Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course
Abstract
:1. A COVID-19 Treatment Resilient to New Variants Is Needed
2. Drug Repurposing as a Pragmatic Approach
2.1. Lymphopenia as Key Factor for COVID-19 Outcome
2.2. NK Cells and Cytotoxic T Lymphocytes Play Role in the Defense and Recovery of COVID-19
2.3. Bacillus Calmette-Guérin, Innate Immunity and COVID-19
2.4. Complications of COVID-19 Can Be Treated in Community
3. Methods
4. Inosine Pranobex
4.1. Clinical Trials with IP
4.2. Mechanism of Action in the Treatment of COVID-19 with IP
4.2.1. Natural Killer Cell Early Response
4.2.2. Induced NKG2D Ligand Expression
5. Use of IP in COVID-19 Patients
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, R.N.; Hill, E.M.; Gog, J.R. SARS-CoV-2 incidence and vaccine escape. Lancet Infect Dis. 2021, 21, 913–914. [Google Scholar] [CrossRef]
- Inchingolo, A.; Inchingolo, A.; Bordea, I.; Malcangi, G.; Xhajanka, E.; Scarano, A.; Lorusso, F.; Farronato, M.; Tartaglia, G.; Isacco, C.; et al. SARS-CoV-2 Disease through Viral Genomic and Receptor Implications: An Overview of Diagnostic and Immunology Breakthroughs. Microorganisms 2021, 9, 793. [Google Scholar] [CrossRef]
- Goldman, R.D.; Yan, T.D.; Seiler, M.; Cotanda, C.P.; Brown, J.C.; Klein, E.J.; Hoeffe, J.; Gelernter, R.; Hall, J.E.; Davis, A.L.; et al. Caregiver willingness to vaccinate their children against COVID-19: Cross sectional survey. Vaccine 2020, 38, 7668–7673. [Google Scholar] [CrossRef] [PubMed]
- Odone, A.; Bucci, D.; Croci, R.; Riccò, M.; Affanni, P.; Signorelli, C. Vaccine hesitancy in COVID-19 times. An update from Italy before flu season starts. Acta Biomed. 2020, 91, e2020031. [Google Scholar] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Tichopád, A.; Pecen, L.; Sedlák, V. Could the new coronavirus have infected humans prior November 2019? PLoS ONE 2021, 16, e0248255. [Google Scholar] [CrossRef]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet 2021, 397, 1819–1829, Erratum in 2021, 398, 212, doi:10.1016/S0140-6736(21)01555-5. [Google Scholar] [CrossRef]
- Bernal, J.L.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Stowe, J.; Andrews, N.; Gower, C.; Gallagher, E.; Utsi, L.; Simmons, R.; Thelwall, S.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 vaccines against hospital admission with the Delta (B.1.617.2) variant. Public Health Engl. 2021. Available online: https://khub.net/web/phe-national/public-library/-/document_library/v2WsRK3ZlEig/view/479607266 (accessed on 4 November 2021).
- Griffin, S. COVID-19: Fully vaccinated people can carry as much delta virus as unvaccinated people, data indicate. BMJ 2021, 374, n2074. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, N.; Kodan, P.; Mittal, A.; Soneja, M.; Wig, N. Battling COVID-19: Using old weapons for a new enemy. Trop. Dis. Travel Med. Vaccines 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Inchingolo, A.; Inchingolo, A.; Bordea, I.; Malcangi, G.; Xhajanka, E.; Scarano, A.; Lorusso, F.; Farronato, M.; Tartaglia, G.; Isacco, C.; et al. SARS-CoV-2 Disease Adjuvant Therapies and Supplements Breakthrough for the Infection Prevention. Microorganisms 2021, 9, 525. [Google Scholar] [CrossRef]
