Comparison of CRISPR–Cas9 Tools for Transcriptional Repression and Gene Disruption in the BEVS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells
2.2. Plasmid Construction
2.3. Virus Generation, Amplification, and Quantification
2.4. Infections
2.5. Flow Cytometry and Analysis
2.6. Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR)
2.7. Western Blot
2.8. Quantification of Baculovirus Particles Using Flow Cytometry
3. Results
3.1. Development of Recombinant Sf9 Cell Lines for Constitutive Expression of Cas9 and dCas9
3.2. Evaluation of CRISPR-Mediated Repression and Disruption on GFP Production
3.3. Extension of CRISPRi and CRISPRd to Endogenous AcMNPV ie-1 and vlf-1
3.4. CRISPRd Is More Effective Than CRISPRi for Obstructing Progeny BV Release
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miele, S.A.B.; Garavaglia, M.J.; Belaich, M.N.; Ghiringhelli, P.D. Baculovirus: Molecular Insights on Their Diversity and Conservation. Int. J. Evol. Biol. 2011, 2011, 379424. [Google Scholar] [CrossRef] [Green Version]
- Moscardi, F. Assessment of the Application of Baculoviruses for Control of Lepidoptera. Annu. Rev. Entomol. 1999, 44, 257–289. [Google Scholar] [CrossRef]
- Smith, G.E.; Summers, M.D.; Fraser, M.J. Production of Human Beta Interferon in Insect Cells Infected with a Baculovirus Expression Vector. Mol. Cell. Biol. 1983, 3, 2156–2165. [Google Scholar] [CrossRef] [Green Version]
- van Oers, M.M.; Pijlman, G.P.; Vlak, J.M. Thirty Years of Baculovirus-Insect Cell Protein Expression: From Dark Horse to Mainstream Technology. J. Gen. Virol. 2015, 96, 6–23. [Google Scholar] [CrossRef]
- Luckow, V.A.; Lee, S.C.; Barry, G.F.; Olins, P.O. Efficient Generation of Infectious Recombinant Baculoviruses by Site-Specific Transposon-Mediated Insertion of Foreign Genes into a Baculovirus Genome Propagated in Escherichia Coli. J. Virol. 1993, 67, 4566–4579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datsenko, K.A.; Wanner, B.L. One-Step Inactivation of Chromosomal Genes in Escherichia Coli K-12 Using PCR Products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muyrers, J.P.P.; Zhang, Y.; Testa, G.; Stewart, A.F. Rapid Modification of Bacterial Artificial Chromosomes by ET-Recombination. Nucleic Acids Res. 1999, 27, 1555–1557. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.P.A.; Marek, M.; Davies, B.G.; Vlak, J.M.; van Oers, M.M. Encyclopedia of Autographa Californica Nucleopolyhedrovirus Genes. Virol. Sin. 2009, 24, 359–414. [Google Scholar] [CrossRef]
- McCarthy, C.B.; Theilmann, D.A. AcMNPV Ac143 (Odv-E18) Is Essential for Mediating Budded Virus Production and Is the 30th Baculovirus Core Gene. Virology 2008, 375, 277–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, M.; Dai, X.; Theilmann, D.A. Autographa Californica Multiple Nucleopolyhedrovirus EXON0 (ORF141) Is Required for Efficient Egress of Nucleocapsids from the Nucleus. J. Virol. 2007, 81, 9859–9869. [Google Scholar] [CrossRef] [Green Version]
