ABO and Rhesus Blood Groups in Acute Puumala Hantavirus Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Laboratory Determinations
2.3. Statistical Analysis
3. Results
Clinical and Laboratory
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaheri, A.; Strandin, T.; Hepojoki, J.; Sironen, T.; Henttonen, H.; Mäkelä, S.; Mustonen, J. Uncovering the Mysteries of Hantavirus Infections. Nat. Rev. Microbiol. 2013, 11, 539–550. [Google Scholar] [CrossRef]
- Latronico, F.; Mäki, S.; Rissanen, H.; Ollgren, J.; Lyytikäinen, O.; Vapalahti, O.; Sane, J. Population-Based Seroprevalence of Puumala Hantavirus in Finland: Smoking as a Risk Factor. Epidemiol. Infect. 2018, 146, 367–371. [Google Scholar] [CrossRef] [Green Version]
- Mustonen, J.; Outinen, T.; Laine, O.; Pörsti, I.; Vaheri, A.; Mäkelä, S. Kidney Disease in Puumala Hantavirus Infection. Infect. Dis. 2017, 49, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Mustonen, J.; Mäkelä, S.; Outinen, T.; Laine, O.; Jylhävä, J.; Arstila, P.T.; Hurme, M.; Vaheri, A. The Pathogenesis of Nephropathia Epidemica: New Knowledge and Unanswered Questions. Antiviral Res. 2013, 100, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Mustonen, J.; Partanen, J.; Kanerva, M.; Pietilä, K.; Vapalahti, O.; Pasternack, A.; Vaheri, A. Genetic Susceptibility to Severe Course of Nephropathia Epidemica Caused by Puumala Hantavirus. Kidney Int. 1996, 49, 217–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degarege, A.; Gebrezgi, M.T.; Ibanez, G.; Wahlgren, M.; Madhivanan, P. Effect of the ABO Blood Group on Susceptibility to Severe Malaria: A Systematic Review and Meta-Analysis. Blood Rev. 2019, 33, 53–62. [Google Scholar] [CrossRef]
- Panda, A.K.; Panda, S.K.; Sahu, A.N.; Tripathy, R.; Ravindran, B.; Das, B.K. Association of ABO Blood Group with Severe Falciparum Malaria in Adults: Case Control Study and Meta-Analysis. Malaria J. 2011, 10, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cserti, C.M.; Dzik, W.H. The ABO Blood Group System and Plasmodium Falciparum Malaria. Blood 2007, 110, 2250–2258. [Google Scholar] [CrossRef] [Green Version]
- Rowe, A.J.; Handel, I.G.; Mahamadou, T.A.; Deans, A.; Lyke, K.E.; Koné, A.; Diallo, D.A.; Raza, A.; Kai, O.; Marsh, K.; et al. Blood Group O Protects Against Severe Plasmodium Falciparum Malaria through the Mechanism of Reduced Rosetting. Proc. Natl. Acad. Sci. USA 2007, 104, 17471–17476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murugananthan, K.; Subramaniyam, S.; Kumanan, T.; Owens, L.; Ketheesan, N.; Noordeen, F. Blood Group AB is Associated with Severe Forms of Dengue Virus Infection. Virus Dis. 2018, 29, 103–105. [Google Scholar] [CrossRef]
- Ravichandran, S.; Ramya, S.R.; Kanungo, R. Association of ABO Blood Groups with Dengue Fever and its Complications in a Tertiary Care Hospital. J. Lab Physicians 2019, 11, 265–269. [Google Scholar] [CrossRef]