- Bordea, I.R.; Candrea, S.; Sălăgean, T.; Pop, I.D.; Lucaciu, O.; Ilea, A.; Manole, M.; Băbțan, A.-M.; Sirbu, A.; Hanna, R. Impact of COVID-19 Pandemic on Healthcare Professionals and Oral Care Operational Services: A Systemic Review. Heal. Policy Politi-Sante 2021, 14, 453–463. [Google Scholar] [CrossRef]
- Hanna, R.; Dalvi, S.; Sălăgean, T.; Pop, I.D.; Bordea, I.R.; Benedicenti, S. Understanding COVID-19 Pandemic: Molecular Mechanisms and Potential Therapeutic Strategies. An Evidence-Based Review. J. Inflamm. Res. 2021, 14, 13–56. [Google Scholar] [CrossRef]
- Yasuhara, J.; Kuno, T.; Takagi, H.; Sumitomo, N. Clinical characteristics of COVID-19 in children: A systematic review. Pediatr. Pulmonol. 2020, 55, 2565–2575. [Google Scholar] [CrossRef]
- Pormohammad, A.; Ghorbani, S.; Baradaran, B.; Khatami, A.; Turner, R.J.; Mansournia, M.A.; Kyriacou, D.N.; Idrovo, J.-P.; Bahr, N.C. Clinical characteristics, laboratory findings, radiographic signs and outcomes of 61,742 patients with confirmed COVID-19 infection: A systematic review and meta-analysis. Microb. Pathog. 2020, 147, 104390. [Google Scholar] [CrossRef]
- Dotolo, S.; Marabotti, A.; Facchiano, A.; Tagliaferri, R. A review on drug repurposing applicable to COVID-19. Brief. Bioinform. 2021, 22, 726–741. [Google Scholar] [CrossRef]
- Sultana, J.; Crisafulli, S.; Gabbay, F.; Lynn, E.; Shakir, S.; Trifirò, G. Challenges for Drug Repurposing in the COVID-19 Pandemic Era. Front. Pharmacol. 2020, 11, 1657. [Google Scholar] [CrossRef]
- Pawar, A.Y. Combating devastating COVID-19 by drug repurposing. Int. J. Antimicrob. Agents 2020, 56, 105984. [Google Scholar] [CrossRef]
- Jang, W.D.; Jeon, S.; Kim, S.; Lee, S.Y. Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proc. Natl. Acad. Sci. USA 2021, 118, e2024302118. [Google Scholar] [CrossRef]
- Sun, D.; Li, H.; Lu, X.X.; Xiao, H.; Ren, J.; Zhang, F.R.; Liu, Z.S. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: A single center’s observational study. World J. Pediatr. 2020, 16, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Li, T.; Han, M.; Li, X.; Wu, D.; Xu, Y.; Zhu, Y.; Liu, Y.; Wang, X.; Wang, L. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020, 92, 791–796. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H. Clinical and immunologic features in severe and moderate forms of Coronavirus Disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [Green Version]
- Waggoner, S.N.; Reighard, S.D.; Gyurova, I.E.; Cranert, A.S.A.; Mahl, E.S.E.; Karmele, E.P.; McNally, J.P.; Moran, M.T.; Brooks, T.R.; Yaqoob, F.; et al. Roles of natural killer cells in antiviral immunity. Curr. Opin. Virol. 2015, 16, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Meng, M.; Kumar, R.; Wu, Y.; Huang, J.; Deng, Y.; Weng, Z.; Yang, L. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int. J. Infect. Dis. 2020, 96, 131–135. [Google Scholar] [CrossRef]
- Huang, I.; Pranata, R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. J. Intensive Care 2020, 8, 36. [Google Scholar] [CrossRef]
- Zheng, M.; Gao, Y.; Wang, G.; Song, G.; Liu, S.; Sun, D.; Xu, Y.; Tian, Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 2020, 17, 533–535. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Li, Y.-Z.; Huang, G.; Wu, W.; Dong, S.-Y.; Xu, Y. Mortality of COVID-19 Is Associated with Cellular Immune Function Compared to Immune Function in the Chinese Han Population. Available online: https://www.medrxiv.org/content/10.1101/2020.03.08.20031229v2 (accessed on 30 August 2021).