- Stewart, T.M.; Huijskens, I.; Willis, L.G.; Theilmann, D.A. The Autographa Californica Multiple Nucleopolyhedrovirus Ie0-Ie1 Gene Complex Is Essential for Wild-Type Virus Replication, but Either IE0 or IE1 Can Support Virus Growth. J. Virol. 2005, 79, 4619–4629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, G.; Blissard, G.W. Analysis of an Autographa Californica Multicapsid Nucleopolyhedrovirus Lef-6-Null Virus: LEF-6 Is Not Essential for Viral Replication but Appears to Accelerate Late Gene Transcription. J. Virol. 2002, 76, 5503–5514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanarsdall, A.L.; Okano, K.; Rohrmann, G.F. Characterization of a Baculovirus with a Deletion of Vlf-1. Virology 2004, 326, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Kaba, S.A.; Salcedo, A.M.; Wafula, P.O.; Vlak, J.M.; Oers, M.M. van Development of a Chitinase and V-Cathepsin Negative Bacmid for Improved Integrity of Secreted Recombinant Proteins. J. Virol. Methods 2004, 122, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Boogaard, B.; Evers, F.; van Lent, J.W.M.; van Oers, M.M. The Baculovirus Ac108 Protein Is a per Os Infectivity Factor and a Component of the ODV Entry Complex. J. Gen. Virol. 2019, 100, 669–678. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, W.; Wang, Y.; Yuan, M.; Yang, K. The Baculovirus Core Gene Ac83 Is Required for Nucleocapsid Assembly and Per Os Infectivity of Autographa Californica Nucleopolyhedrovirus. J. Virol. 2013, 87, 10573–10586. [Google Scholar] [CrossRef] [Green Version]
- Ros, V.I.D.; Houte, S.; Hemerik, L.; van Oers, M.M. Baculovirus-induced Tree-top Disease: How Extended Is the Role of Egt as a Gene for the Extended Phenotype? Mol. Ecol. 2015, 24, 249–258. [Google Scholar] [CrossRef]
- Westenberg, M.; Soedling, H.M.; Mann, D.A.; Nicholson, L.J.; Dolphin, C.T. Counter-Selection Recombineering of the Baculovirus Genome: A Strategy for Seamless Modification of Repeat-Containing BACs. Nucleic Acids Res. 2010, 38, e166. [Google Scholar] [CrossRef] [Green Version]
- van Oers, M.M. Opportunities and Challenges for the Baculovirus Expression System. J. Invertebr. Pathol. 2011, 107, S3–S15. [Google Scholar] [CrossRef]
- Salem, T.Z.; Zhang, F.; Thiem, S.M. Reduced Expression of Autographa Californica Nucleopolyhedrovirus ORF34, an Essential Gene, Enhances Heterologous Gene Expression. Virology 2013, 435, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Marek, M.; van Oers, M.M.; Devaraj, F.F.; Vlak, J.M.; Merten, O.-W. Engineering of Baculovirus Vectors for the Manufacture of Virion-Free Biopharmaceuticals. Biotechnol. Bioeng. 2011, 108, 1056–1067. [Google Scholar] [CrossRef]
- Monsma, S.A.; Oomens, A.G.; Blissard, G.W. The GP64 Envelope Fusion Protein Is an Essential Baculovirus Protein Required for Cell-to-Cell Transmission of Infection. J. Virol. 1996, 70, 4607–4616. [Google Scholar] [CrossRef] [Green Version]
- Chavez-Pena, C.; Kamen, A.A. RNA Interference Technology to Improve the Baculovirus-Insect Cell Expression System. Biotechnol. Adv. 2018, 36, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Nagata, Y.; Mon, H.; Li, Z.; Zhu, L.; Iiyama, K.; Kusakabe, T.; Lee, J.M. Soaking RNAi-Mediated Modification of Sf9 Cells for Baculovirus Expression System by Ectopic Expression of Caenorhabditis Elegans SID-1. Appl. Microbiol. Biotechnol. 2013, 97, 5921–5931. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.-F.; L’Abbé, D.; Jolicoeur, N.; Wu, M.; Li, Z.; Yu, Z.; Shen, S.-H. High-Throughput Screening of Effective SiRNAs from RNAi Libraries Delivered via Bacterial Invasion. Nat. Methods 2005, 2, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Bruder, M.R.; Pyne, M.E.; Moo-Young, M.; Chung, D.A.; Chou, C.P. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium. Appl. Environ. Microbiol. 2016, 82, 6109–6119. [Google Scholar] [CrossRef] [Green Version]