- Kalayanarooj, S.; Gibbons, R.V.; Vaughn, D.; Green, S.; Nisalak, A.; Jarman, R.G.; Mammen, M.P.; Perng, G. Blood Group AB is Associated with Increased Risk for Severe Dengue Disease in Secondary Infections. J. Infect. Dis. 2007, 195, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Cheng, Y.; Cheng, G.; Chui, C.H.; Lau, F.Y.; Chan, P.K.S.; Ng, M.H.L.; Sung, J.J.Y.; Wong, R.S.M. ABO Blood Group and Susceptibility to Severe Acute Respiratory Syndrome. JAMA 2005, 293, 1447–1451. [Google Scholar]
- Golinelli, D.; Boetto, E.; Maietti, E.; Maria, P.F. The Association between ABO Blood Group and SARS-CoV-2 Infection: A Meta-Analysis. PLoS ONE 2020, 15, e0239508. [Google Scholar] [CrossRef] [PubMed]
- Leaf, R.K.; Al-Samkari, H.; Brenner, S.K.; Gupta, S.; Leaf, D.E. ABO Phenotype and Death in Critically Ill Patients with COVID-19. Br. J. Haematol. 2020, 190, e204–e208. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, T.; Ma, L.; Zhang, H.; Wang, H.; Wei, W.; Pei, H.; Li, H. The Impact of ABO Blood Group on COVID-19 Infection Risk and Mortality: A Systematic Review and Meta-Analysis. Blood Rev. 2020, 48, 100785. [Google Scholar] [CrossRef]
- Wu, B.; Gu, D.; Yu, J.; Yang, J.; Shen, W. Association between ABO Blood Groups and COVID-19 Infection, Severity and Demise: A Systematic Review and Meta-Analysis. Infect. Genet Evol. 2020, 84, 104485. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Zhao, S.; Liu, J.; Liu, M. ABO Blood Groups and Hepatitis B Virus Infection: A Systematic Review and Meta-Analysis. BMJ Open 2020, 10, e034114. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Xue, L.; Gao, J.; Wu, A.; Kou, X. ABO Blood Group-Associated Susceptibility to Norovirus Infection: A Systematic Review and Meta-Analysis. Infect. Genet Evol. 2020, 81, 104245. [Google Scholar] [CrossRef] [PubMed]
- Davison, G.M.; Hendrickse, H.L.; Matsha, T.E. Do Blood Group Antigens and the Red Cell Membrane Influence Human Immunodeficiency Virus Infection? Cells 2020, 9, 845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franchini, M.; Bonfanti, C. Evolutionary Aspects of ABO Blood Group in Humans. Clin. Chim. Acta 2015, 444, 66–71. [Google Scholar] [CrossRef]
- Vaheri, A.; Vapalahti, O.; Plyusnin, A. How to Diagnose Hantavirus Infections and Detect them in Rodents and Insectivores. Rev. Med. Virol. 2008, 18, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Cooling, L. Blood Groups in Infection and Host Susceptibility. Clin. Microbiol. Rev. 2015, 28, 801–870. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Ortín, R.; Vila-Vicent, S.; Carmona-Vicente, N.; Santiso-Bellón, C.; Rodríguez-Díaz, J.; Buesa, J. Histo-blood group antigens in children with symptomatic rotavirus infection. Viruses 2019, 11, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäkelä, S.; Mustonen, J.; Ala-Houhala, I.; Hurme, M.; Partanen, J.; Vapalahti, O.; Vaheri, A.; Pasternack, A. Human Leukocyte Antigen-B8-DR3 is a More Important Risk Factor for Severe Puumala Hantavirus Infection than the Tumor Necrosis Factor-A(-308) G/A Polymorphism. J. Infect Dis. 2002, 186, 843–846. [Google Scholar] [CrossRef]
