HIV and Human Coronavirus Coinfections: A Historical Perspective
Abstract
:1. Introduction
2. HIV-hCoV Coinfections
Study Cohort | hCoV (% Incidence) | Clinical Presentation | Other Types of Drugs Administered (Number Receiving the Drug) | Disease Outcome at the Time of Reporting | Co-Morbidities | Other Pathogens | Reference |
---|---|---|---|---|---|---|---|
Thirty-two-year old male | 229E | Acute respiratory failure, respiratory distress, cough, fever, tachypnea, low CD4+ count, high HIV RNA count, pneumonia, acute renal failure, anemia, thrombocytopenia, elevated C-reactive Protein levels | (ART) NRTIs, antibiotics, high dose norepinephrine infusion | Fatal multi-organ failure | None reported | RSV, E. coli, Proteus mirabilis | [24] |
Five hundred and seventeen samples from children | OC43 (12.2%); NL63 (1.7%); HKU1 (1.4%) | Cyanosis (11.4% vs. 8.1%), CXR-AC (Pneumonia—26.6% vs. 22.1%), C-reactive protein (CRP) levels (15 vs. 12mg/mL), fever | PCV9 (pneumococcal vaccine) | Not reported | None reported | hRV (31.7%), human bocavirus (9.5%), polyomavirus WUPyV (8.9%) Bacteria | [25] |
Thirty-year old male | SARS-CoV | Low CD4+ count, high HIV RNA count, dry cough, fever and malaise, pneumonia, tachypnea, lymphopenia, | (HAART) NRTIs, Protease inhibitors, Pneumocystis carinii pneumonia prophylaxis, Ribavin + prednisolone (anti-SARS), anti-TB treatment | Full recovery | TB | HBV | [26] |
Sixty-one-year old male | SARS-2 | Dry cough, lymphopenia, pneumonia, dypsnea | Aloglibtin + Metformin, protease inhibitors, antibiotics, immunosuppresants | Full recovery | Type II diabetes | None reported | [28] |
Three cisgender men, 2 transgender people | SARS-2 | Fever, low CD4+ count (1/5), high HIV RNA load (1/5), elevated CRP levels (4/5), elevated ferratin levels (3/5), lymphocytopenia (2/5), thrombocytopenia, cough, LRTI (3/5), URTI (2/5), cough | ARTs, hydroxychloroquine (4), IFN beta-1b (2), antbiotic, corticosteroids (2), immunosuppresants (1) | Four recovered; 1 in ICU | Hypothyroidism (1), asthma (1) | None reported | [29] |
Fifty-one COVID-positive: Eight women, 43 men (from 2873 HIV-positive patients) | SARS-2 | Common symptoms: Non-productive cough, fever, dyspnea, fatigue | NRTIs (37), protease inhibitor treatment (11) hydroxychloroquine (30), azithromycin (19), ritonavir-boosted lopinavir (14)—usually used in combination, boosted darunavir (8) | Forty-four recovered; 2 fatalities | Six-three percent at least one co-morbidity (hypertension, high BMI, diabetes, chronic kidney disease, chronic liver disease) | None reported | [30] |
Eight patients (from 1174 HIV-positive patients) | SARS-2 | Low CD4+ counts (2/8—100–350 cells/mm3), normal CD4+ counts (6/8—>350 cells/mm3) | ARTs | One fatality | None reported | None reported | [31] |
Four male patients (from 1224 HIV-positive patients) | SARS-2 | High HIV RNA load (3/4), low CD4+ count, pneumonia, cough, lymphocytopenia, elevated ferritin levels (1/4), elevated CRP levels (2/4), diarrhoea, thrombocytopenia | ARTs (NRTIs and protease inhibitors), antibiotics | Three recovered; 1 fatality | Bipolar disorder, diabetes, COPD, hypertension, obesity | HBV | [32] |
Forty-eight HIV-positive (from 5700 COVID-19 positive) | SARS-2 | None reported | None reported | None reported | None reported | [35] | |
Thirty-eight-year-old male | SARS-2 | Fever, muscle aches, fever, pneumonia, slightly elevated CRP levels, normal WBC and lymphocyte count | ARTs NRTIs, Oseltamivir, IFN-α | Full recovery | None | HCV | [33] |
Thirty-four-year-old woman | SARS-2 | gastrointestinal symptoms, headache, chest pain, anorexia and muscle aches | Tenofovir disoproxil fumarate, lamivudine and efavirenz | Full recovery | None | None reported | [34] |
