Viral Phrenology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Library
2.2. Point Arrays
3. Results
3.1. Gauge Point vs. Triangulation Number
3.2. Gauge Point vs. Genome
3.3. Gauge Points 1 to 6
3.3.1. T7d Viral Capsids
3.3.2. Parvoviradae Family
3.4. Gauge Points 7 to 17: RNA Viruses Only
3.5. Gauge Points 18 to 21
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AU | Asymmetric Unit |
BC | Baltimore Classification |
GP | Gauge Point |
PA | Point Array |
TX | Triangulation number X, e.g., T3 or T7. |
Appendix A. Data Set
Family | Genus | T# | GP | pdb |
---|---|---|---|---|
Adenoviridae | Mastadenovirus | 1 | 19 | 4aqq |
Mastadenovirus | pT25 | 21 | 6b1t | |
Bacteria | Haliangium | 9 | 6 | 6mzx |
Birnaviridae | Aquabirnavirus | 1 | 7 | 3ide |
Avibirnavirus | 1 | 12 | 2df7 | |
Avibirnavirus | 13 | 3 or 20 | 1wce | |
Bromoviridae | Alfamovirus | 1 | 3 | amv |
Bromovirus | 1 | 21 | 1yc6 | |
Bromovirus | 3 | 5 or 20 | 1za7 | |
Cucumovirus | 3 | 20 | 1f15 | |
Caliciviridae | Lagovirus | 3 | 15 | 3j1p |
Norovirus | 1 | 16 | 6ouc | |
Norovirus | 3 | 15 | 6p4j | |
Norovirus | 3 | 1 | 6p4l | |
Norovirus | 4 | 18 | 6ouu | |
Vesivirus | 1 | 14 | 4pb6 | |
Vesivirus | 3 | 15 | 2gh8 | |
Chrysoviridiae | Chrysovirus | 1 | 19 or 21 | 3j3i |
Circoviridae | Circovirus | 1 | 20 | 5j37 |
Corticoviridae | Corticovirus | pT21 | 1 | 2w0c |
Cystoviridae | Cystovirus | 2 | 13 | 4btg |
Dicistroviridae | Aparavirus | pT3 | 3 | 5lwg |
Cripavirus | pT3 | 20 | 1b35 | |
Triatovirus | pT3 | 3 | 5mqc | |
Flaviviridae | Flavivirus | 3 | 21 | 6co8 |
Hepadnaviridae | Orthohepadnavirus | 3 | 3 or 15 | 6bvn |
Orthohepadnavirus | 4 | 18 | 6hu4 | |
Hepeviridae | Hepevirus | 1 | 15 | 3hag |
Herpesviridae | Alphaherpesvirinae | 16 | 19 | 5zap |
Muromegalovirus | 16 | 21 | 6nhj | |
Rhadinovirus | 16 | 20 | 6b43 | |
Iflaviridae | Iflavirus | pT3 | 17 | 5lsf |
Lavidaviridae | Sputnikvirus | pT27 | 1 | 3j26 |
Leviviridae | Allolevivirus | 3 | 3 | 5vly |
Levivirus | 1 | 16 | 4zor | |
Levivirus | 3 | 2 | 1e6t | |
Levivirus | 3 | 2 | 2bu1 | |
Unclassified | 3 | 4 or 13 | 2vf9 | |
Microviridae | Microvirus | 1 | 1 | 1gff |
Microvirus | 1 | 1 | 2bpa | |
Myoviridae | T4virus | 13 | 1 | 5vf3 |
Nodaviridae | Alphanodavirus | 3 | 1 | 4ftb |
Betanodavirus | 1 | 2 | 4rft | |
Betanodavirus | 3 | 16 | 4wiz | |
Unclassified | 1 | 20 or 2 | 5yl1 | |
Unclassified | 3 | 17 | 4nwv | |
Unclassified Nodaviridae | 3 | 1 | 6jjc | |
Papillomaviridae | Alphapapillomavirus | 1 | 21 | 1dzl |
Alphapapillomavirus | 7d | 1 | 5kep | |
Alphapapillomavirus | 7d | 1 | 5keq | |
Deltapapillomavirus | 7d | 1 | 3iyj | |
Partitiviridae | Partitivirus | 2 | 17 | 3es5 |
Parvoviridae | Ambidensovirus | 1 | 5 | 4mgu |
Bocaparvovirus | 1 | 5 | 5us7 | |
Densovirus | 1 | 5 | 3p0s | |
Dependoparvovirus | 1 | 5 | 6e9d | |
Dependoparvovirus | 1 | 5 | 6nz0 | |
Erythroparvovirus | 1 | 2 or 3 | 6nn3 | |