- Doudna, J.A.; Charpentier, E. The New Frontier of Genome Engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef]
- Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell 2013, 152, 1173–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mabashi-Asazuma, H.; Jarvis, D.L. CRISPR-Cas9 Vectors for Genome Editing and Host Engineering in the Baculovirus-Insect Cell System. Proc. Natl. Acad. Sci. USA 2017, 114, 9068–9073. [Google Scholar] [CrossRef] [Green Version]
- Pazmiño-Ibarra, V.; Mengual-Martí, A.; Targovnik, A.M.; Herrero, S. Improvement of Baculovirus as Protein Expression Vector and as Biopesticide by CRISPR/Cas9 Editing. Biotechnol. Bioeng. 2019, 116, 2823–2833. [Google Scholar] [CrossRef]
- George, S.; Jauhar, A.M.; Mackenzie, J.; Kieβlich, S.; Aucoin, M.G. Temporal Characterization of Protein Production Levels from Baculovirus Vectors Coding for GFP and RFP Genes under Non-Conventional Promoter Control. Biotechnol. Bioeng. 2015, 112, 1822–1831. [Google Scholar] [CrossRef]
- Bassett, A.R.; Tibbit, C.; Ponting, C.P.; Liu, J.L. Mutagenesis and Homologous Recombination in Drosophila Cell Lines Using CRISPR/Cas9. Biol. Open 2014, 3, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Theilmann, D.A.; Stewart, S. Molecular Analysis of the Trans-Activating IE-2 Gene of Orgyia Pseudotsugata Multicapsid Nuclear Polyhedrosis Virus. Virology 1992, 187, 84–96. [Google Scholar] [CrossRef]
- Gibson, D.G.; Young, L.; Chuang, R.-Y.; Venter, J.C.; Hutchison, C.A.I.; Smith, H.O. Enzymatic Assembly of DNA Molecules up to Several Hundred Kilobases. Nat. Methods 2009, 6, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Karasawa, S.; Araki, T.; Yamamoto-Hino, M.; Miyawaki, A. A Green-Emitting Fluorescent Protein from Galaxeidae Coral and Its Monomeric Version for Use in Fluorescent Labeling. J. Biol. Chem. 2003, 278, 34167–34171. [Google Scholar] [CrossRef] [Green Version]
- Port, F.; Chen, H.-M.; Lee, T.; Bullock, S.L. Optimized CRISPR/Cas Tools for Efficient Germline and Somatic Genome Engineering in Drosophila. Proc. Natl. Acad. Sci. USA 2014, 111, E2967–E2976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chari, R.; Yeo, N.C.; Chavez, A.; Church, G.M. SgRNA Scorer 2.0: A Species-Independent Model to Predict CRISPR/Cas9 Activity. ACS Synth. Biol. 2017, 6, 902–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stemmer, W.P.; Morris, S.K. Enzymatic Inverse PCR: A Restriction Site Independent, Single-Fragment Method for High-Efficiency, Site-Directed Mutagenesis. Biotechniques 1992, 13, 214–220. [Google Scholar] [PubMed]
- Shen, C.F.; Meghrous, J.; Kamen, A. Quantitation of Baculovirus Particles by Flow Cytometry. J. Virol. Methods 2002, 105, 321–330. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Wang, R.; Zhao, P.; Xia, Q. 2A Self-Cleaving Peptide-Based Multi-Gene Expression System in the Silkworm Bombyx Mori. Sci. Rep. 2015, 5, 16273. [Google Scholar] [CrossRef]
- Ooi, B.G.; Miller, L.K. Regulation of Host RNA Levels during Baculovirus Infection. Virology 1988, 166, 515–523. [Google Scholar] [CrossRef]