Thirty-one HIV-positive (from 2159 COVID-19 positive patients) | SARS-2 | Fever viral pneumonia | All patients were on ART; integrase inhibitor-based triple therapy hydroxychloroquine (24), azithromycin (16), corticosteroids (8), IL-6R antagonist tocilizumab (2), antiviral drug—remdesivir (1), IL-6R inhibitor—sarilumab (1) | Twenty-one recovered; 8 fatalities | Seventy-one percent at least one co-morbidity (hypertension, diabetes mellitus, obesity, asthma, COPD | None Reported | [20] |
Forty-seven COVID-positive (from 6,000 HIV-positive patients) | SARS-2 | Fever, cough, dyspnea, diarrhea, myalgia, headache | Integrase inhibitor-based ART; protease inhibitor-based treatment; tenofovir-based regime | Forty-five recovered; 2 fatalities | Sixty-four percent at least one co-morbidity (dyslipidemia, arterial hypertension | HBV, HCV | [36] |
Four male patients | SARS-2 | Fatigue, loss of taste and smell, fever, cough | All patients were on ART | Full recovery | atrial fibrillation, hyperlipidemia, hypertension, type II diabetes mellitus | HCV (1) influenza A (1) | [37] |
3. CoV and HIV Induced Cytokine Storms
4. HIV-CoV Coinfections and Disease Outcome
- The existing infection with HIV-1 interfering with the replication of the CoV in the same host. This could result in the patient not being coinfected with the hCoV, or due to “viral interference” [15], the viral load of the hCoV remains low and severe coronavirus disease does not develop (see comments from [56] above); or
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berry, M.; Gamieldien, J.; Fielding, B.C. Identification of new respiratory viruses in the new millennium. Viruses 2015, 7, 996–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debiaggi, M.; Canducci, F.; Ceresola, E.R.; Clementi, M. The role of infections and coinfections with newly identified and emerging respiratory viruses in children. Virol. J. 2012, 9, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloots, T.P.; Whiley, D.M.; Lambert, S.B.; Nissen, M.D. Emerging respiratory agents: New viruses for old diseases? J. Clin. Virol. 2008, 42, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Kashyap, R.; Tosh, P.; Sampathkumar, P.; O’Horo, J.C. Guide to Understanding the 2019 Novel Coronavirus. Mayo Clin. Proc. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tang, J.; Wei, F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol. 2020, 92, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Tyrrell, D.A.; Bynoe, M.L. Cultivation of a Novel Type of Common-Cold Virus in Organ Cultures. Br. Med. J. 1965, 1, 1467–1470. [Google Scholar] [CrossRef] [Green Version]
- Hamre, D.; Procknow, J.J. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 1966, 121, 190–193. [Google Scholar] [CrossRef]
- Peiris, J.S.; Lai, S.T.; Poon, L.L.; Guan, Y.; Yam, L.Y.; Lim, W.; Nicholls, J.; Yee, W.K.; Yan, W.W.; Cheung, M.T.; et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003, 361, 1319–1325. [Google Scholar] [CrossRef] [Green Version]
- Van der Hoek, L.; Pyrc, K.; Jebbink, M.F.; Vermeulen-Oost, W.; Berkhout, R.J.; Wolthers, K.C.; Wertheim-van Dillen, P.M.; Kaandorp, J.; Spaargaren, J.; Berkhout, B. Identification of a new human coronavirus. Nat. Med. 2004, 10, 368–373. [Google Scholar] [CrossRef]
- Woo, P.C.; Lau, S.K.; Chu, C.M.; Chan, K.H.; Tsoi, H.W.; Huang, Y.; Wong, B.H.; Poon, R.W.; Cai, J.J.; Luk, W.K.; et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 2005, 79, 884–895. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Liu, D. SARS-like virus in the Middle East: A truly bat-related coronavirus causing human diseases. Protein Cell 2012, 3, 803–805. [Google Scholar] [CrossRef] [PubMed]
- Bermingham, A.; Chand, M.A.; Brown, C.S.; Aarons, E.; Tong, C.; Langrish, C.; Hoschler, K.; Brown, K.; Galiano, M.; Myers, R.; et al. Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012. Eurosurveillance 2012, 17, 20290. [Google Scholar]
- Van der Hoek, L. Human coronaviruses: What do they cause? Antivir. Ther. 2007, 12, 651–658. [Google Scholar] [PubMed]
- Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017, 39, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Sharma, S.; Barua, S.; Tripathi, B.N.; Rouse, B.T. Virological and Immunological Outcomes of Coinfections. Clin. Microbiol. Rev. 2018, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas-Benito, J.S.; De Nova-Ocampo, M. Viral Interference and Persistence in Mosquito-Borne Flaviviruses. J. Immunol. Res. 2015, 2015, 873404. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Thomas, P.G. The two faces of heterologous immunity: Protection or immunopathology. J. Leukoc. Biol. 2014, 95, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Waner, J.L. Mixed viral infections: Detection and management. Clin. Microbiol. Rev. 1994, 7, 143–151. [Google Scholar] [CrossRef]
- Redd, A.D.; Quinn, T.C.; Tobian, A.A. Frequency and implications of HIV superinfection. Lancet Infect. Dis. 2013, 13, 622–628. [Google Scholar] [CrossRef] [Green Version]
- Shalev, N.; Scherer, M.; LaSota, E.D.; Antoniou, P.; Yin, M.T.; Zucker, J.; Sobieszczyk, M.E. Clinical characteristics and outcomes in people living with HIV hospitalized for COVID-19. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Eis-Hubinger, A.M.; Stifter, G.; Schneweis, K.E. Opportunistic infections with coronavirus-like particles in patients infected with the human immunodeficiency virus? Zent. Bakteriol. 1989, 271, 351–355. [Google Scholar] [CrossRef]
- Kern, P.; Muller, G.; Schmitz, H.; Racz, P.; Meigel, W.; Riethmuller, G.; Dietrich, M. Detection of coronavirus-like particles in homosexual men with acquired immunodeficiency and related lymphadenopathy syndrome. Klin. Wochenschr. 1985, 63, 68–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macconnachie, A.A.; Collins, T.C.; Seaton, R.A.; Kennedy, D.H. Three men, a paint brush and a coronavirus. Int. J. STD AIDS 2007, 18, 132–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villamil-Gomez, W.E.; Sanchez, A.; Gelis, L.; Silvera, L.A.; Barbosa, J.; Otero-Nader, O.; Bonilla-Salgado, C.D.; Rodriguez-Morales, A.J. Fatal human coronavirus 229E (HCoV-229E) and RSV-Related pneumonia in an AIDS patient from Colombia. Travel Med. Infect. Dis. 2020, 101573. [Google Scholar] [CrossRef]
- Nunes, M.C.; Kuschner, Z.; Rabede, Z.; Madimabe, R.; Van Niekerk, N.; Moloi, J.; Kuwanda, L.; Rossen, J.W.; Klugman, K.P.; Adrian, P.V.; et al. Clinical epidemiology of bocavirus, rhinovirus, two polyomaviruses and four coronaviruses in HIV-infected and HIV-uninfected South African children. PLoS ONE 2014, 9, e86448. [Google Scholar] [CrossRef] [Green Version]
- Wong, A.T.; Tsang, O.T.; Wong, M.Y.; Lim, W.L.; Zheng, B.J.; Lee, S.S.; Lai, S.T.; Yuen, K.Y.; Choi, K.W.; Tso, E.Y.; et al. Coronavirus infection in an AIDS patient. AIDS 2004, 18, 829–830. [Google Scholar] [CrossRef]
- Chen, X.P.; Cao, Y. Consideration of highly active antiretroviral therapy in the prevention and treatment of severe acute respiratory syndrome. Clin. Infect. Dis 2004, 38, 1030–1032. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Cao, Y.; Xu, S.; Zhou, M. Co-infection of SARS-CoV-2 and HIV in a patient in Wuhan city, China. J. Med. Virol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Blanco, J.L.; Ambrosioni, J.; Garcia, F.; Martinez, E.; Soriano, A.; Mallolas, J.; Miro, J.M.; Investigators, C.-i.H. COVID-19 in patients with HIV: Clinical case series. Lancet HIV 2020. [Google Scholar] [CrossRef]
- Vizcarra, P.; Perez-Elias, M.J.; Quereda, C.; Moreno, A.; Vivancos, M.J.; Dronda, F.; Casado, J.L.; Team, C.-I. Description of COVID-19 in HIV-infected individuals: A single-centre, prospective cohort. Lancet HIV 2020. [Google Scholar] [CrossRef]
- Guo, W.; Ming, F.; Dong, Y.; Zhang, Q.; Zhang, X.; Mo, P.; Feng, Y.; Liang, K. A Survey for COVID-19 Among HIV/AIDS Patients in Two Districts of Wuhan, China (3/4/2020). Available online: https://ssrn.com/abstract=3550029 (accessed on 28 April 2020).