Parvovirus | 1 | 5 | 4g0r | |
Penstyldensovirus | 1 | 1 | 3n7x | |
Protoparvovirus | 1 | 5 | 6bwx | |
Virus-Like Particle | 1 | 5 | 6nf9 | |
Phycodnaviridae | Chlorovirus | 169 | 21 | 6ncl |
Chlorovirus | pT169 | 1 | 1m4x | |
Picobirnaviridae | Picobirnavirus | 2 | 14 | 2vf1 |
Picornaviridae | Apthovirus | pT3 | 3 or 4 | 1qqp |
Cardiovirus | pT3 | 19 | 5cfc | |
Cardiovirus | pT3 | 2 | 5cfd | |
Enterovirus | pT3 | 1 | 4q4w | |
Enterovirus A | pT3 | 21 | 6smg | |
Enterovirus F | pT3 | 5 or 21 | 6t40 | |
Heptaovirus | 3 | 1 | 4qpi | |
Heptaovirus | pT3 | 10 | 6jhs | |
Kobuvirus | pT3 | 1 | 5aoo | |
Parechovirus | pT3 | 16 | 6gv4 | |
Rhinovirus | pT3 | 1 | 1aym | |
Senecavirus | pT3 | 18 | 3cji | |
Podoviridae | Bpp1virus | 7l | 1 | 3j4u |
Epsilon15-like | 7l | 20 | 3j40 | |
P22-like | 7l | 20 or 18 | 2xyy | |
P22virus | 7l | 1 | 5l35 | |
Phi29virus | 3 | 2 | 1yxn | |
T7virus | 7l | 1 | 3j7w | |
Unassigned Autographivirinae | 7l | 1 | 2xd8 | |
Polyomaviridae | Betapolyomavirus | 7d | 1 | 6gg0 |
Polyomavirus | 7d | 1 | 1sva | |
Protogloboviridae | Alphaprotoglobovirus | 43 | 1 | 6oj0 |
Reoviridae | Aquareovirus | 1 | 3 | 5zvt |
Aquareovirus | 2 | 3 or 6 | 3iyl | |
Cypovirus | 1 | 2 | 3jay | |
Cypovirus | 2 | 20 | 3izx | |
Dinovernavirus | 1 | 2 | 6djy | |
Orbivirus | 13 | 5 or 20 | 2btv | |
Orthoreovirus | 13 | 3 | 2cse | |
Phytoreovirus | 13 | 20 | 1uf2 | |
Rotavirus | 13 | 3 | 3iyu | |
Retroviridae | Unclassified | 1 | 2 | 6ssj |
Unclassified | 3 | 21 | 6ssm | |
Saccharomycetals | Saccharomyces | 9 | 18 | 6r24 |
Sarthroviridae | Macronovirus | 1 | 2 | 6jja |
Satellites | Papanivirus | 1 | 18 | 5cvz |
Secoviridae | Comovirus | pT3 | 1 | 5fmo |
Nepovirus | pT3 | 20 | 2y26 | |
Siphoviridae | Cyanophage Mic1 | 13 | 1 | 6j3q |
Lambdavirus | 7l | 1 | 1ohg | |
Oshimavirus | 7l | 21 | 6o3h | |
P23 Virus | 7l | 19 or 21 | 6i9e | |
Phietavirus | 4 | 1 | 6b23 | |
Phietavirus | 7l | 4 | 6b0x | |
Tequintavirus | 13 | 1 | 6omc | |
Unclassified Siphovirus | 7l | 1 | 6r3a | |
Sobemovirus | Sobemovirus | 1 | 2 | 1x36 |
Sobemovirus | 3 | 1 | 1ng0 | |
Sphaerolipoviridae | Alphasphaerolipovirus | 28d | 21 | 6qt9 |
Tectiviridae | Tectivirus | pT25 | 1 | 1w8x |
Betatetravirus | 4 | 3 | 2qqp | |
Omegatetravirus | 4 | 19 or 3 | 3s6p | |
Thermococcales | Pyrococcus | 3 | 1 | 2e0z |
Togaviridae | Alphavirus | 4 | 20 | 6imm |
Tombusviridae | Aureusvirus | 3 | 15 | 6mrl |
Carmovirus | 3 | 15 | 2zah | |
Dianthovirus | 3 | 15 | 6mrm | |
Machlomovirus | 3 | 1 | 3jb8 | |
Necrovirus | 3 | 1 | 1c8n | |
Panicovirus | 3 | 1 | 4v99 | |
Tombusvirus | 3 | 3 | 4llf | |
Totiviridae | Totivirus | 1 | 4 | 1m1c |
Turriviridae | Alphaturrivirus | pT31 | 1 | 3j31 |
Tymoviridae | Tymovirus | 3 | 1 | 1ddl |
Unclassified | Unclassified | 3 | 1 | 6izl |
Unclassified | Unclassified | 4 | 1 | 6tap |
Unknown | Unknown | pT21 | 21 | 5oac |
Virtovirus | Tobacco virtovirus 1 | 1 | 2 | 4oq9 |