- Lin, C.-H.; Jarvis, D.L. Utility of Temporally Distinct Baculovirus Promoters for Constitutive and Baculovirus-Inducible Transgene Expression in Transformed Insect Cells. J. Biotechnol. 2013, 165, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-R.; Zhong, S.; Fei, Z.; Hashimoto, Y.; Xiang, J.Z.; Zhang, S.; Blissard, G.W. The Transcriptome of the Baculovirus Autographa Californica Multiple Nucleopolyhedrovirus in Trichoplusia Ni Cells. J. Virol. 2013, 87, 6391–6405. [Google Scholar] [CrossRef] [Green Version]
- Guarino, L.A.; Summers, M.D. Functional Mapping of a Trans-Activating Gene Required for Expression of a Baculovirus Delayed-Early Gene. J. Virol. 1986, 57, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Passarelli, A.L.; Miller, L.K. Three Baculovirus Genes Involved in Late and Very Late Gene Expression: Ie-1, Ie-n, and Lef-2. J. Virol. 1993, 67, 2149–2158. [Google Scholar] [CrossRef] [Green Version]
- Rapp, J.C.; Wilson, J.A.; Miller, L.K. Nineteen Baculovirus Open Reading Frames, Including LEF-12, Support Late Gene Expression. J. Virol. 1998, 72, 10197–10206. [Google Scholar] [CrossRef] [Green Version]
- Mistretta, T.-A.; Guarino, L.A. Transcriptional Activity of Baculovirus Very Late Factor 1. J. Virol. 2005, 79, 1958–1960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Miller, L.K. Activation of Baculovirus Very Late Promoters by Interaction with Very Late Factor 1. J. Virol. 1999, 73, 3404–3409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanginakudru, S.; Royer, C.; Edupalli, S.V.; Jalabert, A.; Mauchamp, B.; Chandrashekaraiah; Prasad, S.V.; Chavancy, G.; Couble, P.; Nagaraju, J. Targeting Ie-1 Gene by RNAi Induces Baculoviral Resistance in Lepidopteran Cell Lines and in Transgenic Silkworms. Insect Mol. Biol. 2007, 16, 635–644. [Google Scholar] [CrossRef] [PubMed]
rBEV | Target | Protospacer Sequence (5’–3’) | PAM | Strand |
---|---|---|---|---|
Control | n/a | caccttgaagcgcatgaact | n/a | n/a |
GFP1 | gfp | gggcaagggcaacccctacg | agg | Template |
GFP2 | gfp | gtcgtaggcgaagggcaggg | ggg | Nontemplate |
GFP3 | gfp | gttgccgtactggaacacgg | tgg | Nontemplate |
GFP4 | gfp | ccgagggctaccactgggag | agg | Template |
IE1 | ie-1 | accgtgtcggctccatccgggg | tgg | Nontemplate |
IE2 | ie-1 | tgatatctgacagcgagactg | cgg | Template |
VL1 | vlf-1 | acacggactcgaaccggggag | cgg | Nontemplate |
VL2 | vlf-1 | ggcaacgatgcacgcccgacg | agg | Template |
VP1 | vp80 | gcccgccgcaatcgccgccg | cgg | Template |
VP2 | vp80 | gctggatgttacccgcgg | cgg | Nontemplate |
VP3 | vp80 | tcgatgcggccaggtcgc | tgg | Nontemplate |
VP4 | vp80 | gcggatcgctaaatgccg | tgg | Nontemplate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruder, M.R.; Walji, S.-D.; Aucoin, M.G. Comparison of CRISPR–Cas9 Tools for Transcriptional Repression and Gene Disruption in the BEVS. Viruses 2021, 13, 1925. https://doi.org/10.3390/v13101925
Bruder MR, Walji S-D, Aucoin MG. Comparison of CRISPR–Cas9 Tools for Transcriptional Repression and Gene Disruption in the BEVS. Viruses. 2021; 13(10):1925. https://doi.org/10.3390/v13101925
Chicago/Turabian StyleBruder, Mark R., Sadru-Dean Walji, and Marc G. Aucoin. 2021. "Comparison of CRISPR–Cas9 Tools for Transcriptional Repression and Gene Disruption in the BEVS" Viruses 13, no. 10: 1925. https://doi.org/10.3390/v13101925
APA StyleBruder, M. R., Walji, S.-D., & Aucoin, M. G. (2021). Comparison of CRISPR–Cas9 Tools for Transcriptional Repression and Gene Disruption in the BEVS. Viruses, 13(10), 1925. https://doi.org/10.3390/v13101925