- Aydin, O.A.; Karaosmanoglu, H.K.; Yasar, K.K. HIV/SARS-CoV-2 coinfected patients in Istanbul, Turkey. J. Med. Virol. 2020. [Google Scholar] [CrossRef]
- Zhao, J.; Liao, X.; Wang, H.; Wei, L.; Xing, M.; Liu, L.; Zhang, Z. Early virus clearance and delayed antibody response in a case of COVID-19 with a history of co-infection with HIV-1 and HCV. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Baluku, J.B.; Mwebaza, S.; Ingabire, G.; Nsereko, C.; Muwanga, M. HIV and SARS-CoV-2 coinfection: A case report from Uganda. J. Med. Virol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Northwell, C.-R.C.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020. [Google Scholar] [CrossRef] [PubMed]
- Gervasoni, C.; Meraviglia, P.; Riva, A.; Giacomelli, A.; Oreni, L.; Minisci, D.; Atzori, C.; Ridolfo, A.; Cattaneo, D. Clinical features and outcomes of HIV patients with coronavirus disease 2019. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Benkovic, S.; Kim, M.; Sin, E. Four cases: Human immunodeficiency virus and novel coronavirus 2019 Co-infection in patients from Long Island, New York. J. Med. Virol. 2020. [Google Scholar] [CrossRef]
- Seguin, A.; Galicier, L.; Boutboul, D.; Lemiale, V.; Azoulay, E. Pulmonary Involvement in Patients With Hemophagocytic Lymphohistiocytosis. Chest 2016, 149, 1294–1301. [Google Scholar] [CrossRef]
- Tisoncik, J.R.; Korth, M.J.; Simmons, C.P.; Farrar, J.; Martin, T.R.; Katze, M.G. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 2012, 76, 16–32. [Google Scholar] [CrossRef] [Green Version]
- Pastor, L.; Casellas, A.; Carrillo, J.; Alonso, S.; Parker, E.; Fuente-Soro, L.; Jairoce, C.; Mandomando, I.; Blanco, J.; Naniche, D. IP-10 Levels as an Accurate Screening Tool to Detect Acute HIV Infection in Resource-Limited Settings. Sci. Rep. 2017, 7, 8104. [Google Scholar] [CrossRef] [Green Version]
- Stacey, A.R.; Norris, P.J.; Qin, L.; Haygreen, E.A.; Taylor, E.; Heitman, J.; Lebedeva, M.; DeCamp, A.; Li, D.; Grove, D.; et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J. Virol. 2009, 83, 3719–3733. [Google Scholar] [CrossRef] [Green Version]
- Erdmann, N.; Heath, S.L. Cytokine Storm Syndrome as a Manifestation of Primary HIV Infection. In Cytokine Storm Syndrome; Cron, R., Behrens, E., Eds.; Springer: Cham, Switzerland, 2019; pp. 299–306. [Google Scholar] [CrossRef]
- Muema, D.M.; Akilimali, N.A.; Ndumnego, O.C.; Rasehlo, S.S.; Durgiah, R.; Ojwach, D.B.A.; Ismail, N.; Dong, M.; Moodley, A.; Dong, K.L.; et al. Association between the cytokine storm, immune cell dynamics, and viral replicative capacity in hyperacute HIV infection. BMC Med. 2020, 18, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Casals, M.; Brito-Zeron, P.; Lopez-Guillermo, A.; Khamashta, M.A.; Bosch, X. Adult haemophagocytic syndrome. Lancet 2014, 383, 1503–1516. [Google Scholar] [CrossRef]
- Zhou, J.; Chu, H.; Li, C.; Wong, B.H.; Cheng, Z.S.; Poon, V.K.; Sun, T.; Lau, C.C.; Wong, K.K.; Chan, J.Y.; et al. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis. J. Infect. Dis. 2014, 209, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.P.; Lau, C.C.Y.; Chan, K.H.; Li, C.P.Y.; Chen, H.; Jin, D.Y.; Chan, J.F.W.; Woo, P.C.Y.; Yuen, K.Y. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment. J. Gen. Virol. 2013, 94, 2679–2690. [Google Scholar] [CrossRef]
- Huang, K.J.; Su, I.J.; Theron, M.; Wu, Y.C.; Lai, S.K.; Liu, C.C.; Lei, H.Y. An interferon-gamma-related cytokine storm in SARS patients. J. Med. Virol. 2005, 75, 185–194. [Google Scholar] [CrossRef]