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal. Transduct. Target Ther. 2020, 5, 33. [Google Scholar] [CrossRef]
- Jafarzadeh, A.; Jafarzadeh, S.; Nozari, P.; Mokhtari, P.; Nemati, M. Lymphopenia an important immunological abnormality in patients with COVID-19: Possible mechanisms. Scand. J. Immunol. 2021, 93, e12967. [Google Scholar] [CrossRef]
- Thevarajan, I.; Nguyen, T.H.O.; Koutsakos, M.; Druce, J.; Caly, L.; van de Sandt, C.E.; Jia, X.; Nicholson, S.; Catton, M.; Cowie, B.; et al. Breadth of concomitant immune responses prior to patient recovery: A case report of non-severe COVID-19. Nat. Med. 2020, 26, 453–455. [Google Scholar] [CrossRef] [Green Version]
- Doesschate, T.T.; Moorlag, S.J.C.F.M.; van der Vaart, T.W.; Taks, E.; Debisarun, P.; Oever, J.T.; Bleeker-Rovers, C.P.; Verhagen, P.B.; Lalmohamed, A.; ter Heine, R.; et al. Two Randomized Controlled Trials of Bacillus Calmette-Guérin Vaccination to reduce absenteeism among health care workers and hospital admission by elderly persons during the COVID-19 pandemic: A structured summary of the study protocols for two randomised controlled trials. Trials 2020, 21, 481. [Google Scholar] [CrossRef]
- Loo, J.; Spittle, D.A.; Newnham, M. COVID-19, immunothrombosis and venous thromboembolism: Biological mechanisms. Thorax 2021, 76, 412–420. [Google Scholar] [CrossRef]
- Mirzaei, R.; Goodarzi, P.; Asadi, M.; Soltani, A.; Aljanabi, H.A.A.; Jeda, A.S.; Dashtbin, S.; Jalalifar, S.; Mohammadzadeh, R.; Teimoori, A.; et al. Bacterial co-infections with SARS-CoV-2. IUBMB Life 2020, 72, 2097–2111. [Google Scholar] [CrossRef]
- Trivedi, N.; Verma, A.; Kumar, D. Possible treatment and strategies for COVID-19: Review and assessment. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 12593–12608. [Google Scholar]
- Wybran, J.; Govaerts, A.; Appelboom, T. Inosiplex, a stimulating agent for normal human T cells and human leukocytes. J. Immunol. 1978, 121, 1184–1187. [Google Scholar]
- Wybran, J.; Appelboom, T. Isoprinosine (Inosiplex): Immunological and Clinical Effects. In Immunomodulation; Springer International Publishing: Berlin/Heidelberg, Germany, 1984; pp. 363–374. [Google Scholar]
- O’Neill, B.B.; Robins, D.S. Isoprinosine in the treatment of genital warts. Cancer Detect. Prev. 1988, 12, 497–501. [Google Scholar]
- Georgala, S.; Katoulis, A.C.; Befon, A.; Georgala, C. Rigopoulos, D. Oral inosiplex in the treatment of cervical condy-lomata acuminata: A randomised placebo-controlled trial. BJOG 2006, 113, 1088–1091. [Google Scholar] [CrossRef]
- Sundar, S.K.; Barile, G.; Menezes, J. Isoprinosine enhances the activation of sensitized lymphocytes by Epstein-Barr virus antigens. Int. J. Immunopharmacol. 1985, 7, 187–192. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Tvede, N.; Diamant, M.; Gerstoft, J.; Hansen, M.B.; Haahr, P.M.; Hørding, M.; Käppel, M.; Klokker, M.; Søeberg, B.; et al. Effects of Isoprinosine Treatment of HIV-Positive Patients on Blood Mononuclear Cell Subsets, NK- and T-Cell Function, Tumour Necrosis Factor, and Interleukins 1, 2, and 6. Scand. J. Immunol. 1990, 32, 641–649. [Google Scholar] [CrossRef]
- Wiranowska-Stewart, M.; Hadden, J.W. Effects of isoprinosine and NPT 15392 on interleukin-2 (IL-2) production. Int. J. Immunopharmacol. 1986, 8, 63–69. [Google Scholar] [CrossRef]