- Focosi, D. Anti-A Isohaemagglutinin Titres and SARS-CoV-2 Neutralization: Implications for Children and Convalescent Plasma Selection. Br. J. Haematol. 2020, 190, e148–e150. [Google Scholar] [CrossRef]
- Gérard, C.; Maggipinto, G.; Minon, J. COVID-19 and ABO Blood Group: Another Viewpoint. Br. J. Haematol. 2020, 190, e93–e94. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Chen, J.; Cai, Y.; Deng, A.; Yang, M. Association between ABO Blood Groups and Risk of SARS-CoV-2 Pneumonia. Br. J. Haematol. 2020, 190, 24–27. [Google Scholar] [CrossRef]
- Deleers, M.; Breiman, A.; Daubie, V.; Maggetto, C.; Barreau, I.; Besse, T.; Clémenceau, B.; Ruvoën-Clouet, N.; Fils, J.; Maillart, E.; et al. Covid-19 and Blood Groups: ABO Antibody Levels may also Matter. Int. J. Infect. Dis. 2021, 104, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, F.Z.; Zaidi, A.R.Z.; Abdullah, S.M.; Zaidi, S.Z.A. COVID-19 and the ABO Blood Group Connection. Transfus. Apher. Sci. 2020, 59, 102838. [Google Scholar] [CrossRef]
- Taha, S.A.H.; Osman, M.E.M.; Abdoelkarim, E.A.A.; Holie, M.A.I.; Elbasheir, M.M.; Abuzeid, N.M.K.; Al-Thobaiti, S.; Fadul, S.B.; Konozy, E.H.E. Individuals with a Rh-Positive but Not Rh-Negative Blood Group are More Vulnerable to SARS-CoV-2 Infection: Demographics and Trend Study on COVID-19 Cases in Sudan. New Microbes New Infect. 2020, 38, 100763. [Google Scholar] [CrossRef] [PubMed]
- Groot, H.E.; Villegas Sierra, L.E.; Said, M.A.; Lipsic, E.; Karper, J.C.; van der Harst, P. Genetically Determined ABO Blood Group and its Associations with Health and Disease. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 830–838. [Google Scholar] [CrossRef]
- Li, S.; Schooling, C.M. A Phenome-Wide Association Study of ABO Blood Groups. BMC Med. 2020, 18, 334. [Google Scholar] [CrossRef] [PubMed]
- Gavrilovskaya, I.N.; Gorbunova, E.E.; Mackow, E.R. Pathogenic Hantaviruses Direct the Adherence of Quiescent Platelets to Infected Endothelial Cells. J. Virol. 2010, 84, 4832–4839. [Google Scholar] [CrossRef] [Green Version]
- Laine, O.; Mäkelä, S.; Mustonen, J.; Helminen, M.; Vaheri, A.; Lassila, R.; Joutsi-Korhonen, L. Platelet Ligands and ADAMTS13 during Puumala Hantavirus Infection and Associated Thrombocytopenia. Blood Coagul. Fibrinol. 2011, 22, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Zhang, H.; Reilly, J.P.; Chrisitie, J.D.; Ishihara, M.; Kumagai, T.; Azadi, P.; Reilly, M.P. ABO Blood Group as a Model for Platelet Glycan Modification in Arterial Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1570–1578. [Google Scholar] [CrossRef] [Green Version]
- Connolly-Andersen, A.; Sundberg, E.; Ahlm, C.; Hultdin, J.; Baudin, M.; Larsson, J.; Dunne, E.; Kenny, D.; Lindahl, T.L.; Ramström, S.; et al. Increased Thrombopoiesis and Platelet Activation in Hantavirus-Infected Patients. J. Infect. Dis. 2015, 212, 1061–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laine, O.; Joutsi-Korhonen, L.; Lassila, R.; Koski, T.; Huhtala, H.; Vaheri, A.; Mäkelä, S.; Mustonen, J. Hantavirus Infection-Induced Thrombocytopenia Triggers Increased Production but Associates with Impaired Aggregation of Platelets Except for Collagen. Thromb. Res. 2015, 136, 1126–1132. [Google Scholar] [CrossRef]