- Wong, C.K.; Lam, C.W.; Wu, A.K.; Ip, W.K.; Lee, N.L.; Chan, I.H.; Lit, L.C.; Hui, D.S.; Chan, M.H.; Chung, S.S.; et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 2004, 136, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Subbarao, K. The Immunobiology of SARS*. Annu. Rev. Immunol. 2007, 25, 443–472. [Google Scholar] [CrossRef]
- Chien, J.Y.; Hsueh, P.R.; Cheng, W.C.; Yu, C.J.; Yang, P.C. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology 2006, 11, 715–722. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; Hlh Across Speciality Collaboration, U.K. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Ju, Z.; He, W. New coronavirus pneumonia caused cytokine storm mechanism and related immunotherapy research progress. Chin. J. Burn. 2020, 36. [Google Scholar] [CrossRef]
- Jose, R.J.; Manuel, A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir. Med. 2020. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020. [Google Scholar] [CrossRef]
- Van der Hoek, L.; Pyrc, K.; Berkhout, B. Human coronavirus NL63, a new respiratory virus. FEMS Microbiol. Rev. 2006, 30, 760–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.P.; Li, G.H.; Tang, X.P.; Xiong, Y.; Chen, X.J.; Cao, Y. Lack of severe acute respiratory syndrome in 19 AIDS patients hospitalized together. J. Acquir. Immune Defic. Syndr. 2003, 34, 242–243. [Google Scholar] [CrossRef]
- Cornberg, M.; Kenney, L.L.; Chen, A.T.; Waggoner, S.N.; Kim, S.K.; Dienes, H.P.; Welsh, R.M.; Selin, L.K. Clonal exhaustion as a mechanism to protect against severe immunopathology and death from an overwhelming CD8 T cell response. Front. Immunol. 2013, 4, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanelli, A.; Mascolo, S. Immunosuppression drug-related and clinical manifestation of Coronavirus disease 2019: A therapeutical hypothesis. Am. J. Transplant. 2020. [Google Scholar] [CrossRef] [Green Version]
- Barton, E.S.; White, D.W.; Cathelyn, J.S.; Brett-McClellan, K.A.; Engle, M.; Diamond, M.S.; Miller, V.L.; Virgin, H.W.T. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 2007, 447, 326–329. [Google Scholar] [CrossRef]
- Che, J.W.; Daniels, K.A.; Selin, L.K.; Welsh, R.M. Heterologous Immunity and Persistent Murine Cytomegalovirus Infection. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [Green Version]
- Haller, O. Jean Lindenmann: From viral interference to interferon and beyond (1924–2015). J. Interferon Cytokine Res. 2015, 35, 239–241. [Google Scholar] [CrossRef]
- Tan, K.S.; Olfat, F.; Phoon, M.C.; Hsu, J.P.; Howe, J.L.C.; Seet, J.E.; Chin, K.C.; Chow, V.T.K. In vivo and in vitro studies on the antiviral activities of viperin against influenza H1N1 virus infection. J. Gen. Virol. 2012, 93, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Birdwell, L.D.; Zalinger, Z.B.; Li, Y.; Wright, P.W.; Elliott, R.; Rose, K.M.; Silverman, R.H.; Weiss, S.R. Activation of RNase L by Murine Coronavirus in Myeloid Cells Is Dependent on Basal Oas Gene Expression and Independent of Virus-Induced Interferon. J. Virol. 2016, 90, 3160–3172. [Google Scholar] [CrossRef] [Green Version]