- Milano, S.; Dieli, M.; Millott, S.; Miceli, M.D.; Maltese, E.; Cillari, E. Effect of isoprinosine on IL-2, IFN-γ and IL-4 production in vivo and in vitro. Int. J. Immunopharmacol. 1991, 13, 1013–1018. [Google Scholar] [CrossRef]
- Petrova, M.; Jelev, D.; Ivanova, A.; Krastev, Z. Isoprinosine Affects Serum Cytokine Levels in Healthy Adults. J. Interf. Cytokine Res. 2010, 30, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Lasek, W.; Janyst, M.; Wolny, R.; Zapała, Ł.; Bocian, K.; Drela, N. Immunomodulatory effects of inosine pranobex on cytokine production by human lymphocytes. Acta Pharm. 2015, 65, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Gordon, P.; Brown, E.R. The anti-viral activity of isoprinosine. Can. J. Microbiol. 1972, 18, 1463–1470. [Google Scholar] [CrossRef]
- Chang, T.W.; Weinstein, L. Antiviral activity of isoprinosine in vitro and in vivo. Am. J. Med. Sci. 1973, 265, 143–146. [Google Scholar] [CrossRef]
- Linhares, R.E.C.; Wigg, M.D.; Lagrota, M.H.C.; Nozawa, C.M. The in vitro anti-viral activity of isoprinosine on simian rotavirus (SA-11). Braz. J. Med. Biol. Res. 1989, 22, 1095–1103. [Google Scholar]
- Sliva, J.; Pantzartzi, C.N.; Votava, N. Inosine Pranobex: A Key Player in the Game against a Wide Range of Viral Infections and Non-Infectious Diseases. Adv. Ther. 2019, 36, 1878–1905. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Wang, L.; Li, Y.; Wang, Q.; Cao, S.; Tu, Y.; Li, S.; Bai, L.; Lu, J.; Wei, Z. Multicenter randomized study of inosine pranobex versus acyclovir in the treatment of recurrent herpes la-bialis and recurrent herpes genitalis in Chinese patients. J. Dermatol. 2015, 42, 596–601. [Google Scholar] [CrossRef]
- Galli, M.; Lazzarin, A.; Moroni, M.; Zanussi, C. Treatment of Recurrent Viral Infectious Diseases by Methisoprinol. In Immunomodulation; Springer: Boston, MA, USA, 1984; pp. 385–397. [Google Scholar]
- Galli, M.; Lazzarin, A.; Moroni, M.; Zanussi, C. Inosiplex in recurrent herpes simplex infections. Lancet 1982, 2, 331–332. [Google Scholar] [CrossRef]
- Talbot, D.; Menday, A.; Saurat, J.-H. Inosine Pranobex in Mucocutaneous Herpes. Lancet 1985, 325, 877. [Google Scholar] [CrossRef]
- Byrne, M.A.A.; Lawrence, A.; Walker, G.D.; O’Neill, B.; Csonka, G.; John, J.; Shanson, D.; Jeffries, D.; Harris, J. Suppression of recurrent genital herpes by inosine pranobex: Effects of episodic and continuous treatment. Curr. Ther. Res.-Clin. Exp. 1988, 43, 681–688. [Google Scholar]
- Mindel, A.; Carney, O.; Sonnex, C.; Freris, M.; Patou, G.; Williams, P. Suppression of frequently recurring genital herpes: Acyclovir v inosine pranobex. Sex. Transm. Infect. 1989, 65, 103–105. [Google Scholar] [CrossRef] [Green Version]
- Kinghorn, G.R.; Woolley, P.D.; Thin, R.N.; De Maubeuge, J.; Foidart, J.M.; Engst, R. Acyclovir vs isoprinosine (immunovir) for suppression of recurrent genital herpes simplex infection. Sex. Transm. Infect. 1992, 68, 312–316. [Google Scholar] [CrossRef] [Green Version]
- Huttenlocher, P.R.; Mattson, R.H. Isoprinosine in subacute sclerosing panencephalitis. Neurology 1979, 29, 763. [Google Scholar] [CrossRef]
- Haddad, F.S.; Risk, W.S. Isoprinosine treatment in 18 patients with subacute sclerosing panencephalitis: A controlled study. Ann. Neurol. 1980, 7, 185–188. [Google Scholar] [CrossRef]
- Silverberg, R.; Brenner, T.; Abramsky, O. Inosiplex in the Treatment of Subacute Sclerosing Panencephalitis. Arch. Neurol. 1979, 36, 374–375. [Google Scholar] [CrossRef]