Virus-Like Particle | Virus-Like Particle | 1 | 21 | 6i9g |
Virus-Like Particle | Virus-Like Particle | 3 | 1 | 4pt2 |
References
- Montiel-Garcia, D.; Santoyo-Rivera, N.; Ho, P.; Carrillo-Tripp, M.; Brooks, C.L.; Johnson, J.E.; Reddy, V.S. VIPERdb v3.0: A structure-based data analytics platform for viral capsids. Nucleic Acids Res. 2021, 49, D809–D816. [Google Scholar] [CrossRef]
- Wilson, D.P. Protruding Features of Viral Capsids are Clustered on Icosahedral Great Circles. PLoS ONE 2016, 11, e0152319. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.P. Unveiling the hidden rules of spherical viruses using point arrays. Viruses 2020, 12, 467. [Google Scholar] [CrossRef]
- Keef, T.; Twarock, R. Affine Extensions of the Icosahedral Group with Applications to the Three-dimensional Organisation of Simple Viruses. J. Math. Biol. 2009, 59, 287–313. [Google Scholar] [CrossRef]
- Keef, T.; Wardman, J.P.; Ranson, N.A.; Stockley, P.G.; Twarock, R. Structural constraints on the three-dimensional geometry of simple viruses: Case studies of a new predictive tool. Acta Crystallogr. Sect. Found. Crystallogr. 2013, 69, 140–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janner, A. Strongly correlated structure of axial-symmetric proteins. II. Pentagonal, heptagonal, octagonal, nonagonal and ondecagonal symmetries. Acta Crystallogr. Biol. Crystallogr. 2005, 61, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Janner, A. Crystallographic structural organization of human rhinovirus serotype 16, 14, 3, 2 and 1A. Acta Crystallogr. A 2006, 62, 270–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janner, A. Form, Symmetry and Packing of Biomacro-molecules. I. Concepts and Tutorial Examples. Acta Crystallogr. Sect. Found. Crystallogr. 2010, 66, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Janner, A. Form, symmetry and packing of biomacromolecules. II. Serotypes of human rhinovirus. Acta Crystallogr. Sect. Found. Crystallogr. 2010, 66, 312–326. [Google Scholar] [CrossRef]
- Janner, A. Form, Symmetry and Packing of Biomacromolecules. III. Antigenic, Receptor and Contact Binding Sites in Picornaviruses. Acta Crystallogr. Sect. Found. Crystallogr. 2011, 67, 174–189. [Google Scholar] [CrossRef]
- Janner, A. Form, Symmetry and Packing of Biomacromolecules. IV. Filled Capsids of Cowpea, Tobacco, MS2 and Pariacoto RNA Viruses. Acta Crystallogr. Sect. Found. Crystallogr. 2011, 67, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Janner, A. Form, Symmetry and Packing of Biomacromolecules. V. Shells with Boundaries at anti-nodes of Resonant Vibrations in Icosahedral RNA Viruses. Acta Crystallogr. Sect. Found. Crystallogr. 2011, 67, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Zappa, E.; Dykeman, E.C.; Twarock, R. On the Subgroup Structure of the Hyperoctahedral Group in Six Dimensions. Acta Crystallogr. Sect. Found. Adv. 2014, 70, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Zappa, E.; Dykeman, E.C.; Geraets, J.A.; Twarock, R. A Group Theoretical Approach to Structural Transitions of Icosahedral Quasicrystal s and Point Arrays. J. Phys. Math. Theor. 2016, 49, 175–203. [Google Scholar] [CrossRef] [Green Version]
