Google Scholar]
- Pernot-Visentin, O.; Beaucournu-Saguez, F. Les Tabanidae (Diptera) de France. Publ. Société Linnéenne Lyon 1974, 43, 142–155. [Google Scholar] [CrossRef]
- Mullen, G.; Durden, L. Horse Flies and Deer Flies (Tabanidae), 2nd ed.; Medical and Veterinary Entomology: San Diego, CA, USA, 2002; pp. 263–277. [Google Scholar]
- Louis, A.; Magnarelli, J.F.A. Feeding Behavior of Tabanidae (Diptera) on Cattle and Serologic Analyses of Partial Blood Meals. Environ. Entomol. 1980, 9, 664–667. [Google Scholar]
- Muzari, M.O.; Skerratt, L.F.; Jones, R.E.; Duran, T.L. Alighting and feeding behaviour of tabanid flies on horses, kangaroos and pigs. Vet. Parasitol. 2010, 170, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Van Hennekeler, K.; Jones, R.E.; Skerratt, L.F.; Muzari, M.O.; Fitzpatrick, L.A. Meteorological effects on the daily activity patterns of tabanid biting flies in northern Queensland, Australia. Med. Vet. Entomol. 2011, 25, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Hollander, A.L.; Wright, R.E. Impact of tabanids on cattle: Blood meal size and preferred feeding sites. J. Econ. Entomol 1980, 73, 431–433. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.T.; Foil, L.D. The influence of distance on movement of tabanids (Diptera: Tabanidae) between horses. Vet. Parasitol. 2007, 144, 380–384. [Google Scholar] [CrossRef]
- Lempereur, L.; Sohier, C.; Smeets, F.; Marechal, F.; Berkvens, D.; Madder, M.; Francis, F.; Losson, B. Dispersal capacity of Haematopota spp. and Stomoxys calcitrans using a mark-release-recapture approach in Belgium. Med. Vet. Entomol. 2018, 32, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Foil, L.D. Tabanids as vectors of disease agents. Parasitol. Today 1989, 5, 88–96. [Google Scholar] [CrossRef]
- Krinsky, W.L. Animal disease agents transmitted by horse flies and deer flies (Diptera: Tabanidae). J. Med. Entomol. 1976, 13, 225–275. [Google Scholar] [CrossRef]
- Olesen, A.S.; Lohse, L.; Hansen, M.F.; Boklund, A.; Halasa, T.; Belsham, G.J.; Rasmussen, T.B.; Botner, A.; Bodker, R. Infection of pigs with African swine fever virus via ingestion of stable flies (Stomoxys calcitrans). Transbound. Emerg. Dis. 2018, 65, 1152–1157. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018). EFSA J. 2018, 16, 5494. [Google Scholar]
- Pitkin, A.; Deen, J.; Otake, S.; Moon, R.; Dee, S. Further assessment of houseflies (Musca domestica) as vectors for the mechanical transport and transmission of porcine reproductive and respiratory syndrome virus under field conditions. Can. J. Vet. Res. Rev. Can. Rech. Vet. 2009, 73, 91–96. [Google Scholar]
- Wanaratana, S.; Amonsin, A.; Chaisingh, A.; Panyim, S.; Sasipreeyajan, J.; Pakpinyo, S. Experimental assessment of houseflies as vectors in avian influenza subtype H5N1 transmission in chickens. Avian. Dis. 2013, 57, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Panel on Animal Health and Welfare. Scientific Opinion on African Swine Fever. EFSA J. 2010, 8, 1556. [Google Scholar]
- Penrith, M.L.; Vosloo, W. Review of African swine fever: Transmission, spread and control. J. S. Afr. Vet. Assoc. 2009, 80, 58–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Probst, C.; Gethmann, J.; Amler, S.; Globig, A.; Knoll, B.; Conraths, F.J. The potential role of scavengers in spreading African swine fever among wild boar. Sci. Rep. 2019, 9, 11450. [Google Scholar] [CrossRef] [PubMed]