- Jones, C.; Huttenlocher, P.; Dyken, P.; Jabbour, J.; Maxwell, K. Inosiplex Therapy in Subacute Sclerosing Panencephalitis. Lancet 1982, 319, 1034–1037. [Google Scholar] [CrossRef]
- DuRant, R.H.; Dyken, P.R.; Swift, A.V. The influence of inosiplex treatment on the neurological disability of patients with subacute sclerosing panencephalitis. J. Pediatr. 1982, 101, 288–293. [Google Scholar] [CrossRef]
- Anlar, B.; Yalaz, K.; Öktem, F.; Köse, G. Long-term follow-up of patients with subacute sclerosing panencephalitis treated with intraventricular α-interferon. Neurology 1997, 482, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Anlar, B.; Yalaz, K.; Köse, G.; Saygi, S. β-Interferon Plus Inosiplex in the Treatment of Subacute Sclerosing Panencephalitis. J. Child Neurol. 1998, 13, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Yalaz, K.; Anlar, B.; Oktem, F.; Aysun, S.; Ustacelebi, S.; Gurcay, O.; Gucuyener, K.; Renda, Y. Intraventricular interferon and oral inosiplex in the treatment of subacute sclerosing panencephalitis. Neurology 1992, 42, 488. [Google Scholar] [CrossRef]
- Sobczyk, W.; Kulczycki, J.; Piłkowska, E.; Iwińska, B.; Milewska, D.; Szmigielski, S. Comparison of the results of the treatment of patients with SSPE using various immunomodulating preparations. Neurol. Neurochir. Polska 1991, 25, 626–633. [Google Scholar]
- Gascon, G.; Yamani, S.; Crowell, J.; Stigsby, B.; Nester, M.; Kanaan, I.; Jallu, A. Combined oral isoprinosine-intraventricular α-interferon therapy for subacute sclerosing panencephalitis. Brain Dev. 1993, 15, 346–355. [Google Scholar] [CrossRef]
- Khakoo, R.A.; Watson, G.W.; Waldman, R.H.; Ganguly, R. Effect of inosiplex (isoprinosine) on induced human in-fluenza infection. J. Antimicrob. Chemother. 1981, 7, 389–397. [Google Scholar] [CrossRef]
- Beran, J.; Šalapová, E.; Špajdel, M. Inosine pranobex is safe and effective for the treatment of subjects with confirmed acute respiratory viral infections: Analysis and subgroup analysis from a Phase 4, randomised, placebo-controlled, double-blind study. BMC Infect. Dis. 2016, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Waldman, R.H.; Ganguly, R. Therapeutic efficacy of inosiplex (isoprinosine®) in rhinovirus infection. Ann. N. Y. Acad. Sci. 1977, 284, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Bekesi, J.G.; Tsang, P.H.; Wallace, I.J.; Roboz, J.P. Immunorestorative properties of isoprinosine in the treatment of patients at high risk of developing ARC or AIDS. J. Clin. Lab. Immunol. 1987, 24, 155–161. [Google Scholar]
- Wallace, J.I.; Bekesi, J. A double-blind clinical trial of the effects of inosine pranobex in immunodepressed patients with prolonged generalized lymphadenopathy. Clin. Immunol. Immunopathol. 1986, 39, 179–186. [Google Scholar] [CrossRef]
- Kovacs, A.J.; Powell, F.; Voeller, D.; Allegra, C.J. Inhibition of Pneumocystis carinii dihydropteroate synthetase by para-acetamidobenzoic acid: Possible mechanism of action of isoprinosine in human immunodeficiency virus infection. Antimicrob. Agents Chemother. 1993, 37, 1227–1231. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Influenza: BRaVe Call to Action. 2013. Available online: http://www.who.int/influenza/patient_care/clinical/call_to_action/en/ (accessed on 5 September 2021).