- Caspar, D.L.; Klug, A. Physical Principles in the Construction of Regular Viruses. Cold Spring Harb. Symp. Quant. Biol. 1962, 27, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Waltmann, C.; Asor, R.; Raviv, U.; Olvera de la Cruz, M. Assembly and Stability of Simian Virus 40 Polymorphs. ACS Nano 2020, 14, 4430–4443. [Google Scholar] [CrossRef]
- Prasad, B.V.V.; Schmid, M.F. Principles of Virus Structural Organization; Springer Science: Berlin, Germany, 2012; pp. 17–47. [Google Scholar] [CrossRef]
- Louten, J. Virus Structure and Classification; Academic Press: Cambridge, MA, USA, 2016; pp. 19–29. [Google Scholar]
- Baltimore, D. Expression of animal virus genomes. Bacteriol. Rev. 1971, 35, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Hartman, E.C.; Jakobson, C.M.; Favor, A.H.; Lobba, M.J.; Álvarez-Benedicto, E.; Francis, M.B.; Tullman-Ercek, D. Quantitative Characterization of All Single Amino Acid Variants of a Viral Capsid-Based Drug Delivery Vehicle. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hartman, E.C.; Lobba, M.J.; Favor, A.H.; Robinson, S.A.; Francis, M.B.; Tullman-Ercek, D. Experimental Evaluation of Coevolution in a Self-Assembling Particle. Biochemistry 2019, 58, 1527–1538. [Google Scholar] [CrossRef]
- Wang, Q.; Kaltgrad, E.; Lin, T.; Johnson, J.E.; Finn, M.G. Natural Supramolecular Building Blocks: Wild-type Cowpea Mosaic Virus. Chem. Biol. 2002, 9, 805–811. [Google Scholar] [CrossRef] [Green Version]
- Chatterji, A.; Ochoa, W.F.; Paine, M.; Ratna, B.R.; Johnson, J.E.; Lin, T. New Addresses on an Addressable Virus Nanoblock: Uniquely Reactive Lys Residues on Cowpea Mosaic Virus. Chem. Biol. 2004, 11, 855–863. [Google Scholar] [CrossRef] [Green Version]
- Hadden, J.A.; Perilla, J.R.; Schlicksup, C.J.; Venkatakrishnan, B.; Zlotnick, A.; Schulten, K. All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits. eLife 2018, 7, 1–27. [Google Scholar] [CrossRef]
- Mannige, R.V.; Brooks, C.L., III. Periodic table of virus capsids: Implications for natural selection and design. PLoS ONE 2010, 5, e0009423. [Google Scholar] [CrossRef] [Green Version]
- Wynne, S.A.; Crowther, R.A.; Leslie, A.G.W. The Crystal Structure of the Human Hepatitis B Virus Capsid. Mol. Cell 1999, 3, 771–780. [Google Scholar] [CrossRef]
