Genome Sequencing of a Camelpox Vaccine Reveals Close Similarity to Modified Vaccinia virus Ankara (MVA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ducapox Vaccine
2.2. NextSeq500 (Illumina) Sequencing
2.3. Phylogenetic Analysis
3. Results
3.1. Sequencing Revealed High Nucleotide Sequence Identity to Vaccinia Virus
3.2. Ducapox Vaccine Clusters with Vaccinia Virus Strains
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bera, B.C.; Riyesh, T.; Barua, S.; Singh, R.K. Camelpox Virus. In Recent Advances in Animal Virology; Malik, Y., Singh, R., Yadav, M., Eds.; Springer: Singapore, 2019; pp. 121–141. [Google Scholar] [CrossRef]
- Antoine, G.; Scheiflinger, F.; Dorner, F.; Falkner, F.G. The Complete Genomic Sequence of the Modified Vaccinia Ankara Strain: Comparison with Other Orthopoxviruses. Virology 1998, 244, 365–396. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, R.C.; Wang, C.; Hatcher, E.L.; Lefkowitz, E.J. Orthopoxvirus Genome Evolution: The Role of Gene Loss. Viruses 2010, 9, 1933–1967. [Google Scholar] [CrossRef] [PubMed]
- Afonso, C.L.; Tulman, E.R.; Lu, Z.; Zsak, L.; Sandybaev, N.T.; Kerembekova, U.Z.; Zaitsev, V.L.; Kutish, G.F.; Rock, D.L. The Genome of Camelpox Virus. Virology 2002, 1, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volz, A.; Sutter, G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv. Virus. Res. 2017, 97, 187–243. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.G.; Guagliardo, S.A.J.; Nakazawa, Y.J.; Doty, J.B.; Mauldin, M.R. Understanding orthopoxvirus host range and evolution: From the enigmatic to the usual suspects. Curr. Opin. Virol. 2018, 28, 108–115. [Google Scholar] [CrossRef]
- Khalafalla, A.I.; Mohamed, M.E.H. Clinical and epizootiological features of camelpox in eastern Sudan. J Camel. Pract. 1996, 2, 99–102. [Google Scholar]
- Yousif, A.A.; Al-Ali, A.M. A case of mistaken identity? Vaccinia virus in a live camelpox vaccine. Biologicals 2012, 40, 495–498. [Google Scholar] [CrossRef]
- Kaaden, O.R.; Walz, A.; Czerny, C.P.; Wernery, U. Progress in the development of a camel pox vaccine. In Proceedings of the First International Camel Conference, Dubai, UAE, 2–6 February 1992; pp. 47–49. [Google Scholar]
- Khalafalla, A.I.; Abdelazim, F. Human and Dromedary Camel Infection with Camelpox Virus in Eastern Sudan. Vector Borne Zoonotic Dis. 2017, 17, 281–284. [Google Scholar] [CrossRef]
- Herrlick, A.; Mayr, A.; Mahnel, H.; Munz, E. Experimental Studies on Transformation of the Variola Virus into the Vaccinia Virus. Archiv für die gesamte Virusforschung. 1963, 12, 579–599. [Google Scholar] [CrossRef]
- Pizzurro, F.; Mangone, I.; Zaccaria, G.; De Luca, E.; Malatesta, D.; Innocenti, M.; Carmine, I.; Cito, F.; Marcacci, M.; Di Sabatino, D.; et al. Whole-Genome Sequence of a Suid Herpesvirus-1 Strain Isolated from the Brain of a Hunting Dog in Italy. Genome Announc. 