- Strandin, T.; Mäkelä, S.; Mustonen, J.; Vaheri, A. Neutrophil Activation in Acute Hemorrhagic Fever with Renal Syndrome is Mediated by Hantavirus-Infected Microvascular Endothelial Cells. Front. Immunol. 2018, 9, 2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Outinen, T.K.; Kuparinen, T.; Jylhävä, J.; Leppänen, S.; Mustonen, J.; Mäkelä, S.; Pörsti, I.; Syrjänen, J.; Vaheri, A.; Hurme, M. Plasma Cell-Free DNA Levels are Elevated in Acute Puumala Hantavirus Infection. PLoS ONE 2012, 7, e31455. [Google Scholar] [CrossRef]
- Raftery, M.J.; Lalwani, P.; Krautkrӓmer, E.; Peters, T.; Scharffetter-Kochanek, K.; Krüger, R.; Hofmann, J.ö.; Seeger, K.; Krüger, D.H.; Schönrich, G. Β2 Integrin Mediates Hantavirus-Induced Release of Neutrophil Extracellular Traps. J. Exp. Med. 2014, 211, 1485–1497. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jenne, C.N. Role of Platelets in Neutrophil Extracellular Trap (NET) Production and Tissue Injury. Semin. Immunol. 2016, 28, 546–554. [Google Scholar] [CrossRef] [PubMed]
Patients n = 289 | Blood Donors in Pirkanmaa n = 21,833 | |||
---|---|---|---|---|
Number | % | Number | % | |
A | 126 | 43.6 | 8989 | 41.2 |
B | 48 | 16.6 | 3733 | 17.1 |
AB | 22 | 7.6 | 1741 | 8.0 |
O | 93 | 32.2 | 7370 | 33.8 |
Rh+ | 249 | 86.2 | 19002 | 87.0 |
Rh− | 40 | 13.8 | 2831 | 13.0 |
A n = 126 | B n = 48 | AB n = 22 | O n = 93 | p Value | |||||
---|---|---|---|---|---|---|---|---|---|
Median/Number | Range/% | Median/Number | Range/% | Median/Number | Range/% | Median/Number | Range/% | ||
Age (years) | 38.9 | 20.4–68.9 | 35.3 | 19.7–61.2 | 35.4 | 21.0–58.2 | 41.4 | 21.5–65.7 | 0.257 |
Male/female | 89/37 | 71/29 | 35/13 | 73/27 | 12/10 | 55/45 | 66/27 | 71/29 | 0.440 † |
BMI | 24.7 | 17.5–35.4 | 22.0 | 18.9–35.8 | 25.3 | 18.6–37.6 | 24.7 | 20.6–44.2 | 0.092 |
Shock τ | 7/87 | 8.0 | 3/35 | 8.6 | 0/15 | 0 | 0/58 | 0 | 0.078 * |
Systolic BP initial (mmHg) | 125 | 60–180 | 120 | 90–158 | 131 | 105–168 | 135 | 100–174 | 0.010 |
Diastolic BP initial (mmHg) | 80 | 30–110 | 75 | 0–95 | 85 | 60–100 | 80 | 60–112 | 0.167 |
Min systolic BP (mmHg) | 120 | 60–160 | 110 | 80–180 | 120 | 90–160 | 120 | 74–155 | 0.036 |
Min diastolic BP (mmHg) | 72 | 36–100 | 70 | 40–109 | 75 | 60–90 | 70 | 50–90 | 0.482 |
Weight change (kg) ~ | 3.2 | 0.2–18.5 | 2.9 | 0.4–12.9 | 2.0 | 0.5–11.6 | 3.0 | 0.3–18.5 | 0.710 |
Dialysis | 8/87 | 9.2 | 5/35 | 14.3 | 0/15 | 0 | 8/59 | 13.6 | 0.423 * |
Hospital stay (days) | 8 | 1–30 | 9 | 2–46 | 7.5 | 4–66 | 8 | 2–27 | 0.589 |
A n = 126 | B n = 48 | AB n = 22 | O n = 93 | p Value * | |||||
---|---|---|---|---|---|---|---|---|---|
Plasma and Blood Findings | Median | Range | Median | Range | Median | Range | Median | Range | |