- Erdemci-Tandogan, G.; Wagner, J.; Van Der Schoot, P.; Podgornik, R.; Zandi, R. Effects of RNA branching on the electrostatic stabilization of viruses. Phys. Rev. E 2016, 94, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Erdemci-Tandogan, G.; Wagner, J.; Van Der Schoot, P.; Zandi, R. Impact of a nonuniform charge distribution on virus assembly. Phys. Rev. E 2017, 96, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panahandeh, S.; Li, S.; Marichal, L.; Leite Rubim, R.; Tresset, G.; Zandi, R. How a Virus Circumvents Energy Barriers to Form Symmetric Shells. ACS Nano 2020, 14, 3170–3180. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Ochoa, W.F.; Sinkovits, R.S.; Poulos, B.T.; Ghabrial, S.A.; Lightner, D.V.; Baker, T.S.; Nibert, M.L. Infectious myonecrosis virus has a totivirus-like, 120-subunit capsid, but with fiber complexes at the fivefold axes. Proc. Natl. Acad. Sci. USA 2008, 105, 17526–17531. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, S.; Schelhaas, M.; Jaeger, V.; Liebig, T.; Petermann, P.; Knebel-Mö rsdorf, D. Early herpes simplex virus type 1 infection is dependent on regulated Rac1/Cdc42 signalling in epithelial MDCKII cells. J. Gen. Virol. 2006, 87, 3483–3494. [Google Scholar] [CrossRef] [PubMed]
- Venkatakrishnan, B.; Zlotnick, A. The Structural Biology of Hepatitis B Virus: Form and Function. Annu. Rev. Virol. 2016, 3, 429–451. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.; Zlotnick, A. Asymmetric Modification of Hepatitis B Virus (HBV) Genomes by an Endogenous Cytidine Deaminase inside HBV Cores Informs a Model of Reverse Transcription. J. Virol. 2018, 92, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greber, B.J.; Sutter, M.; Kerfeld, C.A. The plasticity of molecular interactions governs bacterial microcompartment shell assembly. Structure 2019, 27, 749–763. [Google Scholar] [CrossRef]
- El Omari, K.; Sutton, G.; Ravantti, J.J.; Zhang, H.; Walter, T.S.; Grimes, J.M.; Bamford, D.H.; Stuart, D.I.; Mancini, E.J. Plate tectonics of virus shell assembly and reorganization in phage ϕ8, a distant relative of mammalian reoviruses. Structure 2013, 21, 1384–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadfield, A.T.; Lee, W.M.; Zhao, R.; Oliveira, M.A.; Minor, I.; Rueckert, R.R.; Rossmann, M.G. The refined structure of human rhinovirus 16 at 2.15 Å resolution: Implications for the viral life cycle. Structure 1997, 5, 427–441. [Google Scholar] [CrossRef] [Green Version]
- McKenna, R.; Bowman, B.R.; Ilag, L.L.; Rossmann, M.G.; Fane, B.A. Atomic structure of the degraded procapsid particle of the bacteriophage G4: Induced structural changes in the presence of calcium ions and functional implications. J. Mol. Biol. 1996, 256, 736–750. [Google Scholar] [CrossRef] [Green Version]
- Golmohammadi, R.; Valegard, K.; Fridborg, K.; Liljas, L. The Refined Structure of Bacteriophage MS2 at 2·8 Å Resolution. J. Mol. Biol. 1993, 234, 620–639. [Google Scholar] [CrossRef] [PubMed]