2016, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Emerson, G.L.; Li, Y.; Frace, M.A.; Olsen-Rasmussen, M.A.; Khristova, M.L.; Govil, D.; Sammons, S.A.; Regnery, R.L.; Karem, K.L.; Damon, I.K.; et al. The phylogenetics and ecology of the orthopoxviruses endemic to North America. PLoS ONE 2009, 4, e7666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanave, G.; Dowgier, G.; Decaro, N.; Albanese, F.; Brogi, E.; Parisi, A.; Losurdo, M.; Lavazza, A.; Martella, V.; Buonavoglia, C.; et al. Novel Orthopoxvirus and Lethal Disease in Cat, Italy. Emerg. Infect. Dis. 2018, 24, 1665–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [Green Version]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 22 July 2020).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Nurk, S.; Bankevich, A.; Antipov, D.; Gurevich, A.A.; Korobeynikov, A.; Lapidus, A.; Prjibelski, A.D.; Pyshkin, A.; Sirotkin, A.; Sirotkin, Y.; et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J. Comput. Biol. 2013, 20, 714–737. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Torsten, S. Prokka: Rapid Prokaryotic Genome Annotation. Boinformatics 2014, 14, 2068–2069. [Google Scholar] [CrossRef]
- Pfeffer, M.; Meyer, H.; Wernery, U.; Kaaden, O.R. Comparison of camelpox viruses isolated in Dubai. Vet. Microbiol. 1996, 49, 135–146. [Google Scholar] [CrossRef]
- Pauli, G.; Blümel, J.; Burger, R.; Drosten, C.; Gröner, A.; Gürtler, L.; Heiden, M.; Hildebrandt, M.; Jansen, B.; Montag-Lessing, T.; et al. Orthopox Viruses: Infections in Humans. Transfus. Med. Hemother. 2010, 37, 351–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafez, S.M.; Al-Sukayran, A.; Dela-Cruz, D.M.; Mazloum, K.S.; Al-Bokmy, A.M.; Al-Mukayel, A.; Amjad, A.M. Development of a live cell culture camelpox vaccine. Vaccine 1992, 10, 533–537. [Google Scholar] [CrossRef]
- Wernery, U.; Zachariah, R. Experimental camelpox infection in vaccinated and unvaccinated dromedaries. Zentralbl Veterinarmed B 1999, 46, 131–135. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcacci, M.; Khalafalla, A.I.; Al Hammadi, Z.M.; Monaco, F.; Cammà, C.; Yusof, M.F.; Al Yammahi, S.M.; Mangone, I.; Valleriani, F.; Alhosani, M.A.; et al. Genome Sequencing of a Camelpox Vaccine Reveals Close Similarity to Modified Vaccinia virus Ankara (MVA). Viruses 2020, 12, 786. https://doi.org/10.3390/v12080786
Marcacci M, Khalafalla AI, Al Hammadi ZM, Monaco F, Cammà C, Yusof MF, Al Yammahi SM, Mangone I, Valleriani F, Alhosani MA, et al. Genome Sequencing of a Camelpox Vaccine Reveals Close Similarity to Modified Vaccinia virus Ankara (MVA). Viruses. 2020; 12(8):786. https://doi.org/10.3390/v12080786
Chicago/Turabian StyleMarcacci, Maurilia, Abdelmalik I. Khalafalla, Zulaikha M. Al Hammadi, Federica Monaco, Cesare Cammà, Mohammed F. Yusof, Saeed M. Al Yammahi, Iolanda Mangone, Fabrizia Valleriani, Mohamed A. Alhosani, and et al. 2020. "Genome Sequencing of a Camelpox Vaccine Reveals Close Similarity to Modified Vaccinia virus Ankara (MVA)" Viruses 12, no. 8: 786. https://doi.org/10.3390/v12080786
APA StyleMarcacci, M., Khalafalla, A. I., Al Hammadi, Z. M., Monaco, F., Cammà, C., Yusof, M. F., Al Yammahi, S. M., Mangone, I., Valleriani, F., Alhosani, M. A., Decaro, N., Lorusso, A., Almuhairi, S. S., & Savini, G. (2020). Genome Sequencing of a Camelpox Vaccine Reveals Close Similarity to Modified Vaccinia virus Ankara (MVA). Viruses, 12(8), 786. https://doi.org/10.3390/v12080786