- Streitenfeld, H.; Boyd, A.; Fazakerley, J.K.; Bridgen, A.; Elliott, R.M.; Weber, F. Activation of PKR by Bunyamwera virus is independent of the viral interferon antagonist NSs. J. Virol. 2003, 77, 5507–5511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, R.E.; Sanfridson, A.; Ottinger, J.S.; Doyle, C.; Cullen, B.R. Downregulation of cell-surface CD4 expression by simian immunodeficiency virus Nef prevents viral super infection. J. Exp. Med. 1993, 177, 1561–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, I.R.; Suomalainen, M.; Varadarajan, S.; Garoff, H.; Helenius, A. Multiple mechanisms for the inhibition of entry and uncoating of superinfecting Semliki Forest virus. Virology 1997, 231, 59–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaller, T.; Appel, N.; Koutsoudakis, G.; Kallis, S.; Lohmann, V.; Pietschmann, T.; Bartenschlager, R. Analysis of hepatitis C virus superinfection exclusion by using novel fluorochrome gene-tagged viral genomes. J. Virol. 2007, 81, 4591–4603. [Google Scholar] [CrossRef] [Green Version]
- Claus, C.; Tzeng, W.P.; Liebert, U.G.; Frey, T.K. Rubella virus-induced superinfection exclusion studied in cells with persisting replicons. J. Gen. Virol. 2007, 88, 2769–2773. [Google Scholar] [CrossRef]
- Beperet, I.; Irons, S.L.; Simon, O.; King, L.A.; Williams, T.; Possee, R.D.; Lopez-Ferber, M.; Caballero, P. Superinfection exclusion in alphabaculovirus infections is concomitant with actin reorganization. J. Virol. 2014, 88, 3548–3556. [Google Scholar] [CrossRef] [Green Version]
- Rouse, B.T.; Sehrawat, S. Immunity and immunopathology to viruses: What decides the outcome? Nat. Rev. Immunol. 2010, 10, 514–526. [Google Scholar] [CrossRef]
- Williams, A.E.; Edwards, L.; Humphreys, I.R.; Snelgrove, R.; Rae, A.; Rappuoli, R.; Hussell, T. Innate imprinting by the modified heat-labile toxin of Escherichia coli (LTK63) provides generic protection against lung infectious disease. J. Immunol. 2004, 173, 7435–7443. [Google Scholar] [CrossRef] [Green Version]
- Huster, K.M.; Stemberger, C.; Gasteiger, G.; Kastenmuller, W.; Drexler, I.; Busch, D.H. Cutting edge: Memory CD8 T cell compartment grows in size with immunological experience but nevertheless can lose function. J. Immunol. 2009, 183, 6898–6902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vezys, V.; Yates, A.; Casey, K.A.; Lanier, G.; Ahmed, R.; Antia, R.; Masopust, D. Memory CD8 T-cell compartment grows in size with immunological experience. Nature 2009, 457, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Cicin-Sain, L.; Brien, J.D.; Uhrlaub, J.L.; Drabig, A.; Marandu, T.F.; Nikolich-Zugich, J. Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. PLoS Pathog. 2012, 8, e1002849. [Google Scholar] [CrossRef] [PubMed]
- Beale, A.J. Viral interference and interferon. Annu. Rev. Med. 1963, 14, 133–140. [Google Scholar] [CrossRef]
- Mascolo, S.; Romanelli, A.; Carleo, M.A.; Esposito, V. Could HIV infection alter the clinical course of SARS-CoV-2 infection? When less is better. J. Med. Virol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Alfaraj, S.H.; Al-Tawfiq, J.A.; Alzahrani, N.A.; Altwaijri, T.A.; Memish, Z.A. The impact of co-infection of influenza A virus on the severity of Middle East Respiratory Syndrome Coronavirus. J. Infect. 2017, 74, 521–523. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makoti, P.; Fielding, B.C. HIV and Human Coronavirus Coinfections: A Historical Perspective. Viruses 2020, 12, 937. https://doi.org/10.3390/v12090937
Makoti P, Fielding BC. HIV and Human Coronavirus Coinfections: A Historical Perspective. Viruses. 2020; 12(9):937. https://doi.org/10.3390/v12090937
Chicago/Turabian StyleMakoti, Palesa, and Burtram C. Fielding. 2020. "HIV and Human Coronavirus Coinfections: A Historical Perspective" Viruses 12, no. 9: 937. https://doi.org/10.3390/v12090937