- Murvosh, C.M.; Thaggard, C.W. Ecological studies of the house fly. Ann. Entomol. Soc. Am. 1966, 59, 533–547. [Google Scholar] [CrossRef]
- De Carvalho Ferreira, H.C.; Weesendorp, E.; Elbers, A.R.; Bouma, A.; Quak, S.; Stegeman, J.A.; Loeffen, W.L. African swine fever virus excretion patterns in persistently infected animals: A quantitative approach. Vet. Microbiol. 2012, 160, 327–340. [Google Scholar] [CrossRef]
- Greig, A.; Plowright, W. The excretion of two virulent strains of African swine fever virus by domestic pigs. J. Hyg. 1970, 68, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Boulanger, P.; Bannister, G.; Gray, D.; Ruckerbauer, G.; Willis, N., II. Detection of the Virus in Swine Tissues by Means of the Modified Direct Complement-Fixation Test. Can. J. Comp. Med. Vet. Sci. 1967, 31, 7. [Google Scholar]
- Robeson, M.S.; Khanipov, K.; Golovko, G.; Wisely, S.M.; White, M.D.; Bodenchuck, M.; Smyser, T.J.; Fofanov, Y.; Fierer, N.; Piaggio, A.J. Assessing the utility of metabarcoding for diet analyses of the omnivorous wild pig (Sus scrofa). Ecol. Evol. 2018, 8, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Schley, L.; Roper, T.J. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mammal. Rev. 2003, 33, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Probst, C.; Globig, A.; Knoll, B.; Conraths, F.J.; Depner, K. Behaviour of free ranging wild boar towards their dead fellows: Potential implications for the transmission of African swine fever. R. Soc. Open Sci. 2017, 4, 170054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forth, J.H.; Amendt, J.; Blome, S.; Depner, K.; Kampen, H. Evaluation of blowfly larvae (Diptera: Calliphoridae) as possible reservoirs and mechanical vectors of African swine fever virus. Transbound. Emerg. Dis. 2018, 65, e210–e213. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonnet, S.I.; Bouhsira, E.; De Regge, N.; Fite, J.; Etoré, F.; Garigliany, M.-M.; Jori, F.; Lempereur, L.; Le Potier, M.-F.; Quillery, E.; et al. Putative Role of Arthropod Vectors in African Swine Fever Virus Transmission in Relation to Their Bio-Ecological Properties. Viruses 2020, 12, 778. https://doi.org/10.3390/v12070778
Bonnet SI, Bouhsira E, De Regge N, Fite J, Etoré F, Garigliany M-M, Jori F, Lempereur L, Le Potier M-F, Quillery E, et al. Putative Role of Arthropod Vectors in African Swine Fever Virus Transmission in Relation to Their Bio-Ecological Properties. Viruses. 2020; 12(7):778. https://doi.org/10.3390/v12070778
Chicago/Turabian StyleBonnet, Sarah I., Emilie Bouhsira, Nick De Regge, Johanna Fite, Florence Etoré, Mutien-Marie Garigliany, Ferran Jori, Laetitia Lempereur, Marie-Frédérique Le Potier, Elsa Quillery, and et al. 2020. "Putative Role of Arthropod Vectors in African Swine Fever Virus Transmission in Relation to Their Bio-Ecological Properties" Viruses 12, no. 7: 778. https://doi.org/10.3390/v12070778
APA StyleBonnet, S. I., Bouhsira, E., De Regge, N., Fite, J., Etoré, F., Garigliany, M. -M., Jori, F., Lempereur, L., Le Potier, M. -F., Quillery, E., Saegerman, C., Vergne, T., & Vial, L. (2020). Putative Role of Arthropod Vectors in African Swine Fever Virus Transmission in Relation to Their Bio-Ecological Properties. Viruses, 12(7), 778. https://doi.org/10.3390/v12070778