Hematocrit max~ | 0.43 | 0.34–0.66 | 0.42 | 0.32–0.64 | 0.41 | 0.35–0.56 | 0.42 | 0.26–0.62 | 0.671 |
Albumin min (g/L) τ | 29 | 11–45 | 30 | 22–39 | 28 | 24–34 | 29 | 19–43 | 0.756 |
Leukocytes max (x109/L) ~ | 10.4 | 4.5–39.1 | 9.7 | 4.4–50.3 | 8.9 | 4.9–19.8 | 8.9 | 3.8–44.9 | 0.092 |
CRP max (mg/L)~ | 70 | 11–200 | 69 | 13–156 | 72 | 11–280 | 67 | 12–214 | 0.843 |
Platelets min (x109/L) τ | 73 | 4–378 | 66 | 3–264 | 83 | 18–311 | 60 | 9–332 | 0.166 |
Creatinine max (µmol/L) ~ | 265 | 71–1645 | 317 | 67–1537 | 309 | 71–1183 | 200 | 70–1290 | 0.371 |
ALT max U/L | 44 | 8–2076 | 51 | 20–1892 | 29 | 10–102 | 41 | 16–109 | 0.587 |
Non-O (A, B, AB) n = 196 | O n = 93 | p Value | |||
---|---|---|---|---|---|
Median/Number | Range/% | Median/Number | Range/% | ||
Age (years) | 38.6 | 19.7–68.9 | 41.4 | 21.5–65.7 | 0.088 |
Male/female | 136/60 | 69/31 | 66/27 | 71/29 | 0.891 † |
BMI | 24.3 | 17.5–37.6 | 24.7 | 20.6–44.24 | 0.218 |
Shock τ | 10/137 | 7.3 | 0/58 | 0 | 0.035 * |
Systolic BP initial (mmHg) | 125 | 60–180 | 135 | 100–174 | 0.006 |
Diastolic BP initial (mmHg) | 80 | 30–110 | 80 | 60–112 | 0.173 |
Min systolic BP (mmHg) | 119 | 60–180 | 120 | 74–155 | 0.063 |
Min diastolic BP (mmHg) | 70 | 36–109 | 70 | 50–90 | 0.786 |
Weight change (kg) ~ | 3 | 0.2–18.5 | 3 | 0.3–18.5 | 0.550 |
Dialysis | 13/137 | 9.5 | 8/59 | 13.6 | 0.452 † |
Hospital stay (days) | 8 | 1–66 | 8 | 2–27 | 0.287 |
Non-O (A, B, AB) n = 196 | O n = 93 | p Value * | |||
---|---|---|---|---|---|
Plasma and Blood Findings | Median | Range | Median | Range | |
Hematocrit max ~ | 0.42 | 0.32–0.66 | 0.42 | 0.26–0.62 | 0.830 |
Albumin min (g/L) τ | 29 | 11–45 | 29 | 19–43 | 0.726 |
Leukocytes max (x109/L) ~ | 10.1 | 4.4–50.3 | 8.9 | 3.8–44.7 | 0.047 |
CRP max (mg/L) ~ | 70 | 11–280 | 67 | 12–214 | 0.459 |
Platelets min (x109/L) τ | 71 | 3–378 | 60 | 9–332 | 0.041 |
Creatinine max (µmol/L) ~ | 278 | 67–1645 | 200 | 70–1290 | 0.086 |
ALT max U/L | 44 | 8–2076 | 41 | 16–109 | 0.832 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tietäväinen, J.; Laine, O.; Mäkelä, S.; Huhtala, H.; Pörsti, I.; Vaheri, A.; Mustonen, J. ABO and Rhesus Blood Groups in Acute Puumala Hantavirus Infection. Viruses 2021, 13, 2271. https://doi.org/10.3390/v13112271
Tietäväinen J, Laine O, Mäkelä S, Huhtala H, Pörsti I, Vaheri A, Mustonen J. ABO and Rhesus Blood Groups in Acute Puumala Hantavirus Infection. Viruses. 2021; 13(11):2271. https://doi.org/10.3390/v13112271
Chicago/Turabian StyleTietäväinen, Johanna, Outi Laine, Satu Mäkelä, Heini Huhtala, Ilkka Pörsti, Antti Vaheri, and Jukka Mustonen. 2021. "ABO and Rhesus Blood Groups in Acute Puumala Hantavirus Infection" Viruses 13, no. 11: 2271. https://doi.org/10.3390/v13112271
APA StyleTietäväinen, J., Laine, O., Mäkelä, S., Huhtala, H., Pörsti, I., Vaheri, A., & Mustonen, J. (2021). ABO and Rhesus Blood Groups in Acute Puumala Hantavirus Infection. Viruses, 13(11), 2271. https://doi.org/10.3390/v13112271