- Erickson, J.W.; Silva, A.M.; Murthy, M.R.; Fita, I.; Rossmann, M.G. The structure of a T = 1 icosahedral empty particle from southern bean mosaic virus. Science 1985, 229, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Sangita, V.; Satheshkumar, P.S.; Savithri, H.S.; Murthy, M.R.N. Structure of a mutant ∖it T = 1 capsid of Sesbania mosaic virus: Role of water molecules in capsid architecture and integrity. Acta Crystallogr. Sect. D 2005, 61, 1406–1412. [Google Scholar] [CrossRef] [Green Version]
- Acton, O.; Grant, T.; Nicastro, G.; Ball, N.J.; Goldstone, D.C.; Robertson, L.E.; Sader, K.; Nans, A.; Ramos, A.; Stoye, J.P.; et al. Structural basis for Fullerene geometry in a human endogenous retrovirus capsid. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Ilyas, M.; Mietzsch, M.; Kailasan, S.; Väisänen, E.; Luo, M.; Chipman, P.; Smith, J.K.; Kurian, J.; Sousa, D.; McKenna, R.; et al. Atomic resolution structures of human bufaviruses determined by cryo-electron microscopy. Viruses 2018, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Bywaters, S.M.; Brendle, S.A.; Ashley, R.E.; Makhov, A.M.; Conway, J.F.; Christensen, N.D.; Hafenstein, S. Cryoelectron Microscopy Maps of Human Papillomavirus 16 Reveal L2 Densities and Heparin Binding Site. Structure 2017, 25, 253–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, M.; Garcea, R.L.; Grigorieff, N.; Harrison, S.C. Subunit interactions in bovine papillomavirus. Proc. Natl. Acad. Sci. USA 2010, 107, 6298–6303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stehle, T.; Gamblin, S.J.; Yan, Y.; Harrison, S.C. The structure of simian virus 40 refined at 3.1 Å resolution. Structure 1996, 4, 165–182. [Google Scholar] [CrossRef] [Green Version]
- Lindner, J.M.; Cornacchione, V.; Sathe, A.; Be, C.; Srinivas, H.; Riquet, E.; Leber, X.C.; Hein, A.; Wrobel, M.B.; Scharenberg, M.; et al. Human Memory B Cells Harbor Diverse Cross-Neutralizing Antibodies against BK and JC Polyomaviruses. Immunity 2019, 50, 668–676.e5. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Zhai, L.; Tumban, E. Virus-like Particle-Based L2 Vaccines against HPVs: Where Are We Today? Viruses 2020, 12, 18. [Google Scholar] [CrossRef] [Green Version]
- Mietzsch, M.; Pénzes, J.J.; Agbandje-Mckenna, M. Twenty-five years of structural parvovirology. Viruses 2019, 11, 362. [Google Scholar] [CrossRef] [Green Version]
- Callaway, H.M.; Subramanian, S.; Urbina, C.A.; Barnard, K.N.; Dick, R.A.; Bator, C.M.; Hafenstein, S.L.; Gifford, R.J.; Parrish, C.R. Examination and Reconstruction of Three Ancient Endogenous Parvovirus Capsid Protein Gene Remnants Found in Rodent Genomes. J. Virol. 2019, 93, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Halder, S.; Nam, H.J.; Govindasamy, L.; Vogel, M.; Dinsart, C.; Salome, N.; McKenna, R.; Agbandje-McKenna, M. Structural Characterization of H-1 Parvovirus: Comparison of Infectious Virions to Empty Capsids. J. Virol. 