- Guo, Y.; Patil, N.K.; Luan, L.; Bohannon, J.K.; Sherwood, E.R. The biology of natural killer cells during sepsis. Immunology 2017, 153, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Trinchieri, G. Biology of Natural Killer Cells. Adv. Immunol. 1989, 47, 187–376. [Google Scholar] [CrossRef] [PubMed]
- Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol. 2008, 9, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Salazar, C.; Sun, J.C. Natural killer cell responses to emerging viruses of zoonotic origin. Curr. Opin. Virol. 2020, 44, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Cerwenka, A.; Lanier, L.L. Natural killer cells, viruses and cancer. Nat. Rev. Immunol. 2001, 1, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Jost, S.; Altfeld, M. Control of Human Viral Infections by Natural Killer Cells. Annu. Rev. Immunol. 2013, 31, 163–194. [Google Scholar] [CrossRef] [PubMed]
- Vivier, E.; Nunès, J.A.; Vély, F. Natural Killer Cell Signaling Pathways. Science 2004, 306, 1517–1519. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.R.; Newman, A.S.; O’Daly, J.; Duffy, S.; Grafton, G.; Brady, C.A.; Curnow, S.J.; Barnes, N.M.; Gordon, J. Inosine Acedoben Dimepranol promotes an early and sustained increase in the natural killer cell component of circulating lymphocytes: A clinical trial supporting anti-viral indications. Int. Immunopharmacol. 2017, 42, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Li, X.; Kuang, E. Viral Evasion of Natural Killer Cell Activation. Viruses 2016, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Moretta, A.; Marcenaro, E.; Parolini, S.; Ferlazzo, G.; Moretta, L. NK cells at the interface between innate and adaptive immunity. Cell Death Differ. 2007, 15, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Smyth, M.J.; Cretney, E.; Kelly, J.M.; Westwood, J.A.; Street, S.E.; Yagita, H.; Takeda, K.; van Dommelen, S.L.; Degli-Esposti, M.A.; Hayakawa, Y. Activation of NK cell cytotoxicity. Mol. Immunol. 2005, 42, 501–510. [Google Scholar] [CrossRef]
- Gayoso, I.; Sanchez-Correa, B.; Campos, C.; Alonso, C.; Pera, A.; Casado, J.G.; Morgado, S.; Tarazona, R.; Solana, R. Immunosenescence of Human Natural Killer Cells. J. Innate Immun. 2011, 3, 337–343. [Google Scholar] [CrossRef]
- Hazeldine, J.; Lord, J.M. The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res. Rev. 2013, 12, 1069–1078. [Google Scholar] [CrossRef]
- McCarthy, M.T.; Lin, D.; Soga, T.; Adam, J.; O’Callaghan, C.A. Inosine pranobex enhances human NK cell cytotoxicity by inducing metabolic activation and NKG2D ligand expression. Eur. J. Immunol. 2020, 50, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beran, J.; Špajdel, M.; Katzerová, V.; Holoušová, A.; Malyš, J.; Finger Rousková, J.; Slíva, J. Inosine pranobex significantly decreased the case-fatality rate among PCR positive elderly with SARS-CoV-2 at three nursing homes in the Czech Republic. Pathogens 2020, 9, 1055. [Google Scholar] [CrossRef] [PubMed]
- Kennelly, S.P.; Dyer, A.H.; Noonan, C.; Martin, R.; Kennelly, S.M.; Martin, A.; O’Neill, D.; Fallon, A. Asymptomatic carriage rates and case fatality of SARS-CoV-2 infection in residents and staff in Irish nursing homes. Age Ageing. 2021, 50, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Borges, M.; Borges, J.; Bastidas, R. Estudio experimental: Manejo del metisoprinol en pacientes con COVID-19. Univ. Cienc. Tecnol. 2020, 24, 41–50. [Google Scholar] [CrossRef]
Indicator | Results after >15 Days of Therapy | The Experimental Group (with Methisoprinol) | Control Group (without Methisoprinol) | Statistically Significant Risk Ratio ≤ 0.57 | ||
---|---|---|---|---|---|---|
Clinical Picture | With Clinical Signs | 3/30 | (10%) | 20/30 | (66.6%) | 0.14 |
Oxygen Saturation | SO2 > 90% | 30/30 | (100%) | 23/30 | (76.6%) | 0.0 |
PCR Test | PCR Negative | 28/30 | (93.3%) | 20/30 | (66.6%) | 0.20 |
Axial Tomography | No Lung Lesions | 29/30 | (96.6%) | 4/30 | (13.3%) | 0.038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beran, J.; Špajdel, M.; Slíva, J. Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course. Viruses 2021, 13, 2246. https://doi.org/10.3390/v13112246
Beran J, Špajdel M, Slíva J. Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course. Viruses. 2021; 13(11):2246. https://doi.org/10.3390/v13112246
Chicago/Turabian StyleBeran, Jiří, Marián Špajdel, and Jiří Slíva. 2021. "Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course" Viruses 13, no. 11: 2246. https://doi.org/10.3390/v13112246
APA StyleBeran, J., Špajdel, M., & Slíva, J. (2021). Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course. Viruses, 13(11), 2246. https://doi.org/10.3390/v13112246