2013, 87, 5128–5140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.Z.; Aiyer, S.; Mietzsch, M.; Hull, J.A.; McKenna, R.; Grieger, J.; Samulski, R.J.; Baker, T.S.; Agbandje-McKenna, M.; Lyumkis, D. Sub-2 Å Ewald curvature corrected structure of an AAV2 capsid variant. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Meyer, N.L.; Hu, G.; Davulcu, O.; Xie, Q.; Noble, A.J.; Yoshioka, C.; Gingerich, D.S.; Trzynka, A.; David, L.; Stagg, S.M.; et al. Structure of the gene therapy vector, adeno-associated virus with its cell receptor, aavr. eLife 2019, 8, 1–24. [Google Scholar] [CrossRef]
- Burmeister, W.P.; Buisson, M.; Estrozi, L.F.; Schoehn, G.; Billet, O.; Hannas, Z.; Sigoillot, C.; Poulet, H. Structure determination of feline calicivirus virus-like particles in the context of a pseudo-octahedral arrangement. PLoS ONE 2015, 10, e0119289. [Google Scholar] [CrossRef]
- Duquerroy, S.; Da Costa, B.; Henry, C.; Vigouroux, A.; Libersou, S.; Lepault, J.; Navaza, J.; Delmas, B.; Rey, F.A. The picobirnavirus crystal structure provides functional insights into virion assembly and cell entry. EMBO J. 2009, 28, 1655–1665. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Tanaka, H.; Yamashita, E.; Kubo, C.; Ichiki-Uehara, T.; Nakazono-Nagaoka, E.; Omura, T.; Tsukihara, T. The structure of melon necrotic spot virus determined at 2.8 Å resolution. Acta Crystallogr. Sect. Struct. Biol. Cryst. Commun. 2008, 64, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guu, T.S.Y.; Liu, Z.; Ye, Q.; Mata, D.A.; Li, K.; Yin, C.; Zhang, J.; Tao, Y.J. Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Proc. Natl. Acad. Sci. USA 2009, 106, 12992–12997. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.C.; Yoshimura, M.; Guan, H.H.; Wang, T.Y.; Misumi, Y.; Lin, C.C.; Chuankhayan, P.; Nakagawa, A.; Chan, S.I.; Tsukihara, T.; et al. Crystal Structures of a Piscine Betanodavirus: Mechanisms of Capsid Assembly and Viral Infection. PLoS Pathog. 2015, 11, e1005203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, J.; Dong, L.; Lin, L.; Ochoa, W.F.; Sinkovits, R.S.; Havens, W.M.; Nibert, M.L.; Baker, T.S.; Ghabrial, S.A.; Tao, Y.J. Atomic structure reveals the unique capsid organization of a dsRNA virus. Proc. Natl. Acad. Sci. USA 2009, 106, 4225–4230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.; Grant, T.; Thomas, D.R.; Diehnelt, C.W.; Grigorieff, N.; Joshua-Tor, L. High-resolution cryo-EM structures of outbreak strain human norovirus shells reveal size variations. Proc. Natl. Acad. Sci. USA 2019, 116, 12828–12832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madhumati, S.; Long, F.; Miller, A.; Klose, T.; Buda, G.; Sun, L.; Kuhn, R.; Rossmann, M.G. Refinement and Analysis of the Mature Zika Virus Cryo-EM Structure at 3.1 Å Resolution. Physiol. Behav. 2018, 26, 1169–1177. [Google Scholar] [CrossRef]
- Wolf, Y.I.; Kazlauskas, D.; Iranzo, J.; Lucía-Sanz, A.; Kuhn, J.H.; Krupovic, M.; Dolja, V.V.; Koonin, E.V. Origins and evolution of the global RNA virome. mBio 2018, 9, 1–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genome | T1 | T2 | T3 | pT3 | T4 | T7d | T7l | T9 | T13 | T16 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
dsDNA | 2 | 1 | 2 | 0 | 2 | 5 | 11 | 0 | 2 | 3 | 28 |
ssDNA | 13 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 15 |
dsRNA | 7 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 5 | 0 | 17 |
ssRNA | 13 | 0 | 27 | 16 | 4 | 0 | 0 | 1 | 0 | 0 | 61 |
None | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 4 |
Totals | 36 | 5 | 31 | 17 | 7 | 5 | 11 | 2 | 8 | 3 | 125 |
GP | Loc. | Arrays per GP | Radial Levels |
---|---|---|---|
1 | ICO | 3 | 5 |
2–5 | 3–5 | 2 * | 5 |
6 | DOD | 4 | 7 or 8 |
7–14 | 2–3 | 2 * | 7–11 |
15 | IDD | 11 | 9–16 |
16–21 | 5–2 | 2 * | 5–7 |
GP | T1 | T2 | T3 | pT3 | T4 | T7d | T7l | T9 | T13 | T16 | Totals |
---|---|---|---|---|---|---|---|---|---|---|---|
1(5-fold) | 3 | 12 | 4 | 2 | 5 | 6 | 3 | 35 (25.2%) | |||
2 | 9 | 3 | 1 | 13 (9.4%) | |||||||
3 | 3 | 1 | 3 | 3 | 2 | 3 | 15 (10.8%) | ||||
4 | 1 | 1 | 1 | 1 | 4 (2.9%) | ||||||
5 | 8 | 1 | 1 | 1 | 11 (7.9%) | ||||||
6 (3-fold) | 1 | 1 | 2 (1.4%) | ||||||||
7 | 1 | 1 (0.7%) | |||||||||
8 | 0 (0.0%) | ||||||||||
9 | 0 (0.0%) | ||||||||||
10 | 1 | 1 (0.7%) | |||||||||
11 | 0 (0.0%) | ||||||||||
12 | 1 | 1 (0.7%) | |||||||||
13 | 1 | 1 | 2 (1.4%) | ||||||||
14 | 1 | 1 | 2 (1.4%) | ||||||||
15 (2-fold) | 1 | 7 | 8 (5.8%) | ||||||||
16 | 2 | 1 | 1 | 4 (2.9%) | |||||||
17 | 1 | 1 | 1 | 3 (2.2%) | |||||||
18 | 1 | 1 | 2 | 1 | 1 | 6 (4.3%) | |||||
19 | 2 | 1 | 1 | 1 | 1 | 6 (4.3%) | |||||
20 | 2 | 1 | 2 | 2 | 1 | 2 | 3 | 1 | 14 (10.1%) | ||
21 | 4 | 2 | 2 | 2 | 1 | 11 (7.9%) | |||||
Total | 39 | 6 | 34 | 19 | 8 | 5 | 13 | 2 | 10 | 3 | 139 |
GP | dsDNA | ssDNA | dsRNA | ssRNA | None | Totals |
---|---|---|---|---|---|---|
1 (5-fold) | 20 | 5 | 1 | 13 | 2 | 41 |
2 | 1 | 1 | 2 | 9 | 13 | |
3 | 2 | 1 | 4 | 8 | 15 | |
4 | 1 | 1 | 2 | 4 | ||
5 | 8 | 1 | 2 | 11 | ||
6 (3-fold) | 1 | 1 | 2 | |||
7 | 1 | 1 | ||||
8 | 0 | |||||
9 | 0 | |||||
10 | 1 | 1 | ||||
11 | 0 | |||||
12 | 1 | 1 | ||||
13 | 1 | 1 | 2 | |||
14 | 1 | 1 | 2 | |||
15 (2-fold) | 1 * | 7 | 8 | |||
16 | 4 | 4 | ||||
17 | 1 | 2 | 3 | |||
18 | 2 | 4 | 6 | |||
19 | 3 | 1 | 2 | 6 | ||
20 | 3 | 1 | 4 | 6 | 14 | |
21 | 8 | 1 | 5 | 1 | 15 | |
Totals | 42 | 16 | 20 | 67 | 4 | 149 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, D.P.; Roof, D.A. Viral Phrenology. Viruses 2021, 13, 2191. https://doi.org/10.3390/v13112191
Wilson DP, Roof DA. Viral Phrenology. Viruses. 2021; 13(11):2191. https://doi.org/10.3390/v13112191
Chicago/Turabian StyleWilson, David P., and Danielle A. Roof. 2021. "Viral Phrenology" Viruses 13, no. 11: 2191. https://doi.org/10.3390/v13112191
APA StyleWilson, D. P., & Roof, D. A. (2021). Viral Phrenology. Viruses, 13(11), 2191. https://doi.org/10.3390/v13112191